[1] Liang, D. et al. Hybrid integrated platforms for silicon photonics. Materials 3, 1782-1802 (2010). doi: 10.3390/ma3031782
[2] Chen, S. M. et al. Electrically pumped continuous-wave Ⅲ-Ⅴ quantum dot lasers on silicon. Nat. Photonics 10, 307-311 (2016). doi: 10.1038/nphoton.2016.21
[3] Liu, A. Y. et al. High performance continuous wave 1.3 μm quantum dot lasers on silicon. Appl. Phys. Lett. 104, 041104 (2014). doi: 10.1063/1.4863223
[4] Wan, Y. T. et al. 1.3 μm submilliamp threshold quantum dot micro-lasers on Si. Optica 4, 940-944 (2017). doi: 10.1364/OPTICA.4.000940
[5] Bolkhovityanov, Y. B. & Pchelyakov, O. P. GaAs epitaxy on Si substrates: modern status of research and engineering. Phys.-Uspekhi 51, 437 (2008). doi: 10.1070/PU2008v051n05ABEH006529
[6] Norman, J. C. et al. A review of high performance quantum dot lasers on silicon. IEEE J. Quantum Electron. 55, 2000511 (2019).
[7] Jung, D. et al. Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si. Appl. Phys. Lett. 112, 153507 (2018). doi: 10.1063/1.5026147
[8] Li, Q. et al. 1.3-μm InAs quantum-dot micro-disk lasers on V-groove patterned and unpatterned (001) silicon. Opt. Express 24, 21038-21045 (2016). doi: 10.1364/OE.24.021038
[9] Hu, Y. T. et al. Electrically-pumped 1.31 μm MQW lasers by direct epitaxy on wafer-bonded InP-on-SOI substrate. In Proc. 2018 IEEE Photonics Conference. (ed. Menoni, C.) 1-2 (IEEE, Reston, 2018).
[10] Matsuo, S. et al. Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer. Opt. Express 22, 12139-12147 (2014). doi: 10.1364/OE.22.012139
[11] Aihara, T. et al. Lateral current injection membrane buried heterostructure lasers integrated on 200-nm-thick Si waveguide. In Proc. Optical Fiber Communication Conference. (ed. Larson, M.) W3F.4 (OSA, San Diego, 2018).
[12] Fujii, T. et al. 1.3-μm directly modulated membrane laser array employing epitaxial growth of InGaAlAs MQW on InP/SiO2/Si Substrate. In Proc. 42nd European Conference on Optical Communication. (ed. Van Thourhout, D.) 1-3 (IEEE, Dusseldorf, Germany, 2016).
[13] Periyanayagam, G. K. et al. Lasing characteristics of 1.2 µm GaInAsP LD on InP/Si substrate. Phys. Status Solidi (A) 215, 1700357 (2018). doi: 10.1002/pssa.201700357
[14] Liang, D. & Bowers, J. E. Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator substrate. J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. Process., Meas., Phenom. 26, 1560 (2008). doi: 10.1116/1.2943667
[15] Fang, A. W. et al. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Opt. Express 14, 9203-9210 (2006). doi: 10.1364/OE.14.009203
[16] Liang, D. et al. Integrated finely tunable microring laser on silicon. Nat. Photonics 10, 719-722 (2016). doi: 10.1038/nphoton.2016.163
[17] Mahajan, S. et al. Perfection of homoepitaxial layers grown on (001) InP substrates. Appl. Phys. Lett. 38, 255-258 (1981). doi: 10.1063/1.92335
[18] Ayers, J. E. The measurement of threading dislocation densities in semiconductor crystals by X-ray diffraction. J. Cryst. Growth 135, 71-77 (1994). doi: 10.1016/0022-0248(94)90727-7
[19] Fujii, T. et al. Epitaxial growth of InP to bury directly bonded thin active layer on SiO2/Si substrate for fabricating distributed feedback lasers on silicon. IET Optoelectron. 9, 151-157 (2015). doi: 10.1049/iet-opt.2014.0138
[20] Casey, H. C. Jr. & Carter, P. L. Variation of intervalence band absorption with hole concentration in p‐type InP. Appl. Phys. Lett. 44, 82-83 (1984). doi: 10.1063/1.94561
[21] Haug, A. Free-carrier absorption in semiconductor lasers. Semiconductor Sci. Technol. 7, 373-378 (1992). doi: 10.1088/0268-1242/7/3/017
[22] People, R. & Bean, J. C. Calculation of critical layer thickness versus lattice mismatch for GexSi1-x/Si strained‐layer heterostructures. Appl. Phys. Lett. 47, 322-324 (1985). doi: 10.1063/1.96206
[23] Park, H. et al. A hybrid AlGaInAs-silicon evanescent amplifier. IEEE Photonics Technol. Lett. 19, 230-232 (2007). doi: 10.1109/LPT.2007.891188
[24] Tang, Y. B., Peters, J. D. & Bowers, J. E. Over 67 GHz bandwidth hybrid silicon electroabsorption modulator with asymmetric segmented electrode for 1.3 μm transmission. Opt. Express 20, 11529-11535 (2012). doi: 10.1364/OE.20.011529
[25] Park, H. et al. A hybrid AlGaInAs-silicon evanescent waveguide photodetector. Opt. Express 15, 6044-6052 (2007). doi: 10.1364/OE.15.006044
[26] Zahler, J. M. et al. High efficiency InGaAs solar cells on Si by InP layer transfer. Appl. Phys. Lett. 91, 012108 (2007). doi: 10.1063/1.2753751
[27] Moscoso-Mártir, A. et al. Hybrid silicon photonics flip-chip laser integration with vertical self-alignment. In Proc. 2017 Conference on Lasers and Electro-Optics Pacific Rim. 1-4 (IEEE, Singapore, 2017).
[28] Zhang, C. & Bowers, J. E. Silicon photonic terabit/s network-on-chip for datacenter interconnection. Optical Fiber Technol. 44, 2-12 (2018). doi: 10.1016/j.yofte.2017.12.007