[1] Chitnis, A. et al. Visible light-emitting diodes using a-plane GaN–InGaN multiple quantum wells over r-plane sapphire. Applied Physics Letters 84, 3663-3665 (2004). doi: 10.1063/1.1738938
[2] Kishino, K., Nagashima, K. & Yamano, K. Monolithic integration of InGaN-based nanocolumn light-emitting diodes with different emission colors. Applied Physics Express 6, 012101 (2012).
[3] Hahn, C. et al. Epitaxial growth of InGaN nanowire arrays for light emitting diodes. ACS Nano 5, 3970-3976 (2011). doi: 10.1021/nn200521r
[4] Lee, H. E. et al. Micro light-emitting diodes for display and flexible biomedical applications. Advanced Functional Materials 29, 1808075 (2019). doi: 10.1002/adfm.201808075
[5] McGovern, B. et al. A new individually addressable micro-LED array for photogenetic neural stimulation. IEEE Transactions on Biomedical Circuits and Systems 4, 469-476 (2010). doi: 10.1109/TBCAS.2010.2081988
[6] James Singh, K. et al. Micro-LED as a promising candidate for high-speed visible light communication. Applied Sciences 10, 7384 (2020). doi: 10.3390/app10207384
[7] Lan, H. Y. et al. High-speed integrated micro-LED array for visible light communication. Optics Letters 45, 2203-2206 (2020). doi: 10.1364/OL.391566
[8] Anwar, A. R. et al. Recent progress in micro-LED-based display technologies. Laser & Photonics Reviews 16, 2100427 (2022).
[9] Liu, Z. J. et al. Micro-light-emitting diodes with quantum dots in display technology. Light:Science & Applications 9, 83 (2020).
[10] Kim, S. S. et al. New technologies for advanced LCD-TV performance. Journal of the Society for Information Display 12, 353-359 (2004). doi: 10.1889/1.1847732
[11] Wang, Y. P. et al. High-efficiency red organic light-emitting diodes based on a double-emissive layer with an external quantum efficiency over 30%. Journal of Materials Chemistry C 6, 7042-7045 (2018). doi: 10.1039/C8TC01639A
[12] Huang, Y. G. et al. Mini-LED, micro-LED and OLED displays: present status and future perspectives. Light:Science & Applications 9, 105 (2020).
[13] In, H. J. & Kwon, O. K. External compensation of nonuniform electrical characteristics of thin-film transistors and degradation of OLED devices in AMOLED displays. IEEE Electron Device Letters 30, 377-379 (2009). doi: 10.1109/LED.2009.2014885
[14] Xia, S. C. et al. OLED device operational lifetime: insights and challenges. 2007 IEEE International Reliability Physics Symposium Proceedings. 45th Annual. Phoenix, AZ, USA: IEEE, 2007, 253-257.
[15] Fu, H. et al. Feeling blue? Blue phosphors for OLEDs. Materials Today 14, 472-479 (2011). doi: 10.1016/S1369-7021(11)70211-5
[16] Monkman, A. Why do we still need a stable long lifetime deep blue OLED emitter?. ACS Applied Materials & Interfaces 14, 20463-20467 (2022).
[17] Murawski, C., Leo, K. & Gather, M. C. Efficiency roll-off in organic light-emitting diodes. Advanced Materials 25, 6801-6827 (2013). doi: 10.1002/adma.201301603
[18] Laaperi, A. OLED lifetime issues from a mobile-phone-industry point of view. Journal of the Society for Information Display 16, 1125-1130 (2008).
[19] Zou, Y. et al. High-performance narrowband pure-red OLEDs with external quantum efficiencies up to 36. 1% and ultralow efficiency roll-off. Advanced Materials 34, 2201442 (2022).
[20] He, G. F. et al. White stacked OLED with 38 lm/W and 100, 000-hour lifetime at 1000 cd/m2 for display and lighting applications. Journal of the Society for Information Display 17, 159-165 (2009). doi: 10.1889/JSID17.2.159
[21] Cho, J. et al. White light-emitting diodes: history, progress, and future. Laser & Photonics Reviews 11, 1600147 (2017).
[22] Wu, T. Z. et al. Mini-LED and micro-LED: promising candidates for the next generation display technology. Applied Sciences 8, 1557 (2018). doi: 10.3390/app8091557
[23] Chen, Z., Yan, S. K. & Danesh, C. MicroLED technologies and applications: characteristics, fabrication, progress, and challenges. Journal of Physics D:Applied Physics 54, 123001 (2021). doi: 10.1088/1361-6463/abcfe4
[24] Zhou, X. J. et al. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display. Progress in Quantum Electronics 71, 100263 (2020). doi: 10.1016/j.pquantelec.2020.100263
[25] Paranjpe, A. et al. 45-2: invited paper: micro-LED displays: key manufacturing challenges and solutions. SID Symposium Digest of Technical Papers 49, 597-600 (2018).
[26] Hurni, C. A. et al. Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation. Applied Physics Letters 106, 031101 (2015). doi: 10.1063/1.4905873
[27] Zhao, C. et al. Facile formation of high-quality InGaN/GaN quantum-disks-in-nanowires on bulk-metal substrates for high-power light-emitters. Nano Letters 16, 1056-1063 (2016). doi: 10.1021/acs.nanolett.5b04190
[28] Zhang, G. G. et al. Single nanowire green InGaN/GaN light emitting diodes. Nanotechnology 27, 435205 (2016). doi: 10.1088/0957-4484/27/43/435205
[29] Alhassan, A. I. et al. High luminous efficacy green light-emitting diodes with AlGaN cap layer. Optics Express 24, 17868-17873 (2016). doi: 10.1364/OE.24.017868
[30] Saito, S. et al. InGaN light-emitting diodes on c-face sapphire substrates in green gap spectral range. Applied Physics Express 6, 111004 (2013). doi: 10.7567/APEX.6.111004
[31] Shioda, T. et al. Enhanced light output power of green LEDs employing AlGaN interlayer in InGaN/GaN MQW structure on sapphire (0001) substrate. Physica Status Solidi (A) 209, 473-476 (2012). doi: 10.1002/pssa.201100356
[32] Narukawa, Y. et al. White light emitting diodes with super-high luminous efficacy. Journal of Physics D:Applied Physics 43, 354002 (2010). doi: 10.1088/0022-3727/43/35/354002
[33] Bai, J. et al. Ultrasmall, ultracompact and ultrahigh efficient InGaN micro light emitting diodes (μLEDs) with narrow spectral line width. ACS Nano 14, 6906-6911 (2020). doi: 10.1021/acsnano.0c01180
[34] Hwang, D. et al. Sustained high external quantum efficiency in ultrasmall blue III–nitride micro-LEDs. Applied Physics Express 10, 032101 (2017). doi: 10.7567/APEX.10.032101
[35] Sheen, M. et al. Highly efficient blue InGaN nanoscale light-emitting diodes. Nature 608, 56-61 (2022). doi: 10.1038/s41586-022-04933-5
[36] Li, P. P. et al. Demonstration of high efficiency cascaded blue and green micro-light-emitting diodes with independent junction control. Applied Physics Letters 118, 261104 (2021). doi: 10.1063/5.0054005
[37] Smith, J. M. et al. Comparison of size-dependent characteristics of blue and green InGaN microLEDs down to 1 μm in diameter. Applied Physics Letters 116, 071102 (2020). doi: 10.1063/1.5144819
[38] Li, P. P. et al. High-temperature electroluminescence properties of InGaN red 40×40 μm2 micro-light-emitting diodes with a peak external quantum efficiency of 3.2%. Applied Physics Letters 119, 231101 (2021). doi: 10.1063/5.0070275
[39] Li, P. P. et al. Red InGaN micro-light-emitting diodes (> 620 nm) with a peak external quantum efficiency of 4.5% using an epitaxial tunnel junction contact. Applied Physics Letters 120, 121102 (2022).
