[1] Lane, R. G. & Tallon, M. Wave-front reconstruction using a Shack–Hartmann sensor. Applied Optics 31, 6902-6908 (1992). doi: 10.1364/AO.31.006902
[2] Guo, Y. M. et al. Deep phase retrieval for astronomical Shack–Hartmann wavefront sensors. Monthly Notices of the Royal Astronomical Society 510, 4347-4354 (2022). doi: 10.1093/mnras/stab3690
[3] Lan, B. et al. Distorted wavefront detection of orbital angular momentum beams based on a Shack–Hartmann wavefront sensor. Optics Express 30, 30623-30629 (2022). doi: 10.1364/OE.465728
[4] Andrade, P. P. et al. Estimation of atmospheric turbulence parameters from Shack–Hartmann wavefront sensor measurements. Monthly Notices of the Royal Astronomical Society 483, 1192-1201 (2019). doi: 10.1093/mnras/sty3181
[5] Imperato, S. et al. Single-shot quantitative aberration and scattering length measurements in mouse brain tissues using an extended-source Shack-Hartmann wavefront sensor. Optics Express 30, 15250-15265 (2022). doi: 10.1364/OE.456651
[6] Brajones, J. M. et al. Highly sensitive Shack–Hartmann wavefront sensor: application to non-transparent tissue mimic imaging with adaptive light-sheet fluorescence microscopy. Methods Protocols 2, 59 (2019). doi: 10.3390/mps2030059
[7] Hu, L. J. et al. Learning-based Shack-Hartmann wavefront sensor for high-order aberration detection. Optics Express 27, 33504-33517 (2019). doi: 10.1364/OE.27.033504
[8] Holló, C. T. et al. Objective quantification and spatial mapping of cataract with a Shack-Hartmann wavefront sensor. Scientific Reports 10, 12585 (2020). doi: 10.1038/s41598-020-69321-3
[9] Vacalebre, M. et al. Advanced optical wavefront technologies to improve patient quality of vision and meet clinical requests. Polymers 14, 5321 (2022). doi: 10.3390/polym14235321
[10] Park, J. H. et al. Perspective: wavefront shaping techniques for controlling multiple light scattering in biological tissues: toward in vivo applications. APL Photonics 3, 100901 (2018). doi: 10.1063/1.5033917
[11] Akondi, V. & Dubra, A. Shack-Hartmann wavefront sensor optical dynamic range. Optics Express 29, 8417-8429 (2021). doi: 10.1364/OE.419311
[12] Rocktäschel, M. & Tiziani, H. J. Limitations of the Shack–Hartmann sensor for testing optical aspherics. Optics & Laser Technology 34, 631-637 (2002).
[13] Lindlein, N., Pfund, J. & Schwider, J. Expansion of the dynamic range of a Shack-Hartmann sensor by using astigmatic microlenses. Optical Engineering 39, 2220-2225 (2000). doi: 10.1117/1.1304846
[14] Lindlein, N. & Pfund, J. Experimental results for expanding the dynamic range of a Shack-Hartmann sensor by using astigmatic microlenses. Optical Engineering 41, 529-533 (2002). doi: 10.1117/1.1430724
[15] Molebny, V. V. Scanning Shack-Hartmann wavefront sensor. Proceedings of SPIE 5412, Laser Radar Technology and Applications IX. Orlando, Florida, United States: SPIE, 2002.
[16] Lee, W. W. , Lee, J. H. & Hwangbo, C. K. Increase of dynamic range of a Shack-Hartmann sensor by shifting detector plane. Proceedings of SPIE 5639, Adaptive Optics and Applications III. Beijing, China: SPIE, 2004.
