[1] Ho, C. J. H., et al. Advances in optoacoustic imaging: from benchside to clinic. In Frontiers in Biophotonics for Translational Medicine: In the Celebration of Year of Light (eds. Olivo, M., Dinish, U.S.) 75-109 (Springer, Singapore, 2016).
[2] Taruttis, A. & Ntziachristos, V. Advances in real-time multispectral optoacoustic imaging and its applications. Nat. Photonics 9, 219-227 (2015). doi: 10.1038/nphoton.2015.29
[3] Deán-Ben, X. L., Fehm, T. F., Ford, S. J., Gottschalk, S. & Razansky, D. Spiral volumetric optoacoustic tomography visualizes multi-scale dynamics in mice. Light Sci. Appl. 6, e16247 (2017). doi: 10.1038/lsa.2016.247
[4] Fehm, T. F., Deán-Ben, X. L., Ford, S. J. & Razansky, D. In vivo whole-body optoacoustic scanner with real-time volumetric imaging capacity. Optica 3, 1153-1159 (2016). doi: 10.1364/OPTICA.3.001153
[5] Merčep, E., Burton, N. C., Claussen, J. & Razansky, D. Whole-body live mouse imaging by hybrid reflection-mode ultrasound and optoacoustic tomography. Opt. Lett. 40, 4643-4646 (2015). doi: 10.1364/OL.40.004643
[6] Knieling, F. et al. Multispectral optoacoustic tomography for assessment of Crohn's disease activity. N. Engl. J. Med. 376, 1292-1294 (2017). doi: 10.1056/NEJMc1612455
[7] Razansky, D., Deliolanis, N. C., Vinegoni, C. & Ntziachristos, V. Deep tissue optical and optoacoustic molecular imaging technologies for pre-clinical research and drug discovery. Curr. Pharm. Biotechnol. 13, 504-522 (2012). doi: 10.2174/138920112799436258
[8] Taruttis, A., van Dam, G. M. & Ntziachristos, V. Mesoscopic and macroscopic optoacoustic imaging of cancer. Cancer Res. 75, 1548-1559 (2015). doi: 10.1158/0008-5472.CAN-14-2522
[9] Stoffels, I. et al. Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging. Sci. Transl. Med 7, 317ra199 (2015). doi: 10.1126/scitranslmed.aad1278
[10] van den Berg, P. J., Daoudi, K., Bernelot Moens, H. J. & Steenbergen, W. Feasibility of photoacoustic/ultrasound imaging of synovitis in finger joints using a point-of-care system. Photoacoustics 8, 8-14 (2017). doi: 10.1016/j.pacs.2017.08.002
[11] He, H. et al. Optoacoustic endoscopy with optical and acoustic resolution. in Proc. SPIE 10064, Photons Plus Ultrasound: Imaging and Sensing 100641C, 3 March (eds Oraevsky, A. A. & Wang, L. V.) (2017). https://doi.org/10.1117/12.2252313.
[12] Ansari, R. et al. All-optical endoscopic probe for high resolution 3D photoacoustictomography, in Proc. SPIE 10064, Photons Plus Ultrasound: Imaging and Sensing 100641W, 23 March (eds Oraevsky, A. A. & Wang, L. V.) (2017). https://doi.org/10.1117/12.2250617
[13] Greenleaf, J. F., Alizad, A. Measurement of tissue viscoelasticity with ultrasound, in Proc. SPIE 10067, Optical Elastography and Tissue Biomechanics IV 1006705, 21 February (eds Oraevsky, A. A. & Wang, L. V.) (2017). https://doi.org/10.1117/12.2256842
[14] Klibanov, A. L. & Hossack, J. A. Ultrasound in Radiology: from Anatomic, Functional, Molecular Imaging to Drug Delivery and Image-Guided Therapy. Invest Radiol 50, 657-670 (2015).
[15] Deffieux, T., Demene, C., Pernot, M. & Tanter, M. Functional ultrasound neuroimaging: a review of the preclinical and clinical state of the art. Curr. Opin. Neurobiol. 50, 128-135 (2018). doi: 10.1016/j.conb.2018.02.001
[16] Kastelein, J. J. P. & de Groot, E. Ultrasound imaging techniques for the evaluation of cardiovascular therapies. Eur. Heart J. 29, 849-858 (2008). doi: 10.1093/eurheartj/ehn070
[17] Li, M. C., Tang, Y. Q. & Yao, J. J. Photoacoustic tomography of blood oxygenation: a mini review. Photoacoustics 10, 65-73 (2018). doi: 10.1016/j.pacs.2018.05.001
[18] Chung, Y. E. & Kim, K. W. Contrast-enhanced ultrasonography: advance and current status in abdominal imaging. Ultrasonography 34, 3-18 (2015).