[40] Huang, Y. M. et al. High-efficiency InGaN red micro-LEDs for visible light communication. Photonics Research 10, 1978-1986 (2022). doi: 10.1364/PRJ.462050
[41] Feng, P. et al. A simple approach to achieving ultrasmall III-nitride microlight-emitting diodes with red emission. ACS Applied Electronic Materials 4, 2787-2792 (2022). doi: 10.1021/acsaelm.2c00311
[42] Zhuang, Z., Iida, D. & Ohkawa, K. Effects of size on the electrical and optical properties of InGaN-based red light-emitting diodes. Applied Physics Letters 116, 173501 (2020). doi: 10.1063/5.0006910
[43] Zhuang, Z. et al. 606-nm InGaN amber micro-light-emitting diodes with an on-wafer external quantum efficiency of 0.56%. IEEE Electron Device Letters 42, 1029-1032 (2021).
[44] Bai, J. et al. A direct epitaxial approach to achieving ultrasmall and ultrabright InGaN micro light-emitting diodes (μLEDs). ACS Photonics 7, 411-415 (2020). doi: 10.1021/acsphotonics.9b01351
[45] Dussaigne, A. et al. Full InGaN red light emitting diodes. Journal of Applied Physics 128, 135704 (2020). doi: 10.1063/5.0016217
[46] Dussaigne, A. et al. Full InGaN red (625 nm) micro-LED (10 μm) demonstration on a relaxed pseudo-substrate. Applied Physics Express 14, 092011 (2021). doi: 10.35848/1882-0786/ac1b3e
[47] Guo, J. X. et al. Effect of AlGaN interlayer on luminous efficiency and reliability of GaN-based green LEDs on silicon substrate. Chinese Physics B 29, 047303 (2020). doi: 10.1088/1674-1056/ab7903
[48] Hashimoto, R. et al. High-efficiency green-yellow light-emitting diodes grown on sapphire (0001) substrates. Physica Status Solidi (C) 10, 1529-1532 (2013). doi: 10.1002/pssc.201300238
[49] Horng, R. H. et al. Study on the effect of size on InGaN red micro-LEDs. Scientific Reports 12, 1324 (2022). doi: 10.1038/s41598-022-05370-0
[50] Iida, D. et al. Enhanced light output power of InGaN-based amber LEDs by strain-compensating AlN/AlGaN barriers. Journal of Crystal Growth 448, 105-108 (2016). doi: 10.1016/j.jcrysgro.2016.05.023
[51] Hwang, J. I. et al. Development of InGaN-based red LED grown on (0001) polar surface. Applied Physics Express 7, 071003 (2014). doi: 10.7567/APEX.7.071003
[52] Iida, D. et al. 633-nm InGaN-based red LEDs grown on thick underlying GaN layers with reduced in-plane residual stress. Applied Physics Letters 116, 162101 (2022).
[53] Iida, D. et al. Demonstration of low forward voltage InGaN-based red LEDs. Applied Physics Express 13, 031001 (2020). doi: 10.35848/1882-0786/ab7168
[54] Jiang, F. Y. et al. Efficient InGaN-based yellow-light-emitting diodes. Photonics Research 7, 144-148 (2019). doi: 10.1364/PRJ.7.000144
[55] Kimura, S. et al. Performance enhancement of blue light-emitting diodes with InGaN/GaN multi-quantum wells grown on Si substrates by inserting thin AlGaN interlayers. Journal of Applied Physics 120, 113104 (2016). doi: 10.1063/1.4962719
[56] Kirilenko, P. et al. InGaN-based green micro-LED efficiency enhancement by hydrogen passivation of the p-GaN sidewall. Applied Physics Express 15, 084003 (2022). doi: 10.35848/1882-0786/ac7fdc
[57] Ley, R. T. et al. Revealing the importance of light extraction efficiency in InGaN/GaN microLEDs via chemical treatment and dielectric passivation. Applied Physics Letters 116, 251104 (2020). doi: 10.1063/5.0011651
[58] Li, P. P. et al. Size-independent peak external quantum efficiency (> 2%) of InGaN red micro-light-emitting diodes with an emission wavelength over 600 nm. Applied Physics Letters 119, 081102 (2021). doi: 10.1063/5.0061940
[59] Li, P. P. et al. Very high external quantum efficiency and wall-plug efficiency 527 nm InGaN green LEDs by MOCVD. Optics Express 26, 33108-33115 (2018). doi: 10.1364/OE.26.033108
[60] Liu, X. H. et al. Effects of p-AlGaN EBL thickness on the performance of InGaN green LEDs with large V-pits. Semiconductor Science and Technology 31, 025012 (2016). doi: 10.1088/0268-1242/31/2/025012
[61] Lv, Q. J. et al. Realization of highly efficient InGaN green LEDs with sandwich-like multiple quantum well structure: role of enhanced interwell carrier transport. ACS Photonics 6, 130-138 (2019). doi: 10.1021/acsphotonics.8b01040
[62] Narukawa, Y. et al. Ultra-high efficiency white light emitting diodes. Japanese Journal of Applied Physics 45, L1084 (2006). doi: 10.1143/JJAP.45.L1084
[63] Narukawa, Y. et al. Improvement of luminous efficiency in white light emitting diodes by reducing a forward-bias voltage. Japanese Journal of Applied Physics 46, L963 (2007). doi: 10.1143/JJAP.46.L963
[64] Pandey, A. et al. N-polar InGaN/GaN nanowires: overcoming the efficiency cliff of red-emitting micro-LEDs. Photonics Research 10, 1107-1116 (2022).
