[1] Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77-79 (2001). doi: 10.1126/science.1058847
[2] Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977-980 (2006). doi: 10.1126/science.1133628
[3] Yu, N. F. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139-150 (2014). doi: 10.1038/nmat3839
[4] Liu, N. et al. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10, 2342-2348 (2010). doi: 10.1021/nl9041033
[5] Moreau, A. et al. Controlled-reflectance surfaces with film-coupled colloidal nanoantennas. Nature 492, 86-89 (2012). doi: 10.1038/nature11615
[6] Watts, C. W., Liu, X. L. & Padilla, W. J. Metamaterial electromagnetic wave absorbers. Adv. Mater. 24, OP98-OP120 (2012).
[7] Wang, J. Y. et al. Direct comparison of second harmonic generation and two-photon photoluminescence from single connected gold nanodimers. J. Phys. Chem. C. 120, 17699-17710 (2016). doi: 10.1021/acs.jpcc.6b04850
[8] Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013). doi: 10.1126/science.1232009
[9] Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333-337 (2011). doi: 10.1126/science.1210713
[10] Aieta, F. et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342-1345 (2015). doi: 10.1126/science.aaa2494
[11] Zhao, Y. & Alù, A. Manipulating light polarization with ultrathin plasmonic metasurfaces. Phys. Rev. B 84, 205428 (2011). doi: 10.1103/PhysRevB.84.205428
[12] Yu, N. F. et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett. 12, 6328-6333 (2012). doi: 10.1021/nl303445u
[13] Huang, Y. W. et al. Aluminum plasmonic multicolor meta-hologram. Nano Lett. 15, 3122-3127 (2015). doi: 10.1021/acs.nanolett.5b00184
[14] Wang, L. et al. Grayscale transparent metasurface holograms. Optica 3, 1504-1505 (2016). doi: 10.1364/OPTICA.3.001504
[15] Yu, N. F. & Capasso, F. Optical metasurfaces and prospect of their applications including fiber optics. J. Lightwave Technol. 33, 2344-2358 (2015). doi: 10.1109/JLT.2015.2404860
[16] Cheng, F. et al. Structural color printing based on plasmonic metasurfaces of perfect light absorption. Sci. Rep. 5, 11045 (2015). doi: 10.1038/srep11045
[17] Li, W. & Valentine, J. Metamaterial perfect absorber based hot electron photodetection. Nano Lett. 14, 3510-3514 (2014). doi: 10.1021/nl501090w
[18] Azad, A. K. et al. Metasurface broadband solar absorber. Sci. Rep. 6, 20347 (2016). doi: 10.1038/srep20347
[19] Minovich, A. E. et al. Functional and nonlinear optical metasurfaces. Laser Photonics Rev. 9, 195-213 (2015). doi: 10.1002/lpor.201400402
[20] Kauranen, M. & Zayats, A. V. Nonlinear plasmonics. Nat. Photonics 6, 737-748 (2012). doi: 10.1038/nphoton.2012.244
[21] Krasnok, A., Tymchenko, M. & Alù, A. Nonlinear metasurfaces: a paradigm shift in nonlinear optics. Materialstoday 21, 8-21 (2018).