[19] Solomon, O., van Sloun, R. J. G., Wijkstra, H., Mischi, M. & Eldar, Y. C. Exploiting flow dynamics for superresolution in contrast-enhanced ultrasound. arXiv: 1804.03134[physics] (2018).
[20] Sachs, T. D. & Janney, C. D. A two-beam acoustic system for tissue analysis. Phys. Med. Biol. 22, 327-340 (1977). doi: 10.1088/0031-9155/22/2/012
[21] Goldstein, A. Slice thickness measurements. J. Ultrasound Med. 7, 487-498 (1988). doi: 10.7863/jum.1988.7.9.487
[22] Krueger, M., Pesavento, A. & Ermert, H. A modified time-of-flight tomography concept for ultrasonic breast imaging. 1996 IEEE Ultrasonics Symposium. Vol. 2, 1381--1385 (Proceedings, San Antonio, TX, USA, 1996). https://doi.org/10.1117/12.2252313
[23] Li, C. P., Duric, N., Littrup, P. & Huang, L. J. In vivo breast sound-speed imaging with ultrasound tomography. Ultrasound Med. Biol. 35, 1615-1628 (2009). doi: 10.1016/j.ultrasmedbio.2009.05.011
[24] Lenox, M. W. et al. Imaging performance of quantitative transmission ultrasound. Int. J. Biomed. Imaging 2015, 454028 (2015).
[25] Duric, N. WE‐G‐210‐02: ultrasound tomography: a breast imaging modality whose time has come. Med. Phys. 42, 3699-3699 (2016).
[26] Forte, S., Dellas, S., Stieltjes, B. & Bongartz, B. Multimodal ultrasound tomography for breast imaging: a prospective study of clinical feasibility. Eur. Radiol. Exp. 1, 27 (2017). doi: 10.1186/s41747-017-0029-y
[27] Oraevsky, A. A. et al. Clinical optoacoustic imaging combined with ultrasound for coregistered functional and anatomical mapping of breast tumors. Photoacoustics 12, 30-45 (2018). doi: 10.1016/j.pacs.2018.08.003
[28] Merčep, E., Jeng, G., Morscher, S., Li, P. C. & Razansky, D. Hybrid optoacoustic tomography and pulse-echo ultrasonography using concave arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62, 1651-1661 (2015). doi: 10.1109/TUFFC.2015.007058
[29] Deán-Ben, X. L., Merčep, E. & Razansky, D. Hybrid-array-based optoacoustic and ultrasound (OPUS) imaging of biological tissues. Appl. Phys. Lett. 110, 203703 (2017). doi: 10.1063/1.4983462
[30] Merčep, E., Deán-Ben, X. L. & Razansky, D. Imaging of blood flow and oxygen state with a multi-segment optoacoustic ultrasound array. Photoacoustics 10, 48-53 (2018). doi: 10.1016/j.pacs.2018.04.002
[31] Yang, J. M. et al. Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo. Nat. Med. 18, 1297-1302 (2012). doi: 10.1038/nm.2823
[32] Dai, X. J. et al. Miniature endoscope for multimodal imaging. ACS Photonics 4, 174-180 (2017). doi: 10.1021/acsphotonics.6b00852
[33] Tang, J. B. & Jiang, H. B. Single element-based dual focused photoacoustic microscopy. Photonics 2, 156-163 (2015). doi: 10.3390/photonics2010156
[34] Estrada, H. et al. Virtual craniotomy for high-resolution optoacoustic brain microscopy. Sci. Rep. 8, 1459 (2018). doi: 10.1038/s41598-017-18857-y
[35] Jose, J. et al. Speed-of-sound compensated photoacoustic tomography for accurate imaging. Med. Phys. 39, 7262-7271 (2012). doi: 10.1118/1.4764911
[36] Niederhauser, J. J., Jaeger, M., Frenz, M. Comparision of laserinduced and classical ultasound, in Proc. SPIE 4960, Biomedical Optoacoustics IV, 1 July (eds Oraevsky, A. A. & Wang, L. V.) (2003). https://doi.org/10.1117/12.483509
[37] Oraevsky, A. A., Jacques, S. L., Tittel, F. K. Determination of tissue optical properties by piezoelectric detection of laser-induced stress waves, in Proc. SPIE 1882, Laser-Tissue Interaction IV, 7 July (eds Oraevsky, A. A. & Wang, L. V.) (1993). https://doi.org/10.1117/12.147694
[38] Li, S. Y. et al. Refraction corrected transmission ultrasound computed tomography for application in breast imaging. Med. Phys. 37, 2233-2246 (2010). doi: 10.1118/1.3360180
[39] Shi, L. Y. & Alfano, R. R. Deep Imaging in Tissue and Biomedical Materials: Using Linear and Nonlinear Optical Methods. (Pan Stanford Publishing Pte. Ltd., Singapore, 2017).
