[1] Sersic, I. et al. Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays. Phys. Rev. Lett. 103, 213902 (2009). doi: 10.1103/PhysRevLett.103.213902
[2] Ryabov, A. and Baum, P. Electron microscopy of electromagnetic waveforms. Science. 353, 374–377 (2016). doi: 10.1126/science.aaf8589
[3] Yen, T. J. et al. Terahertz magnetic response from artificial. Mater. Sci. 303, 1494–1496 (2004).
[4] Staude, I. et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano 7, 7824–7832 (2013). doi: 10.1021/nn402736f
[5] Zywietz, U. et al. Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses. Nat. Commun. 5, 3402 (2014). doi: 10.1038/ncomms4402
[6] Geffrin, J. M. et al. Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere. Nat. Commun. 3, 1171 (2012). doi: 10.1038/ncomms2167
[7] Rotenberg, N. et al. Tracking nanoscale electric and magnetic singularities through three-dimensional space. Optica 2, 540–546 (2015). doi: 10.1364/OPTICA.2.000540
[8] García de Abajo, F. J. Colloquium: light scattering by particle and hole arrays. Rev. Mod. Phys. 79, 1267–1290 (2007). doi: 10.1103/RevModPhys.79.1267
[9] Tang, Y. & Cohen, A. E. Optical chirality and its interaction with matter. Phys. Rev. Lett. 104, 163901 (2010). doi: 10.1103/PhysRevLett.104.163901
[10] Bliokh, K. Y. & Nori, F. Characterizing optical chirality. Phys. Rev. A 83, 021803 (2011). doi: 10.1103/PhysRevA.83.021803
[11] Bliokh, K. Y., Bekshaev, A. Y., and Nori, F. Extraordinary momentum and spin in evanescent waves. Nat. Commun. 5, 3300 (2014). doi: 10.1038/ncomms4300
[12] Bliokh, K. Y., Smirnova, D. & Nori, F. Quantum spin Hall effect of light. Science 348, 1448–1451 (2015). doi: 10.1126/science.aaa9519
[13] Bliokh, K. Y. et al. Spin-orbit interactions of light. Nat. Photonics 9, 796–808 (2015). doi: 10.1038/nphoton.2015.201
[14] Betzig, E. & Chichester, R. J. Single molecules observed by near-field scanning optical microscopy. Science 262, 1422–1425 (1993). doi: 10.1126/science.262.5138.1422
[15] Burresi, M. et al. Probing the magnetic field of light at optical frequencies. Science 326, 550–553 (2009). doi: 10.1126/science.1177096
[16] Denkova, D. et al. Mapping magnetic near-field distributions of plasmonic nanoantennas. ACS Nano 7, 3168–3176 (2013). doi: 10.1021/nn305589t
[17] Caselli, N. et al. Deep-subwavelength imaging of both electric and magnetic localized optical fields by plasmonic campanile nanoantenna. Sci. Rep. 5, 9606 (2015). doi: 10.1038/srep09606
[18] Vignolini, S. et al. Magnetic imaging in photonic crystal microcavities. Phys. Rev. Lett. 105, 123902 (2010). doi: 10.1103/PhysRevLett.105.123902
[19] le Feber, B. et al. Simultaneous measurement of nanoscale electric and magnetic optical fields. Nat. Photonics 8, 43–46 (2014). doi: 10.1038/nphoton.2013.323
[20] Rotenberg, N. et al. Plasmon scattering from single subwavelength holes. Phys. Rev. Lett. 108, 127402 (2012). doi: 10.1103/PhysRevLett.108.127402
[21] Bauer, T. et al. Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams. Nat. Photonics 8, 23–27 (2014). doi: 10.1038/nphoton.2013.289
[22] Olmon, R. L. et al. Determination of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer. Phys. Rev. Lett. 105, 167403 (2010). doi: 10.1103/PhysRevLett.105.167403
[23] Grosjean, T. et al. Full vectorial imaging of electromagnetic light at subwavelength scale. Opt. Express 18, 5809–5824 (2010). doi: 10.1364/OE.18.005809
[24] Engelen, R. J. P. et al. Subwavelength structure of the evanescent field of an optical bloch wave. Phys. Rev. Lett. 102, 023902 (2009). doi: 10.1103/PhysRevLett.102.023902
[25] Veerman, J. A. et al. Single molecule mapping of the optical field distribution of probes for near-field microscopy. J. Microsc. 194, 477–482 (1999). doi: 10.1046/j.1365-2818.1999.00520.x
[26] de Fornel, F. et al. Analysis of image formation with a photon scanning tunnelingmicroscope. J. Opt. Soc. Am. A 13, 35–45 (1996). doi: 10.1364/JOSAA.13.000035
[27] Greffet, J.-J. & Carminati, R. Image formation in near-field optics. Prog. Surf. Sci. 56, 133–237 (1997). doi: 10.1016/S0079-6816(98)00004-5
[28] Schmidt, S. et al. Image formation properties and inverse imaging problem in aperture based scanning near field optical microscopy. Opt. Express 24, 4128–4142 (2016). doi: 10.1364/OE.24.004128
[29] Esteban, R. et al. Direct near-field optical imaging of higher order plasmonic resonances. Nano Lett. 8, 3155–3159 (2008). doi: 10.1021/nl801396r
[30] Kabakova, I. V. et al. Imaging of electric and magnetic fields near plasmonic nanowires. Sci. Rep. 6, 22665 (2016). doi: 10.1038/srep22665
[31] Burresi, M. et al. Magnetic light-matter interactions in a photonic crystal nanocavity. Phys. Rev. Lett. 105, 123901 (2010). doi: 10.1103/PhysRevLett.105.123901
[32] Lodahl, P. et al. Chiral quantum optics. Nature 541, 473 (2017). doi: 10.1038/nature21037
[33] Wang, M., et al. Magnetic spin-orbit interaction of light. Light Sci. Appl. 7, 24 (2018). doi: 10.1038/s41377-018-0018-9
[34] Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193–204 (2010). doi: 10.1038/nmat2630
[35] Koenderink, A. F., Alù, A. & Polman, A. Nanophotonics: shrinking light-based technology. Science 348, 516–521 (2015). doi: 10.1126/science.1261243
[36] Kildishev, A. V., Boltasseva, A., and Shalaev, V. M. Planar Photonics with Metasurfaces. Science 339, 6125 (2013).
[37] Aigouy, L. et al. Mapping and quantifying electric and magnetic dipole luminescence at the nanoscale. Phys. Rev. Lett. 113, 076101 (2014). doi: 10.1103/PhysRevLett.113.076101