[22] Brongersma, M. L., Halas, N. J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25-34 (2015). doi: 10.1038/nnano.2014.311
[23] Mukherjee, S. et al. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett. 13, 240-247 (2013). doi: 10.1021/nl303940z
[24] Salamin, Y. et al. 100 GHz Plasmonic photodetector. ACS Photonics 5, 3291-3297 (2018). doi: 10.1021/acsphotonics.8b00525
[25] Baida, H. et al. Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance. Phys. Rev. Lett. 107, 057402 (2011). doi: 10.1103/PhysRevLett.107.057402
[26] Biagioni, P. et al. Dynamics of four-photon photoluminescence in gold nanoantennas. Nano Lett. 12, 2941-2947 (2012). doi: 10.1021/nl300616s
[27] Demichel, O. et al. Dynamics, efficiency, and energy distribution of nonlinear plasmon-assisted generation of hot carriers. ACS Photonics 3, 791-795 (2016). doi: 10.1021/acsphotonics.5b00726
[28] Wang, J. Y. et al. Carrier recombination and plasmonic emission channels in metallic photoluminescence. Nanoscale 10, 8240-8245 (2018). doi: 10.1039/C7NR07821H
[29] Del Fatti, N. et al. Nonequilibrium electron dynamics in noble metals. Phys. Rev. B 61, 16956-16966 (2000). doi: 10.1103/PhysRevB.61.16956
[30] Elim, H. I. et al. Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods. Appl. Phys. Lett. 88, 083107 (2006). doi: 10.1063/1.2177366
[31] Kang, Z. et al. Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers. Appl. Phys. Lett. 103, 041105 (2013). doi: 10.1063/1.4816516
[32] Wang, X. D. et al. Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser. Appl. Phys. Lett. 105, 161107 (2014). doi: 10.1063/1.4899133
[33] Muhammad, A. R. et al. Pure gold saturable absorber for generating Q-switching pulses at 2 μm in thulium-doped fiber laser cavity. Optical Fiber Technol. 50, 23-30 (2019). doi: 10.1016/j.yofte.2019.02.010
[34] Kang, Z. et al. Microfiber coated with gold nanorods as saturable absorbers for 2 μm femtosecond fiber lasers. Optical Mater. Express 8, 3841-3850 (2018). doi: 10.1364/OME.8.003841
[35] Shu, Y. Q. et al. Gold nanorods as saturable absorber for harmonic soliton molecules generation. Front. Chem. 7, 715 (2019). doi: 10.3389/fchem.2019.00715
[36] Set, S. Y. et al. Laser mode locking using a saturable absorber incorporating carbon nanotubes. J. Lightwave Technol. 22, 51-56 (2004). doi: 10.1109/JLT.2003.822205
[37] Sun, Z. P. et al. Graphene mode-locked ultrafast laser. ACS Nano 4, 803-810 (2010). doi: 10.1021/nn901703e
[38] Jung, M. et al. A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator. Opt. Express 22, 7865-7874 (2014). doi: 10.1364/OE.22.007865
[39] Sotor, J. et al. Ultrafast thulium-doped fiber laser mode locked with black phosphorus. Opt. Lett. 40, 3885-3888 (2015). doi: 10.1364/OL.40.003885
[40] Zhao, L. L., Kelly, K. L. & Schatz, G. C. The extinction spectra of silver nanoparticle arrays: influence of array structure on Plasmon resonance wavelength and width. J. Phys. Chem. B 107, 7343-7350 (2003). doi: 10.1021/jp034235j
[41] Bouhelier, A. et al. Electromagnetic interactions in plasmonic nanoparticle arrays. J. Phys. Chem. B 109, 3195-3198 (2005). doi: 10.1021/jp046224b
[42] Muskens, O. L. et al. Quantitative absorption spectroscopy of a single gold nanorod. J. Phys. Chem. C. 112, 8917-8921 (2008). doi: 10.1021/jp8012865
[43] Jhon, Y. I. et al. Metallic MXene saturable absorber for femtosecond mode-locked lasers. Adv. Mater. 29, 1702496 (2017). doi: 10.1002/adma.201702496
[44] Wang, X. D. et al. A microfiber-based gold nanorod saturable absorber with evanescent field interaction for multi-soliton patterns in a fiber laser. Laser Phys. 26, 065105 (2016). doi: 10.1088/1054-660X/26/6/065105
[45] Cabasse, A., Martel, G. & Oudar, J. L. High power dissipative soliton in an Erbium-doped fiber laser mode-locked with a high modulation depth saturable absorber mirror. Opt. Express 17, 9537-9542 (2009). doi: 10.1364/OE.17.009537
[46] Goda, K. & Jalali, B. Dispersive fourier transformation for fast continuous single-shot measurements. Nat. Photonics 7, 102-112 (2013). doi: 10.1038/nphoton.2012.359
[47] Krupa, K. et al. Real-time observation of internal motion within ultrafast dissipative optical soliton molecules. Phys. Rev. Lett. 118, 243901 (2017). doi: 10.1103/PhysRevLett.118.243901
[48] Hänsel, W. et al. All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation. Appl. Phys. B 123, 41 (2017).
[49] Grelu, P. & Akhmediev, N. Dissipative solitons for mode-locked lasers. Nat. Photonics 6, 84-92 (2012). doi: 10.1038/nphoton.2011.345
[50] Noske, D. U., Pandit, N. & Taylor, J. R. Subpicosecond soliton pulse formation from self-mode-locked erbium fibre laser using intensity dependent polarisation rotation. Electron. Lett. 28, 2185-2186 (1992). doi: 10.1049/el:19921402
[51] Alam, M. Z. et al. Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material. Nat. Photonics 12, 79-83 (2018). doi: 10.1038/s41566-017-0089-9