[65] Pandey, A. et al. Strain-engineered N-polar InGaN nanowires: towards high-efficiency red LEDs on the micrometer scale. Photonics Research 10, 2809-2815 (2022). doi: 10.1364/PRJ.473318
[66] Pasayat, S. S. et al. Demonstration of ultra-small (< 10 μm) 632 nm red InGaN micro-LEDs with useful on-wafer external quantum efficiency (>0. 2%)for mini-displays. Applied Physics Express 14, 011004 (2021). doi: 10.35848/1882-0786/abd06f
[67] Pynn, C. D. et al. Green semipolar III-nitride light-emitting diodes grown by limited area epitaxy. Applied Physics Letters 109, 041107 (2016). doi: 10.1063/1.4960001
[68] Sato, H. et al. Optical properties of yellow light-emitting diodes grown on semipolar (1122) bulk GaN substrates. Applied Physics Letters 92, 221110 (2008). doi: 10.1063/1.2938062
[69] Wang, Z. et al. Red, green and blue InGaN micro-LEDs for display application: Temperature and current density effects. Optics Express 30, 36403-36413 (2022). doi: 10.1364/OE.469132
[70] White, R. C. et al. InGaN-based microLED devices approaching 1% EQE with red 609 nm electroluminescence on semi-relaxed substrates. Crystals 11, 1364 (2021). doi: 10.3390/cryst11111364
[71] Wierer, J. J. , David, A. & Megens, M. M. III-nitride photonic-crystal light-emitting diodes with high extraction efficiency. Nature Photonics 3, 163-169 (2009).
[72] Xu, C. et al. Effects of V-pits covering layer position on the optoelectronic performance of InGaN green LEDs. Journal of Semiconductors 40, 052801 (2019). doi: 10.1088/1674-4926/40/5/052801
[73] Xu, F. F. et al. C-plane blue micro-LED with 1.53 GHz bandwidth for high-speed visible light communication. IEEE Electron Device Letters 43, 910-913 (2022).
[74] Yamamoto, S. et al. High-efficiency single-quantum-well green and yellow-green light-emitting diodes on semipolar (2021) GaN substrates. Applied Physics Express 3, 122102 (2010). doi: 10.1143/APEX.3.122102
[75] Yonkee, B. P. et al. Silver free III-nitride flip chip light-emitting-diode with wall plug efficiency over 70% utilizing a GaN tunnel junction. Applied Physics Letters 109, 191104 (2016). doi: 10.1063/1.4967501
[76] Yu, L. M. et al. Ultra-small size (1–20 μm) blue and green micro-LEDs fabricated by laser direct writing lithography. Applied Physics Letters 121, 042106 (2022). doi: 10.1063/5.0099642
[77] Yu, L. M. et al. Metal organic vapor phase epitaxy of high-indium-composition InGaN quantum dots towards red micro-LEDs. Optical Materials Express 12, 3225-3237 (2022). doi: 10.1364/OME.465134
[78] Yuan, Z. X. et al. Investigation of modulation bandwidth of InGaN green micro-LEDs by varying quantum barrier thickness. IEEE Transactions on Electron Devices 69, 4298-4305 (2022). doi: 10.1109/TED.2022.3155590
[79] Zhang, J. L. et al. High brightness InGaN-based yellow light-emitting diodes with strain modulation layers grown on Si substrate. Applied Physics A 114, 1049-1053 (2014). doi: 10.1007/s00339-014-8283-9
[80] Zhang, S. N. et al. Efficient emission of InGaN-based light-emitting diodes: toward orange and red. Photonics Research 8, 1671-1675 (2020). doi: 10.1364/PRJ.402555
[81] Zhu, S. J. et al. Low-power high-bandwidth non-polar InGaN micro-LEDs at low current densities for energy-efficient visible light communication. IEEE Photonics Journal 14, 7351805 (2022).
[82] Zhuang, Z. et al. Improved performance of InGaN-based red light-emitting diodes by micro-hole arrays. Optics Express 29, 29780-29788 (2021). doi: 10.1364/OE.435556
[83] Zhuang, Z., Iida, D. & Ohkawa, K. Investigation of InGaN-based red/green micro-light-emitting diodes. Optics Letters 46, 1912-1915 (2021). doi: 10.1364/OL.422579
[84] Zhuang, Z. et al. 630-nm red InGaN micro-light-emitting diodes (< 20 μm× 20 μm) exceeding 1 mW/mm2 for full-color micro-displays. Photonics Research 9, 1796-1802 (2021).
[85] Chang, Y. A. et al. Design and fabrication of temperature-insensitive InGaP-InGaAlP resonant-cavity light-emitting diodes. IEEE Photonics Technology Letters 18, 1690-1692 (2006). doi: 10.1109/LPT.2006.879931
[86] Iida, D. et al. Demonstration of InGaN-based orange LEDs with hybrid multiple-quantum-wells structure. Applied Physics Express 9, 111003 (2016). doi: 10.7567/APEX.9.111003
[87] Krames, M. R. et al. High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting > 50% external quantum efficiency. Applied Physics Letters 75, 2365-2367 (1999). doi: 10.1063/1.125016
[88] Lee, C. Y. , Su, J. Y. & Kuo, C. M. 630-nm n-type modulation-doped AlGaInP-AlInP multiquantum-well light-emitting diode. IEEE Photonics Technology Letters 18, 25-27 (2006).
[89] Mukai, T., Narimatsu, H. & Nakamura, S. Amber InGaN-based light-emitting diodes operable at high ambient temperatures. Japanese Journal of Applied Physics 37, L479 (1998). doi: 10.1143/JJAP.37.L479
[90] Oh, J. T. et al. Light output performance of red AlGaInP-based light emitting diodes with different chip geometries and structures. Optics Express 26, 11194-11200 (2018). doi: 10.1364/OE.26.011194
[91] Rooman, C. et al. Wafer-bonded thin-film surface-roughened light-emitting diodes. Proceedings of SPIE 4996, Light-Emitting Diodes: Research, Manufacturing, and Applications VII. San Jose, CA, USA: SPIE, 2003, 40-45.
