[1] Wen, Q. N. et al. Impact of D2O/H2O solvent exchange on the emission of HgTe and CdTe quantum dots: polaron and energy transfer effects. ACS Nano 10, 4301-4311 (2016). doi: 10.1021/acsnano.5b07852
[2] Kovalenko, M. V. et al. Prospects of nanoscience with nanocrystals. ACS Nano 9, 1012-1057 (2015). doi: 10.1021/nn506223h
[3] Ackerman, M. M., Tang, X. & Guyot-Sionnest, P. Fast and sensitive colloidal quantum dot mid-wave infrared photodetectors. ACS Nano 12, 7264-7271 (2018). doi: 10.1021/acsnano.8b03425
[4] Maier, S. A Plasmonics: Fundamentals and Applications. (Springer, New York, 2007).
[5] Lakowicz, J. R. Radiative decay engineering 5: metal-enhanced fluorescence and Plasmon emission. Anal. Biochem. 337, 171-194 (2005). doi: 10.1016/j.ab.2004.11.026
[6] Anger, P., Bharadwaj, P. & Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006). doi: 10.1103/PhysRevLett.96.113002
[7] Hamans, R. F. et al. Super-resolution mapping of enhanced emission by collective plasmonic resonances. ACS Nano 13, 4514-4521 (2019). doi: 10.1021/acsnano.9b00132
[8] Pelton, M. Modified spontaneous emission in nanophotonic structures. Nat. Photonics 9, 427-435 (2015). doi: 10.1038/nphoton.2015.103
[9] Agio, M. & Alù, A. Optical Antennas. (Cambridge University Press, Cambridge, 2013).
[10] Matsuzaki, K. et al. Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna. Sci. Rep. 7, 42307 (2017). doi: 10.1038/srep42307
[11] Freyria, F. S. et al. Near-infrared quantum dot emission enhanced by stabilized self-assembled J-aggregate antennas. Nano Lett. 17, 7665-7674 (2017). doi: 10.1021/acs.nanolett.7b03735
[12] Purcell, E. M., Torrey, H. C. & Pound, R. V. Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 69, 37-38 (1946). doi: 10.1103/PhysRev.69.37
[13] Linden, S., Kuhl, J. & Giessen, H. Controlling the interaction between light and gold nanoparticles: selective suppression of extinction. Phys. Rev. Lett. 86, 4688-4691 (2001).
[14] Giannini, V., Vecchi, G. & Rivas, J. G. Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas. Phys. Rev. Lett. 105, 266801 (2010). doi: 10.1103/PhysRevLett.105.266801
[15] Vecchi, G., Giannini, V. & Rivas, J. G. Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas. Phys. Rev. Lett. 102, 146807 (2009). doi: 10.1103/PhysRevLett.102.146807
[16] Giannini, V. et al. Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 111, 3888-3912 (2011). doi: 10.1021/cr1002672
[17] Halas, N. J. et al. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 111, 3913-3961 (2011). doi: 10.1021/cr200061k
[18] Kravets, V. G. et al. Plasmonic surface lattice resonances: a review of properties and applications. Chem. Rev. 118, 5912-5951 (2018). doi: 10.1021/acs.chemrev.8b00243
[19] Werschler, F. et al. Efficient emission enhancement of single CdSe/CdS/PMMA quantum dots through controlled near-field coupling to plasmonic bullseye resonators. Nano Lett. 18, 5396-5400 (2018). doi: 10.1021/acs.nanolett.8b01533
[20] Wang, W. J. et al. The rich photonic world of plasmonic nanoparticle arrays. Mater. Today 21, 303-314 (2018). doi: 10.1016/j.mattod.2017.09.002
[21] Keuleyan, S. E. et al. Mercury telluride colloidal quantum dots: electronic structure, size-dependent spectra, and photocurrent detection up to 12 μm. ACS Nano 8, 8676-8682 (2014). doi: 10.1021/nn503805h
[22] Abdelazim, N. M. et al. Room temperature synthesis of HgTe quantum dots in an aprotic solvent realizing high photoluminescence quantum yields in the infrared. Chem. Mater. 29, 7859-7867 (2017). doi: 10.1021/acs.chemmater.7b02637
[23] Keuleyan, S., Kohler, J. & Guyot-Sionnest, P. Photoluminescence of mid-infrared HgTe colloidal quantum dots. J. Phys. Chem. C 118, 2749-2753 (2014).
