[1] Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946). doi: 10.1007/978-1-4615-1963-8_40
[2] Vahala, K. J. Optical microcavities. Nature 424, 839-846 (2003). doi: 10.1038/nature01939
[3] Xu, D. et al. Quantum plasmonics: new opportunity in fundamental and applied photonics. Adv. Opt. Photonics 10, 703-756 (2018). doi: 10.1364/AOP.10.000703
[4] Xiao, Y. F. et al. Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator. Phys. Rev. A 85, 031805 (2012). doi: 10.1103/PhysRevA.85.031805
[5] de Leon, N. P. et al. Tailoring light-matter interaction with a nanoscale plasmon resonator. Phys. Rev. Lett. 108, 226803 (2012). doi: 10.1103/PhysRevLett.108.226803
[6] Yin, Y. et al. Localized surface plasmons selectively coupled to resonant light in tubular microcavities. Phys. Rev. Lett. 116, 253904 (2016). doi: 10.1103/PhysRevLett.116.253904
[7] Peng, P. et al. Enhancing coherent light-matter interactions through microcavity-engineered plasmonic resonances. Phys. Rev. Lett. 119, 233901 (2017). doi: 10.1103/PhysRevLett.119.233901
[8] Cognée, K. G. et al. Cooperative interactions between nano-antennas in a high-Q cavity for unidirectional light sources. Light.: Sci. Appl. 8, 115 (2019). doi: 10.1038/s41377-019-0227-x
[9] Peng, B. et al. Chiral modes and directional lasing at exceptional points. Proc. Natl Acad. Sci. USA 113, 6845-6850 (2016). doi: 10.1073/pnas.1603318113
[10] Lodahl, P. et al. Chiral quantum optics. Nature 541, 473-480 (2017). doi: 10.1038/nature21037
[11] Kockum, A. F. et al. Ultrastrong coupling between light and matter. Nat. Rev. Phys. 1, 19-40 (2019). doi: 10.1038/s42254-018-0006-2
[12] Miri, M. A. & Alù, A. Exceptional points in optics and photonics. Science 363, eaar7709 (2019). doi: 10.1126/science.aar7709
[13] Strekalov, D. V. et al. Nonlinear and quantum optics with whispering gallery resonators. J. Opt. 18, 123002 (2016). doi: 10.1088/2040-8978/18/12/123002