[92] Streubel, K. et al. High brightness visible (660 nm) resonant-cavity light-emitting diode. IEEE Photonics Technology Letters 10, 1685-1687 (1998). doi: 10.1109/68.730469
[93] Wang, X. L., Kumagai, N. & Hao, G. D. High-efficiency, high-power AlGaInP thin-film LEDs with micron-sized truncated cones as light-extraction structures. Physica Status Solidi (A) 215, 1700562 (2018). doi: 10.1002/pssa.201700562
[94] Windisch, R. et al. 100-lm/W InGaAlP thin-film light-emitting diodes with buried microreflectors. IEEE Photonics Technology Letters 19, 774-776 (2007).
[95] Yen, C. H. et al. On an AlGaInP-based light-emitting diode with an ITO direct ohmic contact structure. IEEE Electron Device Letters 30, 359-361 (2009). doi: 10.1109/LED.2009.2014789
[96] Chen, S. W. H. et al. Full-color monolithic hybrid quantum dot nanoring micro light-emitting diodes with improved efficiency using atomic layer deposition and nonradiative resonant energy transfer. Photonics Research 7, 416-422 (2019). doi: 10.1364/PRJ.7.000416
[97] Mukai, T., Yamada, M. & Nakamura, S. Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes. Japanese Journal of Applied Physics 38, 3976 (1999). doi: 10.1143/JJAP.38.3976
[98] Pandey, A. et al. An ultrahigh efficiency excitonic micro-LED. Nano Letters 23, 1680-1687 (2023). doi: 10.1021/acs.nanolett.2c04220
[99] Liu, X. H. et al. N-polar InGaN nanowires: breaking the efficiency bottleneck of nano and micro LEDs. Photonics Research 10, 587-593 (2022).
[100] Liu, X. H. et al. High efficiency InGaN nanowire tunnel junction green micro-LEDs. Applied Physics Letters 119, 141110 (2021). doi: 10.1063/5.0059701
[101] Pandey, A. et al. A red-emitting micrometer scale LED with external quantum efficiency >8%. Applied Physics Letters 122, 151103 (2023). doi: 10.1063/5.0129234
[102] Wong, M. S. et al. Improved performance of AlGaInP red micro-light-emitting diodes with sidewall treatments. Optics Express 28, 5787-5793 (2020). doi: 10.1364/OE.384127
[103] Boroditsky, M. et al. Surface recombination measurements on III–V candidate materials for nanostructure light-emitting diodes. Journal of Applied Physics 87, 3497-3504 (2000). doi: 10.1063/1.372372
[104] Bulashevich, K. A. & Karpov, S. Y. Impact of surface recombination on efficiency of III-nitride light-emitting diodes. Physica Status Solidi (RRL)–Rapid Research Letters 10, 480-484 (2016). doi: 10.1002/pssr.201600059
[105] Gong, Z. et al. Efficient flip-chip InGaN micro-pixellated light-emitting diode arrays: promising candidates for micro-displays and colour conversion. Journal of Physics D:Applied Physics 41, 094002 (2008). doi: 10.1088/0022-3727/41/9/094002
[106] McKittrick, J. & Shea-Rohwer, L. E. Review: down conversion materials for solid-state lighting. Journal of the American Ceramic Society 97, 1327-1352 (2014). doi: 10.1111/jace.12943
[107] Osinski, J. & Palomaki, P. 4-5: Quantum dot design criteria for color conversion in MicroLED displays. SID Symposium Digest of Technical Papers 50, 34-37 (2019).
[108] Gou, F. W. et al. High performance color-converted micro-LED displays. Journal of the Society for Information Display 27, 199-206 (2019). doi: 10.1002/jsid.764
[109] Tian, P. F. et al. Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes. Applied Physics Letters 101, 231110 (2012). doi: 10.1063/1.4769835
[110] Cao, X. A. et al. Electrical effects of plasma damage in p-GaN. Applied Physics Letters 75, 2569-2571 (1999). doi: 10.1063/1.125080
[111] Cao, X. A. et al. Surface conversion effects in plasma-damaged p-GaN. MRS Online Proceedings Library 595, 108 (1999).
[112] Ladroue, J. et al. Deep GaN etching by inductively coupled plasma and induced surface defects. Journal of Vacuum Science & Technology A 28, 1226-1233 (2010).
[113] Shul, R. J. et al. High-density plasma-induced etch damage of GaN. MRS Online Proceedings Library 573, 271-280 (1999). doi: 10.1557/PROC-573-271
[114] Shul, R. J. et al. Inductively coupled plasma-induced etch damage of GaN p-n junctions. Journal of Vacuum Science & Technology A 18, 1139-1143 (2000).
[115] Hahn, Y. B. et al. High-density plasma-induced etch damage of InGaN/GaN multiple quantum well light-emitting diodes. Journal of Applied Physics 92, 1189-1194 (2002). doi: 10.1063/1.1491585
[116] Hong, H. F. et al. Reactive ion etching of GaN/InGaN using BCl3 plasma. Materials Chemistry and Physics 77, 411-415 (2003). doi: 10.1016/S0254-0584(02)00014-7
[117] Lee, J. M. et al. Dry-etch damage and its recovery in InGaN/GaN multi-quantum-well light-emitting diodes. Semiconductor Science and Technology 18, 530-534 (2003). doi: 10.1088/0268-1242/18/6/323
[118] Geum, D. M. et al. Strategy toward the fabrication of ultrahigh-resolution micro-LED displays by bonding-interface-engineered vertical stacking and surface passivation. Nanoscale 11, 23139-23148 (2019). doi: 10.1039/C9NR04423J
[119] Wong, M. S. et al. Size-independent peak efficiency of III-nitride micro-light-emitting-diodes using chemical treatment and sidewall passivation. Applied Physics Express 12, 097004 (2019). doi: 10.7567/1882-0786/ab3949
[120] Yang, Y. & Cao, X. A. Removing plasma-induced sidewall damage in GaN-based light-emitting diodes by annealing and wet chemical treatments. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures Processing,Measurement,and Phenomena 27, 2337-2341 (2009).
[121] Hartensveld, M. et al. Effect of KOH passivation for top-down fabricated InGaN nanowire light emitting diodes. Journal of Applied Physics 126, 183102 (2019). doi: 10.1063/1.5123171
[122] Vurgaftman, I. & Meyer, J. R. Band parameters for nitrogen-containing semiconductors. Journal of Applied Physics 94, 3675-3696 (2003). doi: 10.1063/1.1600519
[123] Phillips, J. M. et al. Research challenges to ultra-efficient inorganic solid-state lighting. Laser & Photonics Reviews 1, 307-333 (2007).