[40] Handorf, A. M., Zhou, Y., Halanski, M. A. & Li, W. J. Tissue stiffness dictates development, homeostasis, and disease progression. Organogenesis 11, 1-15 (2015). doi: 10.1080/15476278.2015.1019687
[41] Deán-Ben, X. L. & Razansky, D. On the link between the speckle free nature of optoacoustics and visibility of structures in limited-view tomography. Photoacoustics 4, 133-140 (2016). doi: 10.1016/j.pacs.2016.10.001
[42] Wells, P. N. T. Biomedical Ultrasonics. (Academic Press, New York, 1977).
[43] Duck, F. A. Physical Properties of Tissues: A Comprehensive Reference Book. (Academic Press, London, 1990).
[44] Ghoshal, G., Luchies, A. C., Blue, J. P. & Oelze, M. L. Temperature dependent ultrasonic characterization of biological media. J. Acoust. Soc. Am. 130, 2203-2211 (2011). doi: 10.1121/1.3626162
[45] Dean-Ben, X. L., Ma, R., Razansky, D. & Ntziachristos, V. Statistical approach for optoacoustic image reconstruction in the presence of strong acoustic heterogeneities. IEEE Trans. Med. Imaging 30, 401-408 (2011). doi: 10.1109/TMI.2010.2081683
[46] Heijblom, M. et al. Photoacoustic image patterns of breast carcinoma and comparisons with Magnetic Resonance Imaging and vascular stained histopathology. Sci. Rep. 5, 11778 (2015). doi: 10.1038/srep11778
[47] Wang, D. P. et al. Deep tissue photoacoustic computed tomography with a fast and compact laser system. Biomed. Opt. Express 8, 112-123 (2016).
[48] Li, L. et al. Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution. Nat. Biomed. Eng. 1, 0071 (2017). doi: 10.1038/s41551-017-0071
[49] Oruganti, T., Laufer, J. G., Treeby, B. E. Vessel filtering of photoacoustic images, in Proc. SPIE 8581, Photons Plus Ultrasound: Imaging and Sensing 85811W, 4 March (eds Oraevsky, A. A. & Wang, L. V.) (2013). https://doi.org/10.1117/12.2005988
[50] Kim, C., Erpelding, T. N., Jankovic, L., Pashley, M. D. & Wang, L. V. Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system. Biomed. Opt. Express 1, 278-284 (2010). doi: 10.1364/BOE.1.000278
[51] Calderon, C. et al. Differences in the attenuation of ultrasound by normal, benign, and malignant breast tissue. J. Clin. Ultrasound 4, 249-254 (1976).
[52] Hoyt, K. et al. Tissue elasticity properties as biomarkers for prostate cancer. Cancer Biomark. 4, 213-225 (2008). doi: 10.3233/CBM-2008-44-505
[53] Masuzaki, R. et al. Assessing liver tumor stiffness by transient elastography. Hepatol. Int. 1, 394-397 (2007). doi: 10.1007/s12072-007-9012-7
[54] Olefir, I., Merčep, E., Burton, N. C., Ovsepian, S. V. & Ntziachristos, V. Hybrid multispectral optoacoustic and ultrasound tomography for morphological and physiological brain imaging. J. Biomed. Opt. 21, 086005 (2016). doi: 10.1117/1.JBO.21.8.086005
[55] Szabo, T. L. Diagnostic Ultrasound Imaging: Inside Out. (Academic Press, Oxford, 2013).
