[1] Zhang, M. et al. Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4, 1536-1537 (2017). doi: 10.1364/OPTICA.4.001536
[2] Wang, C. et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat. Commun. 10, 978 (2019). doi: 10.1038/s41467-019-08969-6
[3] He, Y. et al. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica 6, 1138-1144 (2019). doi: 10.1364/OPTICA.6.001138
[4] Gong, Z. et al. Soliton microcomb generation at 2 µm in z-cut lithium niobate microring resonators. Opt. Lett. 44, 3182-3185 (2019). doi: 10.1364/OL.44.003182
[5] Zhang, M. et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568, 373-377 (2019). doi: 10.1038/s41586-019-1008-7
[6] Luo, R. et al. On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator. Opt. Express 25, 24531-24539 (2017). doi: 10.1364/OE.25.024531
[7] Luo, R. et al. Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide. Optica 5, 1006-1011 (2018). doi: 10.1364/OPTICA.5.001006
[8] Wang, C. et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica 5, 1438-1441 (2018). doi: 10.1364/OPTICA.5.001438
[9] Yu, M. J. et al. Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides. Opt. Lett. 44, 1222-1225 (2019). doi: 10.1364/OL.44.001222
[10] Lu, J. J. et al. Octave-spanning supercontinuum generation in nanoscale lithium niobate waveguides. Opt. Lett. 44, 1492-1495 (2019). doi: 10.1364/OL.44.001492
[11] Wolf, R. et al. Cascaded second-order optical nonlinearities in on-chip micro rings. Opt. Express 25, 29927-29933 (2017). doi: 10.1364/OE.25.029927
[12] Guarino, A. et al. Electro-optically tunable microring resonators in lithium niobate. Nat. Photonics 1, 407-410 (2007). doi: 10.1038/nphoton.2007.93
[13] Rao, A. & Fathpour, S. Heterogeneous thin-film lithium niobate integrated photonics for electrooptics and nonlinear optics. IEEE J. Sel. Top. Quantum Electron. 24, 8200912 (2018).
[14] Boes, A. et al. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photonics Rev. 12, 1700256 (2018). doi: 10.1002/lpor.201700256
[15] Desiatov, B. et al. Ultra-low-loss integrated visible photonics using thin-film lithium niobate. Optica 6, 380-384 (2019). doi: 10.1364/OPTICA.6.000380
[16] Rueda, A. et al. Resonant electro-optic frequency comb. Nature 568, 378-381 (2019). doi: 10.1038/s41586-019-1110-x
[17] Barker, A. S. Jr & Loudon, R. Dielectric properties and optical phonons in LiNbO3. Phys. Rev. 158, 433-445 (1967). doi: 10.1103/PhysRev.158.433
[18] Schaufele, R. F. & Weber, M. J. Raman scattering by lithium niobate. Phys. Rev. 152, 705-708 (1966). doi: 10.1103/PhysRev.152.705
[19] Kaminow, I. P. & Johnston, W. D. Jr Quantitative determination of sources of the electro-optic effect in LiNbO3 and LiTaO3. Phys. Rev. 160, 519-522 (1967). doi: 10.1103/PhysRev.160.519
[20] Caciuc, V., Postnikov, A. V. & Borstel, G. Ab initio structure and zone-center phonons in LiNbO3. Phys. Rev. B 61, 8806-8813 (2000). doi: 10.1103/PhysRevB.61.8806
[21] Boyd, R. W. Nonlinear Optics. 3rd edn. (Academic Press, Inc, Orlando, FL, USA, Academic Press, Inc, 2008).
[22] Johnston, W. D. Jr, Kaminow, I. P. & Bergman, J. G. Jr Stimulated Raman gain coefficients for Li6NbO3, Ba2NaNb5O15, and other materials. Appl. Phys. Lett. 13, 190-193 (1968). doi: 10.1063/1.1652565
[23] Bache, M. & Schiek, R. Review of measurements of Kerr nonlinearities in lithium niobate: the role of the delayed Raman response. Preprint at (2012).
[24] Leidinger, M. et al. Strong forward-backward asymmetry of stimulated Raman scattering in lithium-niobate-based whispering gallery resonators. Opt. Lett. 41, 2823-2826 (2016). doi: 10.1364/OL.41.002823
[25] Wu, R. B. et al. Lithium niobate micro-disk resonators of quality factors above 107. Opt. Lett. 43, 4116-4119 (2018). doi: 10.1364/OL.43.004116
[26] Maleki, L. et al. Whispering gallery mode lithium niobate microresonators for photonics applications. In Proceedings of Enabling Photonic Technologies for Aerospace Applications V. (SPIE, Orlando, Florida, USA, 2003).