[124] Cho, H. K. et al. Microstructural characterization of InGaN/GaN multiple quantum wells with high indium composition. Journal of Crystal Growth 231, 466-473 (2001). doi: 10.1016/S0022-0248(01)01522-6
[125] Robin, Y. et al. What is red? On the chromaticity of orange-red InGaN/GaN based LEDs. Journal of Applied Physics 124, 183102 (2018). doi: 10.1063/1.5047240
[126] Iida, D. et al. Investigation of amber light-emitting diodes based on InGaN/AlN/AlGaN quantum wells. Japanese Journal of Applied Physics 55, 05FJ06 (2016). doi: 10.7567/JJAP.55.05FJ06
[127] Damilano, B. & Gil, B. Yellow–red emission from (Ga, In)N heterostructures. Journal of Physics D:Applied Physics 48, 403001 (2015). doi: 10.1088/0022-3727/48/40/403001
[128] Chung, J. Y. et al. Light-emitting V-pits: an alternative approach toward luminescent indium-rich InGaN quantum dots. ACS Photonics 8, 2853-2860 (2021). doi: 10.1021/acsphotonics.1c01009
[129] Zhou, S. J. et al. The effect of nanometre-scale V-pits on electronic and optical properties and efficiency droop of GaN-based green light-emitting diodes. Scientific Reports 8, 11053 (2018). doi: 10.1038/s41598-018-29440-4
[130] Inatomi, Y. et al. Theoretical study of the composition pulling effect in InGaN metalorganic vapor-phase epitaxy growth. Japanese Journal of Applied Physics 56, 078003 (2017). doi: 10.7567/JJAP.56.078003
[131] Johnson, M. C. et al. Effect of gallium nitride template layer strain on the growth of InxGa1-xN∕GaN multiple quantum well light emitting diodes. Journal of Applied Physics 96, 1381-1386 (2004). doi: 10.1063/1.1766407
[132] Alam, S. et al. Emission wavelength red-shift by using “semi-bulk” InGaN buffer layer in InGaN/InGaN multiple-quantum-well. Superlattices and Microstructures 112, 279-286 (2017). doi: 10.1016/j.spmi.2017.09.032
[133] Ewing, J. et al. Influence of superlattice structure on V-defect distribution, external quantum efficiency and electroluminescence for red InGaN based µLEDs on silicon. Crystals 12, 1216 (2022). doi: 10.3390/cryst12091216
[134] Keller, S. et al. Patterned III-nitrides on porous GaN: extending elastic relaxation from the nano- to the micrometer scale. Physica Status Solidi (RRL)–Rapid Research Letters 15, 2100234 (2021). doi: 10.1002/pssr.202100234
[135] Chan, P. et al. Demonstration of relaxed InGaN-based red LEDs grown with high active region temperature. Applied Physics Express 14, 101002 (2021). doi: 10.35848/1882-0786/ac251d
[136] Chan, P., DenBaars, S. P. & Nakamura, S. Growth of highly relaxed InGaN pseudo-substrates over full 2-in. wafers. Applied Physics Letters 119, 131106 (2021). doi: 10.1063/5.0064755
[137] Wong, M. S. et al. Low forward voltage III-nitride red micro-light-emitting diodes on a strain relaxed template with an InGaN decomposition layer. Crystals 12, 721 (2022). doi: 10.3390/cryst12050721
[138] Xiong, J. H. et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light:Science & Applications 10, 216 (2021).
[139] Huang, Y. G. et al. Prospects and challenges of mini-LED and micro-LED displays. Journal of the Society for Information Display 27, 387-401 (2019). doi: 10.1002/jsid.760
[140] Bao, S. Y. et al. A review of silicon-based wafer bonding processes, an approach to realize the monolithic integration of Si-CMOS and III–V-on-Si wafers. Journal of Semiconductors 42, 023106 (2021). doi: 10.1088/1674-4926/42/2/023106
[141] Hwangbo, S. et al. Wafer-scale monolithic integration of full-colour micro-LED display using MoS2 transistor. Nature Nanotechnology 17, 500-506 (2022). doi: 10.1038/s41565-022-01102-7
[142] Guo, W. et al. Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy. Nano Letters 10, 3355-3359 (2010). doi: 10.1021/nl101027x
[143] Hersee, S. D. et al. Threading defect elimination in GaN nanowires. Journal of Materials Research 26, 2293-2298 (2011). doi: 10.1557/jmr.2011.112
[144] Zhao, C. et al. Droop-free, reliable, and high-power InGaN/GaN nanowire light-emitting diodes for monolithic metal-optoelectronics. Nano Letters 16, 4616-4623 (2016). doi: 10.1021/acs.nanolett.6b01945
[145] Sarwar, A. G. et al. Semiconductor nanowire light-emitting diodes grown on metal: a direction toward large-scale fabrication of nanowire devices. Small 11, 5402-5408 (2015). doi: 10.1002/smll.201501909
[146] Nguyen, H. P. T. et al. Engineering the carrier dynamics of InGaN nanowire white light-emitting diodes by distributed p-AlGaN electron blocking layers. Scientific Reports 5, 7744 (2015). doi: 10.1038/srep07744
[147] Kikuchi, A. et al. Growth and characterization of InGaN/GaN nanocolumn LED. Proceedings of SPIE 6129, Quantum Dots, Particles, and Nanoclusters III. San Jose, CA, USA: SPIE, 2006, 612905.
[148] Nguyen, H. P. T. et al. p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111). Nano Letters 11, 1919-1924 (2011).
[149] Nguyen, H. P. T. et al. Controlling electron overflow in phosphor-free InGaN/GaN nanowire white light-emitting diodes. Nano Letters 12, 1317-1323 (2012). doi: 10.1021/nl203860b
[150] Li, Q. M. et al. Optical performance of top-down fabricated InGaN/GaN nanorod light emitting diode arrays. Optics Express 19, 25528-25534 (2011). doi: 10.1364/OE.19.025528
[151] Zhao, S. R. et al. III-Nitride nanowire optoelectronics. Progress in Quantum Electronics 44, 14-68 (2015).