[56] Holm S. Digital beamforming in ultrasound imaging. https://www.researchgate.net/publication/242391444_Digital_Beamforming_in_Ultrasound_Imaging
[57] Wang, Y. T., Xu, D., Yang, S. H. & Xing, D. Toward in vivo biopsy of melanoma based on photoacoustic and ultrasound dual imaging with an integrated detector. Biomed. Opt. Express 7, 279-286 (2016). doi: 10.1364/BOE.7.000279
[58] Weber, J., Beard, P. C. & Bohndiek, S. E. Contrast agents for molecular photoacoustic imaging. Nat. Methods 13, 639-650 (2016). doi: 10.1038/nmeth.3929
[59] Deliolanis, N. C. et al. Deep-tissue reporter-gene imaging with fluorescence and optoacoustic tomography: a performance overview. Mol. Imaging Biol. 16, 652-660 (2014). doi: 10.1007/s11307-014-0728-1
[60] Deán-Ben, X. L. et al. Functional optoacoustic neuro-tomography for scalable whole-brain monitoring of calcium indicators. Light Sci. Appl. 5, e16201 (2016). doi: 10.1038/lsa.2016.201
[61] Treeby, B. E. Acoustic attenuation compensation in photoacoustic tomography using time-variant filtering. J. Biomed. Opt. 18, 036008 (2013). doi: 10.1117/1.JBO.18.3.036008
[62] Xia, J., Huang, C., Maslov, K., Anastasio, M. A. & Wang, L. V. Enhancement of photoacoustic tomography by ultrasonic computed tomography based on optical excitation of elements of a full-ring transducer array. Opt. Lett. 38, 3140-3143 (2013). doi: 10.1364/OL.38.003140
[63] Mandal, S., Deán-Ben, X. L. & Razansky, D. Visual quality enhancement in optoacoustic tomography using active contour segmentation priors. IEEE Trans. Med. Imaging 35, 2209-2217 (2016). doi: 10.1109/TMI.2016.2553156
[64] Deán-Ben, X. L., Ntziachristos, V. & Razansky, D. Effects of small variations of speed of sound in optoacoustic tomographic imaging. Med. Phys. 41, 073301 (2014). doi: 10.1118/1.4875691
[65] Huthwaite, P. & Simonetti, F. A practical, robust approach to high resolution ultrasonic breast tomography. J. Acoust. Soc. Am. 135, 2178 (2014).
[66] Schoonover, R. W. & Anastasio, M. A. Image reconstruction in photoacoustic tomography involving layered acoustic media. J. Opt. Soc. Am. A. 28, 1114-1120 (2011). doi: 10.1364/JOSAA.28.001114
[67] Matthews, T. P., Wang, K., Wang, L. V., Anastasio, M. A. Synergistic image reconstruction for hybrid ultrasound and photoacoustic computed tomography, in Proc. SPIE 9323, Photons Plus Ultrasound: Imaging and Sensing 93233A, 11 March (eds Oraevsky, A. A. & Wang, L. V.) (2015). https://doi.org/10.1117/12.2256842
[68] Monnin, P. et al. Quantitative characterization of edge enhancement in phase contrast x-ray imaging. Med. Phys. 31, 1372-1383 (2004). doi: 10.1118/1.1755568
[69] Diot, G. et al. Multispectral optoacoustic tomography (MSOT) of human breast cancer. Clin. Cancer Res. 23, 6912-6922 (2017). doi: 10.1158/1078-0432.CCR-16-3200
[70] Malik, B., Klock, J., Wiskin, J. & Lenox, M. Objective breast tissue image classification using Quantitative Transmission ultrasound tomography. Sci. Rep. 6, 38857 (2016). doi: 10.1038/srep38857
[71] O'Flynn, E. A. M. et al. Ultrasound tomography evaluation of breast density: a comparison with noncontrast magnetic resonance imaging. Invest. Radiol. 52, 343-348 (2017). doi: 10.1097/RLI.0000000000000347
[72] Opielinski, K. J. & Gudra, T. Multi-parameter ultrasound transmission tomography of biological media. Ultrasonics 44(Suppl), e295-e302 (2006).
[73] American National Standards Institute. ANSI Z136.1 American National Standard for Safe Use of Lasers. (Laser Institute of America, Orlando, FL, 2007).