[24] Keuleyan, S. et al. Mid-infrared HgTe colloidal quantum dot photodetectors. Nat. Photonics 5, 489-493 (2011). doi: 10.1038/nphoton.2011.142
[25] Keuleyan, S., Lhuillier, E. & Guyot-Sionnest, P. Synthesis of colloidal HgTe quantum dots for narrow mid-IR emission and detection. J. Am. Chem. Soc. 133, 16422-16424 (2011). doi: 10.1021/ja2079509
[26] Lhuillier, E. et al. Mid-infrared HgTe/As2S3 field effect transistors and photodetectors. Adv. Mater. 25, 137-141 (2013). doi: 10.1002/adma.201203012
[27] Chu, A. et al. HgTe nanocrystals for SWIR detection and their integration up to the focal plane array. ACS Appl. Mater. Interfaces 11, 33116-33123 (2019). doi: 10.1021/acsami.9b09954
[28] Zhu, B. Q. et al. Integrated plasmonic infrared photodetector based on colloidal HgTe quantum dots. Adv. Mater. Technol. 4, 1900354 (2019). doi: 10.1002/admt.201900354
[29] Guyot-Sionnest, P., Ackerman, M. M. & Tang, X. Colloidal quantum dots for infrared detection beyond silicon. J. Chem. Phys. 151, 060901 (2019). doi: 10.1063/1.5115501
[30] Shulga, A. G. et al. Patterned quantum dot photosensitive FETs for medium frequency optoelectronics. Adv. Mater. Technol. 4, 1900054 (2019). doi: 10.1002/admt.201900054
[31] Martinez, B. et al. HgTe nanocrystal inks for extended short-wave infrared detection. Adv. Optical Mater. 7, 1900348 (2019). doi: 10.1002/adom.201900348
[32] Livache, C. et al. A colloidal quantum dot infrared photodetector and its use for intraband detection. Nat. Commun. 10, 2125 (2019). doi: 10.1038/s41467-019-10170-8
[33] Livache, C. et al. Road map for nanocrystal based infrared photodetectors. Front. Chem. 6, 575 (2018). doi: 10.3389/fchem.2018.00575
[34] Jagtap, A. et al. Design of a unipolar barrier for a nanocrystal-based short-wave infrared photodiode. ACS Photonics 5, 4569-4576 (2018). doi: 10.1021/acsphotonics.8b01032
[35] Chen, M. Y. et al. Photocurrent enhancement of HgTe quantum dot photodiodes by plasmonic gold nanorod structures. ACS Nano 8, 8208-8216 (2014). doi: 10.1021/nn502510u
[36] Harrison, M. T. et al. Wet chemical synthesis of highly luminescent HgTe/CdS core/shell nanocrystals. Adv. Mater. 12, 123-125 (2000). doi: 10.1002/(SICI)1521-4095(200001)12:2<123::AID-ADMA123>3.0.CO;2-H
[37] Shen, G. H. & Guyot-Sionnest, P. HgTe/CdTe and HgSe/CdX (X = S, Se, and Te) core/shell mid-infrared quantum dots. Chem. Mater. 31, 286-293 (2019). doi: 10.1021/acs.chemmater.8b04727
[38] Jing, L. H. et al. Aqueous based semiconductor nanocrystals. Chem. Rev. 116, 10623-10730 (2016). doi: 10.1021/acs.chemrev.6b00041
[39] Aharoni, A. et al. Long-range electronic-to-vibrational energy transfer from nanocrystals to their surrounding matrix environment. Phys. Rev. Lett. 100, 057404 (2008). doi: 10.1103/PhysRevLett.100.057404
[40] Kovalenko, M. V. et al. Inorganically functionalized PbS-CdS colloidal nanocrystals: integration into amorphous chalcogenide glass and luminescent properties. J. Am. Chem. Soc. 134, 2457-2460 (2012). doi: 10.1021/ja2087689
[41] Velizhanin, K. A. Exciton relaxation in carbon nanotubes via electronic-to-vibrational energy transfer. J. Chem. Phys. 151, 144703 (2019). doi: 10.1063/1.5121300
[42] Jeong, J. et al. Singly and doubly occupied higher quantum states in nanocrystals. Nano Lett. 17, 1187-1193 (2017). doi: 10.1021/acs.nanolett.6b04915
[43] Yoon, B., Jeong, J. & Jeong, K. S. Higher quantum state transitions in colloidal quantum dot with heavy electron doping. J. Phys. Chem. C 120, 22062-22068 (2016). doi: 10.1021/acs.jpcc.6b07331
[44] Chen, M. Y. et al. Fast, air-stable infrared photodetectors based on spray-deposited aqueous HgTe quantum dots. Adv. Funct. Mater. 24, 53-59 (2014). doi: 10.1002/adfm.201301006
[45] Pavlov, D. et al. Direct laser printing of tunable IR resonant nanoantenna arrays. Appl. Surf. Sci. 469, 514-520 (2019). doi: 10.1016/j.apsusc.2018.11.069
[46] Wang, X. W. et al. Laser-induced translative hydrodynamic mass snapshots: noninvasive characterization and predictive modeling via mapping at nanoscale. Phys. Rev. Appl. 8, 044016 (2017). doi: 10.1103/PhysRevApplied.8.044016
[47] Kuchmizhak, A. et al. Laser printing of resonant plasmonic nanovoids. Nanoscale 8, 12352-12361 (2016). doi: 10.1039/C6NR01317A
[48] Wang, X. W. et al. Single-step laser plasmonic coloration of metal films. ACS Appl. Mater. Interfaces 10, 1422-1427 (2018). doi: 10.1021/acsami.7b16339
[49] Pavlov, D. et al. 10-million-elements-per-second printing of infrared-resonant plasmonic arrays by multiplexed laser pulses. Opt. Lett. 44, 283-286 (2019). doi: 10.1364/OL.44.000283
[50] Gómez-Castaño, M. et al. Energy transfer and interference by collective electromagnetic coupling. Nano Lett. 19, 5790-5795 (2019). doi: 10.1021/acs.nanolett.9b02521
[51] Lee, E. M. Y. & Tisdale, W. A. Determination of exciton diffusion length by transient photoluminescence quenching and its application to quantum dot films. J. Phys. Chem. C 119, 9005-9015 (2015). doi: 10.1021/jp512634c
[52] Pierce, D. T. & Spicer, W. E. Electronic structure of amorphous Si from photoemission and optical studies. Phys. Rev. B 5, 3017-3029 (1972). doi: 10.1103/PhysRevB.5.3017
[53] El-Nahass, M. M., El-Salam, F. A. & Seyam, M. A. M. Optical and structural properties of flash evaporated HgTe thin films. J. Mater. Sci. 41, 3573-3580 (2006). doi: 10.1007/s10853-005-5621-5
[54] Palik, E. D. Handbook of Optical Constants of Solids. (Academic Press, San Diego, 1998).