[27] Rong, H. S. et al. A cascaded silicon Raman laser. Nat. Photonics 2, 170-174 (2008). doi: 10.1038/nphoton.2008.4
[28] Latawiec, P. et al. On-chip diamond Raman laser. Optica 2, 924-928 (2015). doi: 10.1364/OPTICA.2.000924
[29] Spillane, S. M., Kippenberg, T. J. & Vahala, K. J. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature 415, 621-623 (2002). doi: 10.1038/415621a
[30] Kippenberg, T. J. et al. Ultralow-threshold microcavity Raman laser on a microelectronic chip. Opt. Lett. 29, 1224-1226 (2004). doi: 10.1364/OL.29.001224
[31] Grudinin, I. S. & Maleki, L. Ultralow-threshold Raman lasing with CaF2 resonators. Opt. Lett. 32, 166-168 (2007). doi: 10.1364/OL.32.000166
[32] Vanier, F. et al. Raman lasing in As2S3 high-Q whispering gallery mode resonators. Opt. Lett. 38, 4966-4969 (2013). doi: 10.1364/OL.38.004966
[33] Liu, X. W. et al. Integrated continuous-wave aluminum nitride Raman laser. Optica 4, 893-896 (2017). doi: 10.1364/OPTICA.4.000893
[34] Latawiec, P. et al. Integrated diamond Raman laser pumped in the near-visible. Opt. Lett. 43, 318-321 (2018). doi: 10.1364/OL.43.000318
[35] Chembo, Y. K., Grudinin, I. S. & Yu, N. Spatiotemporal dynamics of Kerr-Raman optical frequency combs. Phys. Rev. A 92, 043818 (2015). doi: 10.1103/PhysRevA.92.043818
[36] Okawachi, Y. et al. Competition between Raman and Kerr effects in microresonator comb generation. Opt. Lett. 42, 2786-2789 (2017). doi: 10.1364/OL.42.002786
[37] Liu, X. W. et al. Integrated high-Q crystalline AlN microresonators for broadband Kerr and Raman frequency combs. ACS Photonics 5, 1943-1950 (2018). doi: 10.1021/acsphotonics.7b01254
[38] Cherenkov, A. V. et al. Raman-Kerr frequency combs in microresonators with normal dispersion. Opt. Express 25, 31148-31158 (2017). doi: 10.1364/OE.25.031148
[39] Fujii, S. et al. Transition between Kerr comb and stimulated Raman comb in a silica whispering gallery mode microcavity. J. Optical Soc. Am. B 35, 100-106 (2018). doi: 10.1364/JOSAB.35.000100
[40] Møller, U. & Bang, O. Intensity noise in normal-pumped picosecond supercontinuum generation, where higher-order Raman lines cross into anomalous dispersion regime. Electron. Lett. 49, 63-65 (2013). doi: 10.1049/el.2012.3774
[41] Zhang, M. et al. Microresonator frequency comb generation with simultaneous Kerr and electrooptic nonlinearities. Proceedings of 2019 Conference on Lasers and Electro-Optics, FF2D (Optical Society of America, San Jose, 2019).
[42] Hansson, T., Modotto, D. & Wabnitz, S. Mid-infrared soliton and Raman frequency comb generation in silicon microrings. Opt. Lett. 39, 6747-6750 (2014). doi: 10.1364/OL.39.006747
[43] Jestin, Y. et al. Improving resonant photonics devices with sol-gel coatings. Proceedings of Laser Resonators and Beam Control XI (SPIE, San Jose, California, USA, 2009).
[44] Puthoff, H. E. et al. Near-forward Raman scattering in LiNbO3. J. Appl. Phys. 39, 2144-2146 (1968). doi: 10.1063/1.1656503
[45] Krause, M., Renner, H. & Brinkmeyer, E. Strong enhancement of Raman-induced nonreciprocity in silicon waveguides by alignment with the crystallographic axes. Appl. Phys. Lett. 95, 261111 (2009). doi: 10.1063/1.3279151
[46] Warrier, A. M. et al. Multiwavelength ultrafast LiNbO3 Raman laser. Opt. Express 23, 25582-25587 (2015). doi: 10.1364/OE.23.025582
[47] Joshi, C. et al. Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett. 41, 2565-2568 (2016). doi: 10.1364/OL.41.002565
[48] Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photonics 8, 145-152 (2014). doi: 10.1038/nphoton.2013.343
[49] Del Bino, L. et al. Symmetry breaking of counter-propagating light in a nonlinear resonator. Sci. Rep. 7, 43142 (2017). doi: 10.1038/srep43142
[50] Yang, Q. F. et al. Stokes solitons in optical microcavities. Nat. Phys. 13, 53-57 (2017). doi: 10.1038/nphys3875