[74] Herman, B. A. & Harris, G. R. Models and regulatory considerations for transient temperature rise during diagnostic ultrasound pulses. Ultrasound Med. Biol. 28, 1217-1224 (2002). doi: 10.1016/S0301-5629(02)00558-6
[75] Misaridis, T. X. et al. Potential of coded excitation in medical ultrasound imaging. Ultrasonics 38, 183-189 (2000). doi: 10.1016/S0041-624X(99)00130-4
[76] Krimholtz, R., Leedom, D. A. & Matthaei, G. L. New equivalent circuits for elementary piezoelectric transducers. Electron Lett. 6, 398-399 (1970). doi: 10.1049/el:19700280
[77] Marczak, W. Water as a standard in the measurements of speed of sound in liquids. J. Acoust. Soc. Am. 102, 2776-2779 (1997). doi: 10.1121/1.420332
[78] Anastasio, M. A. et al. Half-time image reconstruction in thermoacoustic tomography. IEEE Trans. Med. Imaging 24, 199-210 (2005). doi: 10.1109/TMI.2004.839682
[79] Xia, J. et al. Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo. J. Biomed. Opt. 17, 050506 (2012). doi: 10.1117/1.JBO.17.5.050506
[80] Zuiderveld, K. Contrast limited adaptive histogram equalization. In Graphics Gems IV (ed. Heckbert, P. S.) 474-485 (Academic Press Professional, Inc., San Diego, 1994).
[81] Frangi, A. F., Niessen, W. J., Vincken, K. L. & Viergever, M. A. Multiscale vessel enhancement filtering. In Medical Image Computing and Computer-Assisted Intervention (eds. Wells, W. M., Colchester, A. Delp, S.) 130-137 (Springer, Berlin, Heidelberg, 1988).
[82] Jespersen, S. K., Wilhjelm, J. E. & Sillesen, H. Multi-angle compound imaging. Ultrason. Imaging 20, 81-102 (1998). doi: 10.1177/016173469802000201
[83] Kirkhorn, J. Introduction to IQ-demodulation of RF-data. https://21751807/21751807-Introduction-to-iq-demodulation-of-rf-data.html
[84] Mulla, V. Ultrasound Instrumentation physics. Slideshare.net 2010: 61. https://docplayer.net/21751807-Introduction-to-iq-demodulation-of-rf-data.html
[85] Li, C. P., Huang, L. J., Duric, N., Zhang, H. J. & Rowe, C. An improved automatic time-of-flight picker for medical ultrasound tomography. Ultrasonics 49, 61-72 (2009). doi: 10.1016/j.ultras.2008.05.005
[86] Kalkan, E. An automatic P‐Phase arrival‐time picker. Bull. Seismol Soc. Am. 106, 971-986 (2016). doi: 10.1785/0120150111
[87] Li, C. P., Duric, N. & Huang, L. J. Comparison of ultrasound attenuation tomography methods for breast imaging. Proceedings Volume 6920, Medical Imaging 2008: Ultrasonic Imaging and Signal Processing. (SPIE, San Diego, 2008).
[88] Baer, M. & Kradolfer, U. An automatic phase picker for local and teleseismic events. Bull. Seismol Soc. Am. 77, 1437-1445 (1987).
[89] Hopp, T., Ruiter, N., Bamber, J. C., Duric, N. & van Dongen, W. A. Proceedings of the International Workshop on Medical Ultrasound Tomography: 1. - 3. Nov. 2017, Speyer, Germany. (KIT Scientific Publishing, Karlsruhe, 2018).
[90] Pérez Liva, M. Time domain image reconstruction methods for transmission ultrasound computed tomography. (PhD thesis, University Complutense of Madrid, Madrid, 2017).
[91] Qu, X. L. et al. Computational cost reduction by avoiding ray-linking iteration in bent-ray method for sound speed image reconstruction in ultrasound computed tomography. Jpn. J. Appl. Phys. 56, 07JF14 (2017). doi: 10.7567/JJAP.56.07JF14
[92] Bettinardi, V. et al. Implementation and evaluation of a 3D one-step late reconstruction algorithm for 3D positron emission tomography brain studies using median root prior. Eur. J. Nucl. Med. Mol. Imaging 29, 7-18 (2002). doi: 10.1007/s002590100651
[93] Zell, K., Sperl, J. I., Vogel, M. W., Niessner, R. & Haisch, C. Acoustical properties of selected tissue phantom materials for ultrasound imaging. Phys. Med. Biol. 52, N475-N484 (2007). doi: 10.1088/0031-9155/52/20/N02
[94] Smith, S. W. Digital Signal Processing: A Practical Guide for Engineers and Scientists. (Newnes, New York, 2013).