[152] Chang, Y. L. et al. High efficiency green, yellow, and amber emission from InGaN/GaN dot-in-a-wire heterostructures on Si(111). Applied Physics Letters 96, 013106 (2010). doi: 10.1063/1.3284660
[153] Kikuchi, A. et al. InGaN/GaN multiple quantum disk nanocolumn light-emitting diodes grown on (111) Si substrate. Japanese Journal of Applied Physics 43, L1524 (2004). doi: 10.1143/JJAP.43.L1524
[154] Barrigón, E. et al. Synthesis and applications of III–V nanowires. Chemical Reviews 119, 9170-9220 (2019). doi: 10.1021/acs.chemrev.9b00075
[155] Samuelson, L. et al. Semiconductor nanowires for 0D and 1D physics and applications. Physica E:Low-dimensional Systems and Nanostructures 25, 313-318 (2004). doi: 10.1016/j.physe.2004.06.030
[156] Mårtensson, T. et al. Epitaxial III-V nanowires on silicon. Nano Letters 4, 1987-1990 (2004). doi: 10.1021/nl0487267
[157] Gačević, Ž. A., Gómez Sánchez, D. & Calleja, E. Formation mechanisms of GaN nanowires grown by selective area growth homoepitaxy. Nano Letters 15, 1117-1121 (2015). doi: 10.1021/nl504099s
[158] Goodman, K. D. et al. Green luminescence of InGaN nanowires grown on silicon substrates by molecular beam epitaxy. Journal of Applied Physics 109, 084336 (2011). doi: 10.1063/1.3575323
[159] Albert, S. et al. Selective area growth and characterization of InGaN nano-disks implemented in GaN nanocolumns with different top morphologies. Applied Physics Letters 100, 231906 (2012). doi: 10.1063/1.4728115
[160] Ristić, J. et al. Characterization of GaN quantum discs embedded in AlxGa1-xN nanocolumns grown by molecular beam epitaxy. Physical Review B 68, 125305 (2003). doi: 10.1103/PhysRevB.68.125305
[161] Bengoechea-Encabo, A. et al. Understanding the selective area growth of GaN nanocolumns by MBE using Ti nanomasks. Journal of Crystal Growth 325, 89-92 (2011). doi: 10.1016/j.jcrysgro.2011.04.035
[162] Chang, Y. L. et al. Molecular beam epitaxial growth and characterization of non-tapered InN nanowires on Si(111). Nanotechnology 20, 345203 (2009). doi: 10.1088/0957-4484/20/34/345203
[163] Tourbot, G. et al. Structural and optical properties of InGaN/GaN nanowire heterostructures grown by PA-MBE. Nanotechnology 22, 075601 (2011). doi: 10.1088/0957-4484/22/7/075601
[164] Kuykendall, T. et al. Complete composition tunability of InGaN nanowires using a combinatorial approach. Nature Materials 6, 951-956 (2007). doi: 10.1038/nmat2037
[165] Nguyen, H. P. T. et al. Full-color InGaN/GaN dot-in-a-wire light emitting diodes on silicon. Nanotechnology 22, 445202 (2011). doi: 10.1088/0957-4484/22/44/445202
[166] Zhao, C. et al. Quantified hole concentration in AlGaN nanowires for high-performance ultraviolet emitters. Nanoscale 10, 15980-15988 (2018). doi: 10.1039/C8NR02615G
[167] Mi, Z. et al. Molecular beam epitaxial growth and characterization of Al(Ga)N nanowire deep ultraviolet light emitting diodes and lasers. Journal of Physics D:Applied Physics 49, 364006 (2016). doi: 10.1088/0022-3727/49/36/364006
[168] Zhao, S. et al. p-Type InN nanowires. Nano Letters 13, 5509-5513 (2013).
[169] Zhao, S. et al. Aluminum nitride nanowire light emitting diodes: Breaking the fundamental bottleneck of deep ultraviolet light sources. Scientific Reports 5, 8332 (2015). doi: 10.1038/srep08332
[170] Kishino, K. et al. Selective-area growth of GaN nanocolumns on titanium-mask-patterned silicon (111) substrates by RF-plasma-assisted molecular-beam epitaxy. Electronics Letters 44, 819-821 (2008). doi: 10.1049/el:20081323
[171] Yuan, X. M. et al. Selective area epitaxy of III–V nanostructure arrays and networks: Growth, applications, and future directions. Applied Physics Reviews 8, 021302 (2021). doi: 10.1063/5.0044706
[172] Kapolnek, D. et al. Spatial control of InGaN luminescence by MOCVD selective epitaxy. Journal of Crystal Growth 189-190, 83-86 (1998). doi: 10.1016/S0022-0248(98)00176-6
[173] Shioda, T. et al. Selective area metal-organic vapor-phase epitaxy of InN, GaN and InGaN covering whole composition range. Journal of Crystal Growth 311, 2809-2812 (2009). doi: 10.1016/j.jcrysgro.2009.01.013
[174] Chen, P. et al. InGaN nanorings and nanodots by selective area epitaxy. Applied Physics Letters 87, 143111 (2005). doi: 10.1063/1.2056584
[175] Sekiguchi, H., Kishino, K. & Kikuchi, A. Ti-mask selective-area growth of GaN by RF-plasma-assisted molecular-beam epitaxy for fabricating regularly arranged InGaN/GaN nanocolumns. Applied Physics Express 1, 124002 (2008). doi: 10.1143/APEX.1.124002
[176] Nami, M. et al. Tailoring the morphology and luminescence of GaN/InGaN core–shell nanowires using bottom-up selective-area epitaxy. Nanotechnology 28, 025202 (2017). doi: 10.1088/0957-4484/28/2/025202
[177] Sekiguchi, H., Kishino, K. & Kikuchi, A. Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate. Applied Physics Letters 96, 231104 (2010). doi: 10.1063/1.3443734
[178] Yanagihara, A., Ishizawa, S. & Kishino, K. Directional radiation beam from yellow-emitting InGaN-based nanocolumn LEDs with ordered bottom-up nanocolumn array. Applied Physics Express 7, 112102 (2014). doi: 10.7567/APEX.7.112102
[179] Yoshizawa, M. et al. Growth of self-organized GaN nanostructures on Al2O3(0001) by RF-radical source molecular beam epitaxy. Japanese Journal of Applied Physics 36, L459 (1997). doi: 10.1143/JJAP.36.L459
[180] Kishino, K. & Ishizawa, S. Selective-area growth of GaN nanocolumns on Si(111) substrates for application to nanocolumn emitters with systematic analysis of dislocation filtering effect of nanocolumns. Nanotechnology 26, 225602 (2015). doi: 10.1088/0957-4484/26/22/225602
[181] Kishino, K., Sekiguchi, H. & Kikuchi, A. Improved Ti-mask selective-area growth (SAG) by rf-plasma-assisted molecular beam epitaxy demonstrating extremely uniform GaN nanocolumn arrays. Journal of Crystal Growth 311, 2063-2068 (2009). doi: 10.1016/j.jcrysgro.2008.11.056
[182] Bi, Z. X. et al. Realization of ultrahigh quality InGaN platelets to be used as relaxed templates for red micro-LEDs. ACS Applied Materials & Interfaces 12, 17845-17851 (2020).