[17] Choo, H. & Muller, R. S. Addressable microlens array to improve dynamic range of shack–hartmann sensors. Journal of Microelectromechanical Systems 15, 1555-1567 (2006). doi: 10.1109/JMEMS.2006.886011
[18] Yoon, G. Y., Pantanelli, S. & Nagy, L. J. Large-dynamic-range Shack-Hartmann wavefront sensor for highly aberrated eyes. Journal of Biomedical Optics 11, 030502 (2006). doi: 10.1117/1.2197860
[19] Hongbin, Y. et al. A tunable Shack–Hartmann wavefront sensor based on a liquid-filled microlens array. Journal of Micromechanics and Microengineering 18, 105017 (2008). doi: 10.1088/0960-1317/18/10/105017
[20] Martínez-Cuenca, R. et al. Reconfigurable Shack–Hartmann sensor without moving elements. Optics Letters 35, 1338-1340 (2010). doi: 10.1364/OL.35.001338
[21] Aftab, M. et al. Adaptive Shack-Hartmann wavefront sensor accommodating large wavefront variations. Optics Express 26, 34428-34441 (2018). doi: 10.1364/OE.26.034428
[22] Xu, H. F. & Wu, J. G. Extended-aperture Hartmann wavefront sensor with raster scanning. Optics Express 29, 34229-34242 (2021). doi: 10.1364/OE.440576
[23] Pfund, J., Lindlein, N. & Schwider, J. Dynamic range expansion of a Shack-Hartmann sensor by use of a modified unwrapping algorithm. Optics Letters 23, 995-997 (1998). doi: 10.1364/OL.23.000995
[24] Groening, S. et al. Wave-front reconstruction with a Shack–Hartmann sensor with an iterative spline fitting method. Applied Optics 39, 561-567 (2000). doi: 10.1364/AO.39.000561
[25] Lundström, L. & Unsbo, P. Unwrapping Hartmann-shack images from highly aberrated eyes using an iterative B-spline based extrapolation method. Optometry and Vision Science 81, 383-388 (2004). doi: 10.1097/01.opx.0000135086.61760.b7
[26] Leroux, C. & Dainty, C. A simple and robust method to extend the dynamic range of an aberrometer. Optics Express 17, 19055-19061 (2009). doi: 10.1364/OE.17.019055
[27] Smith, D. G. & Greivenkamp, J. E. Generalized method for sorting Shack-Hartmann spot patterns using local similarity. Applied Optics 47, 4548-4554 (2008). doi: 10.1364/AO.47.004548
[28] Kumar, V. C. P. & Ganesan, A. R. Shack–Hartmann wavefront sensor with enhanced dynamic range and reference-free operation. Optical Engineering 61, 054108 (2022).
[29] Gao, Z. Y., Li, X. Y. & Ye, H. W. Large dynamic range Shack-Hartmann wavefront measurement based on image segmentation and a neighbouring-region search algorithm. Optics Communications 450, 190-201 (2019). doi: 10.1016/j.optcom.2019.05.045
[30] Yu, L. et al. Novel methods to improve the measurement accuracy and the dynamic range of Shack–Hartmann wavefront sensor. Journal of Modern Optics 61, 703-715 (2014). doi: 10.1080/09500340.2014.909054
[31] Lee, J., Shack, R. V. & Descour, M. R. Sorting method to extend the dynamic range of the Shack-Hartmann wave-front sensor. Applied Optics 44, 4838-4845 (2005). doi: 10.1364/AO.44.004838
[32] Otsu, N. A threshold selection method from gray-level histograms. IEEE Transactions on Systems,Man,and Cybernetics 9, 62-66 (1979). doi: 10.1109/TSMC.1979.4310076
[33] Kennedy, J. & Eberhart, R. Particle swarm optimization. Proceedings of ICNN'95 - International Conference on Neural Networks. Perth, WA, Australia: IEEE, 1995.
[34] Schott, S. et al. Characterization of the angular memory effect of scattered light in biological tissues. Optics Express 23, 13505-13516 (2015). doi: 10.1364/OE.23.013505
[35] Zhou, J. C. et al. Arbitrary wavefront uncertainty evaluation for the Shack–Hartmann wavefront sensor using physical optics propagation. Applied Physics Letters 123, 071102 (2023). doi: 10.1063/5.0163112
[36] Liang, J. J. et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation 10, 281-295 (2006). doi: 10.1109/TEVC.2005.857610
[37] Dai, G. M. Modal wave-front reconstruction with Zernike polynomials and Karhunen–Loève functions. Journal of the Optical Society of America A 13, 1218-1225 (1996). doi: 10.1364/JOSAA.13.001218
[38] Chernyshov, A. et al. Calibration of a Shack-Hartmann sensor for absolute measurements of wavefronts. Applied Optics 44, 6419-6425 (2005). doi: 10.1364/AO.44.006419