[183] Bi, Z. X. et al. InGaN platelets: synthesis and applications toward green and red light-emitting diodes. Nano Letters 19, 2832-2839 (2019). doi: 10.1021/acs.nanolett.8b04781
[184] Cai, Y. F. et al. Direct epitaxial approach to achieve a monolithic on-chip integration of a HEMT and a single micro-LED with a high-modulation bandwidth. ACS Applied Electronic Materials 3, 445-450 (2021). doi: 10.1021/acsaelm.0c00985
[185] Kishino, K. et al. Two-dimensional multicolor (RGBY) integrated nanocolumn micro-LEDs as a fundamental technology of micro-LED display. Applied Physics Express 13, 014003 (2020). doi: 10.7567/1882-0786/ab5ad3
[186] Ra, Y. H. et al. Scalable nanowire photonic crystals: Molding the light emission of InGaN. Advanced Functional Materials 27, 1702364 (2017). doi: 10.1002/adfm.201702364
[187] Wright, J. B. et al. Multi-colour nanowire photonic crystal laser pixels. Scientific Reports 3, 2982 (2013). doi: 10.1038/srep02982
[188] Wu, Y. P. et al. InGaN micro-light-emitting diodes monolithically grown on Si: achieving ultra-stable operation through polarization and strain engineering. Light:Science & Applications 11, 294 (2022).
[189] Zhao, S. et al. Growth of large-scale vertically aligned GaN nanowires and their heterostructures with high uniformity on SiOx by catalyst-free molecular beam epitaxy. Nanoscale 5, 5283-5287 (2013). doi: 10.1039/c3nr00387f
[190] Philip, M. R. et al. High efficiency green/yellow and red InGaN/AlGaN nanowire light-emitting diodes grown by molecular beam epitaxy. Journal of Science:Advanced Materials and Devices 2, 150-155 (2017). doi: 10.1016/j.jsamd.2017.05.009
[191] Wang, R. J. et al. Color-tunable, phosphor-free InGaN nanowire light-emitting diode arrays monolithically integrated on silicon. Optics Express 22, A1768-A1775 (2014). doi: 10.1364/OE.22.0A1768
[192] Akyol, F. et al. Suppression of electron overflow and efficiency droop in N-polar GaN green light emitting diodes. Applied Physics Letters 100, 111118 (2012). doi: 10.1063/1.3694967
[193] Kuo, Y. K. et al. Effect of polarization state on optical properties of blue-violet InGaN light-emitting diodes. Applied Physics A 98, 509-515 (2010). doi: 10.1007/s00339-009-5485-7
[194] Yen, S. H. & Kuo, Y. K. Polarization-dependent optical characteristics of violet InGaN laser diodes. Journal of Applied Physics 103, 103115 (2008). doi: 10.1063/1.2937247
[195] Blumberg, C. et al. A systematic study of Ga- and N-polar GaN nanowire–shell growth by metal organic vapor phase epitaxy. CrystEngComm 22, 5522-5532 (2020). doi: 10.1039/D0CE00693A
[196] Keller, S. et al. Growth and characterization of N-polar InGaN∕GaN multiquantum wells. Applied Physics Letters 90, 191908 (2007). doi: 10.1063/1.2738381
[197] Nath, D. N. et al. Molecular beam epitaxy of N-polar InGaN. Applied Physics Letters 97, 071903 (2010). doi: 10.1063/1.3478226
[198] Kehagias, T. et al. Nanostructure and strain in InGaN/GaN superlattices grown in GaN nanowires. Nanotechnology 24, 435702 (2013). doi: 10.1088/0957-4484/24/43/435702
[199] Tourbot, G. et al. Growth mechanism and properties of InGaN insertions in GaN nanowires. Nanotechnology 23, 135703 (2012). doi: 10.1088/0957-4484/23/13/135703
[200] Park, B. et al. High-resolution mapping of strain partitioning and relaxation in InGaN/GaN nanowire heterostructures. Advanced Science 9, 2200323 (2022). doi: 10.1002/advs.202200323
[201] Funato, M. & Kawakami, Y. Excitonic properties of polar, semipolar, and nonpolar InGaN∕GaN strained quantum wells with potential fluctuations. Journal of Applied Physics 103, 093501 (2008). doi: 10.1063/1.2903592
[202] David, A., Young, N. G. & Craven, M. D. Many-body effects in strongly disordered III-nitride quantum wells: interplay between carrier localization and Coulomb interaction. Physical Review Applied 12, 044059 (2019). doi: 10.1103/PhysRevApplied.12.044059
[203] David, A. et al. Review-the physics of recombinations in III-nitride emitters. ECS Journal of Solid State Science and Technology 9, 016021 (2020). doi: 10.1149/2.0372001JSS
[204] Hangleiter, A. et al. Efficient formation of excitons in a dense electron-hole plasma at room temperature. Physical Review B 92, 241305 (2015). doi: 10.1103/PhysRevB.92.241305
[205] Kaufmann, N. A. K. et al. Thermal annealing of molecular beam epitaxy-grown InGaN/GaN single quantum well. Semiconductor Science and Technology 27, 105023 (2012). doi: 10.1088/0268-1242/27/10/105023
[206] Hou, Y. F. et al. Improvement of interface morphology and luminescence properties of InGaN/GaN multiple quantum wells by thermal annealing treatment. Results in Physics 31, 105057 (2021). doi: 10.1016/j.rinp.2021.105057
[207] Lundin, W. V. et al. Single quantum well deep-green LEDs with buried InGaN/GaN short-period superlattice. Journal of Crystal Growth 315, 267-271 (2011). doi: 10.1016/j.jcrysgro.2010.09.043
[208] Bykhovski, A. D., Gelmont, B. L. & Shur, M. S. Elastic strain relaxation and piezoeffect in GaN-AlN, GaN-AlGaN and GaN-InGaN superlattices. Journal of Applied Physics 81, 6332-6338 (1997). doi: 10.1063/1.364368
[209] Leem, S. J. et al. The effect of the low-mole InGaN structure and InGaN/GaN strained layer superlattices on optical performance of multiple quantum well active layers. Journal of Crystal Growth 311, 103-106 (2008). doi: 10.1016/j.jcrysgro.2008.10.047
[210] Liu, X. H. et al. Micrometer scale InGaN green light emitting diodes with ultra-stable operation. Applied Physics Letters 117, 011104 (2020). doi: 10.1063/5.0005436
[211] Merlin, R. & Young, S. M. Photonic crystals as topological high-Q resonators. Optics Express 22, 18579-18587 (2014). doi: 10.1364/OE.22.018579
[212] Ra, Y. H. et al. An electrically pumped surface-emitting semiconductor green laser. Science Advances 6, eaav7523 (2020). doi: 10.1126/sciadv.aav7523
[213] Lu, M. et al. Plastic distributed feedback laser biosensor. Applied Physics Letters 93, 111113 (2008). doi: 10.1063/1.2987484
[214] Kumagai, O., Ikeda, M. & Yamamoto, M. Application of laser diodes to optical disk systems: the history of laser diode development and mass production in three generations of optical disk systems. Proceedings of the IEEE 101, 2243-2254 (2013). doi: 10.1109/JPROC.2013.2275017
[215] Waldrip, K. E. et al. Stress engineering during metalorganic chemical vapor deposition of AlGaN/GaN distributed Bragg reflectors. Applied Physics Letters 78, 3205-3207 (2001). doi: 10.1063/1.1371240
[216] Nakada, N. et al. Suppression of crack generation in GaN/AlGaN distributed Bragg reflector on sapphire by the insertion of GaN/AlGaN superlattice grown by metal-organic chemical vapor deposition. Japanese Journal of Applied Physics 42, L144 (2003). doi: 10.1143/JJAP.42.L144
[217] Liu, B. et al. Composition pulling effect and strain relief mechanism in AlGaN/AlN distributed Bragg reflectors. Applied Physics Letters 98, 261916 (2011). doi: 10.1063/1.3605681
[218] Cosendey, G. et al. Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate. Applied Physics Letters 101, 151113 (2012). doi: 10.1063/1.4757873
[219] Mei, Y. et al. Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’. Light:Science & Applications 6, e16199 (2017).
[220] Matsubara, H. et al. GaN photonic-crystal surface-emitting laser at blue-violet wavelengths. Science 319, 445-447 (2008). doi: 10.1126/science.1150413
[221] Yeh, P. S. et al. GaN-based vertical-cavity surface emitting lasers with sub-milliamp threshold and small divergence angle. Applied Physics Letters 109, 241103 (2016). doi: 10.1063/1.4972182
[222] Hamaguchi, T. et al. Milliwatt-class GaN-based blue vertical-cavity surface-emitting lasers fabricated by epitaxial lateral overgrowth. Physica Status Solidi (A) 213, 1170-1176 (2016). doi: 10.1002/pssa.201532759
[223] Wu, Y. P. et al. InGaN micro-light-emitting diodes monolithically grown on Si: achieving ultra-stable operation through polarization and strain engineering. Light: Science & Applications 11, 294 (2022).
[224] Ra, Y. H. et al. Full-color single nanowire pixels for projection displays. Nano Letters 16, 4608-4615 (2016). doi: 10.1021/acs.nanolett.6b01929
[225] Kishino, K. et al. Monolithic integration of four-colour InGaN-based nanocolumn LEDs. Electronics Letters 51, 852-854 (2015). doi: 10.1049/el.2015.0770
[226] Wang, R. J. et al. Tunable, full-color nanowire light emitting diode arrays monolithically integrated on Si and sapphire. Proceedings of SPIE 9748, Gallium Nitride Materials and Devices XI. San Francisco, CA, USA: SPIE, 2016, 97481S.
[227] Pezeshki, B. et al. High speed light microLEDs for visible wavelength communication. Proceedings of SPIE 11706, Light-Emitting Devices, Materials, and Applications XXV. SPIE, 2021, 117060N. (After reviewing all online materials, we were unable to find the information on the publication location of this article. Please contact the author to confirm)
[228] Bamiedakis, N. et al. Micro-LED-based guided-wave optical links for visible light communications. 2015 17th International Conference on Transparent Optical Networks (ICTON). Budapest, Hungary: IEEE, 2015, 1-4.
[229] Ding, H. et al. Optoelectronic sensing of biophysical and biochemical signals based on photon recycling of a micro-LED. Nano Research 14, 3208-3213 (2021). doi: 10.1007/s12274-020-3254-2
[230] Xu, H. et al. Application of blue–green and ultraviolet micro-LEDs to biological imaging and detection. Journal of Physics D:Applied Physics 41, 094013 (2008). doi: 10.1088/0022-3727/41/9/094013
[231] Sadaf, S. M. et al. Alternating-current InGaN/GaN tunnel junction nanowire white-light emitting diodes. Nano Letters 15, 6696-6701 (2015). doi: 10.1021/acs.nanolett.5b02515
[232] Sadaf, S. M. et al. Monolithically integrated metal/semiconductor tunnel junction nanowire light-emitting diodes. Nano Letters 16, 1076-1080 (2016). doi: 10.1021/acs.nanolett.5b04215
[233] Sanders, N. et al. Electronic and optical properties of two-dimensional GaN from first-principles. Nano Letters 17, 7345-7349 (2017). doi: 10.1021/acs.nanolett.7b03003
[234] Wu, Y. et al. Perspectives and recent advances of two-dimensional III-nitrides: Material synthesis and emerging device applications. Applied Physics Letters 122, (2023).
[235] Zhang, L. et al. How much better are InGaN/GaN nanodisks than quantum wells—Oscillator strength enhancement and changes in optical properties. Applied Physics Letters 104, 051116 (2014). doi: 10.1063/1.4864083
[236] Ahmed, N. I. et al. GaN-based deep-nano structures: break the efficiency bottleneck of conventional nanoscale optoelectronics. Advanced Optical Materials 10, e2102263 (2022). doi: 10.1002/adom.202102263
[237] Zhang, L. & Shi, J. J. Influence of surface optical phonons on exciton binding energies of a quasi-one-dimensional wurtzite GaN-based nanowire: quantum size effect. Journal of Applied Physics 113, 093710 (2013). doi: 10.1063/1.4794527
[238] Laleyan, D. A. et al. Epitaxial hexagonal boron nitride with high quantum efficiency. APL Materials 11, 051103 (2023). doi: 10.1063/5.0142242