Design and manufacture AR head-mounted displays: A review and outlook
Dewen Cheng, Qiwei Wang, Yue Liu, Hailong Chen, Dongwei Ni, Ximeng Wang, Cheng Yao, Qichao Hou, Weihong Hou, Gang Luo, Yongtian Wang
Accepted  doi: 10.37188/lam.2021.024

Augmented reality head-mounted displays (AR-HMDs) enable users to see real images of the outside world and visualize virtual information generated by a computer at any time and from any location, making them useful for various applications. The manufacture of AR-HMDs combines the fields of optical engineering, optical materials, optical coating, precision manufacturing, electronic science, computer science, physiology, ergonomics, etc. This paper primarily focuses on the optical engineering of AR-HMDs. Optical combiners and display devices are used to combine real-world and virtual-world objects that are visible to the human eye. In this review, existing AR-HMD optical solutions employed for optical combiners are divided into three categories: optical solutions based on macro-, micro-, and nanooptics. The physical principles, optical structure, performance parameters, and manufacturing process of different types of AR-HMD optical solutions are subsequently analyzed. Moreover, their advantages and disadvantages are investigated and evaluated. In addition, the bottlenecks and future development trends in the case of AR-HMD optical solutions are discussed.

Longitudinally thickness-controlled nanofilms on exposed core fibres enabling spectrally flattened supercontinuum generation
Tilman A. K. Lühder, Henrik Schneidewind, Erik P. Schartner, Heike Ebendorf-Heidepriem, Markus A. Schmidt
Accepted  doi: 10.37188/lam.2021.021
Nonlinear frequency conversion is a pathway to unlock undiscovered physics and implement tailored light sources for spectroscopy or medicine. A key challenge is the establishment of spectrally flat outputs, which is particularly demanding in the context of soliton-based light conversion at low pump energy. Here, we introduce the concept of controlling nonlinear frequency conversion by longitudinally varying resonances, allowing the shaping of soliton dynamics and achieving broadband spectra with substantial spectral flatness. Longitudinally varying resonances are realised by nanofilms with gradually changing thicknesses located on the core of an advanced microstructured fibre. Nanofilms with engineered thickness profiles are fabricated by tilted deposition, representing a waveguide-compatible approach to nano-fabrication, and inducing well-controlled resonances into the system, allowing unique dispersion control along the fibre length. Key features and dependencies are examined experimentally, showing improved bandwidth and spectral flatness via multiple dispersive wave generation and dispersion-assisted soliton Raman shifts while maintaining excellent pulse-to-pulse stability and coherence in simulations, suggesting the relevance of our findings for basic science as well as tailored light sources.
Controllable generation of large-scale highly regular gratings on Si films
Jiao Geng, Xiaoguo Fang, Lei Zhang, Guangnan Yao, Liye Xu, et al.
Published Published online: 22 September 2021,  doi: 10.37188/lam.2021.022
The application of femtosecond laser-induced periodic surface texturing has significant potential in medicine, optics, tribology, and biology, among other areas. However, when irradiated by a large intense laser spot, the periodic structures usually exhibit an uncontrollable regularity, forming bifurcated patterns, thus limiting their widespread application. Irregularity originates from numerous independent branching seeds. The usual solution to this problem is to utilize the quasi-direct laser writing technique, that is, by limiting the laser beam size (diameter of <10 wavelengths) and scanning the beam or samples using 2D translation stages. Herein, we demonstrate an optical localization-induced nonlinear competition mechanism to solve this problem, which occurs at a fluence nearly one order of magnitude below the ablation threshold. Owing to the low intrinsic absorption of silicon and ultralow applied fluence, this mechanism ensures the self-selection of a single seed to initiate an array of bifurcated-free gratings under stationary irradiation with a large laser spot (diameter >100 wavelengths). Surprisingly, some unconventional complex patterns, such as radial, annular, and spiral gratings, can also be easily produced by structured light fields with unprecedented regularity. Their diameters reach up to >500 μm. Moreover, we can artificially control the initial seeding structure to further improve the regularity of the gratings, defined by dispersion in the ripple orientation angle in their 2D Fourier transform. As a result, the regularity in our experiments produced by a large laser spot is even higher than that scanned by a tiny beam. Controllable and highly regular ripples are beneficial to the structural coloring effects because they arise from the light diffraction by subwavelength gratings.
[HTML FullText](86) [PDF 4663KB](202)
Active tuning of electromagnetically induced transparency from chalcogenide-only metasurface
Kuan Liu, Meng Lian, Kairong Qin, Shuang Zhang, Tun Cao
Published Published online: 18 September 2021,  doi: 10.37188/lam.2021.019

Electromagnetically induced transparency (EIT) is a coherent optical process that provides a narrow transparent peak within a broad absorption line in an atomic medium. All-dielectric metasurface analogues of EIT have enabled new developments in the nanophotonics field for obtaining smaller, more effective slow-light devices and highly sensitive detectors without a quantum approach. However, the dynamic control of the EIT response of all-dielectric metasurfaces has been rarely reported hitherto for the near-infrared (N-IR) region, although a broader range of applications will be enabled by a reconfigurable EIT system. In this study, we realise a chalcogenide (germanium antimony telluride, GST) metasurface, which possesses a dynamically tunable EIT response by optically driving the amorphous-crystalline phase change in the GST medium. Only a few tens of nanometres thick, the nanostructured GST film exhibits Mie resonances that are spectrally modified via laser-induced phase transitions, offering a high relative modulation contrast of 80% in the N-IR region. Moreover, an extreme dispersion that results in the ‘slow light’ behaviour is observed within this transparency ‘window’. Furthermore, the group delay of the N-IR beam switches reversibly under the phase transition. The measurement is consistent with both numerical simulation results and phenomenological modelling. Our work facilitates the development of new types of compact ultrafast N-IR holograms, filtering, and ultrasensitive detectors.

[HTML FullText](288) [PDF 3863KB](298)
Model-based characterisation of complex periodic nanostructures by white-light Mueller-matrix Fourier scatterometry
Maria Laura Gödecke, Karsten Frenner, Wolfgang Osten
Published Published online: 23 June 2021,  doi: 10.37188/lam.2021.018

Optical scatterometry is one of the most important metrology techniques for process monitoring in high-volume semiconductor manufacturing. By comparing measured signatures to modelled ones, scatterometry indirectly retrieves the dimensions of nanostructures and, hence, solves an inverse problem. However, the increasing design complexity of modern semiconductor devices makes modelling of the structures ever more difficult and requires a multitude of parameters. Such large parameter spaces typically cause ambiguities in the reconstruction process, thereby complicating the solution of the inherently ill-posed inverse problem further. An effective means of regularisation consists of systematically maximising the information content provided by the optical sensor. With this in mind, we combined the classical techniques of white-light interferometry, Mueller polarimetry, and Fourier scatterometry into one apparatus, allowing for the acquisition of fully angle- and wavelength-resolved Mueller matrices. The large amount of uncorrelated measurement data improve the robustness of the reconstruction in the case of complex multi-parameter problems by increasing the overall sensitivity and reducing cross-correlations. In this study, we discuss the sensor concept and introduce the measurement strategy, calibration routine, and numerical post-processing steps. We verify the practical feasibility of our method by reconstructing the profile parameters of a sub-wavelength silicon line grating. All necessary simulations are based on the rigorous coupled-wave analysis method. Additional measurements performed using a scanning electron microscope and an atomic force microscope confirm the accuracy of the reconstruction results, and hence, the real-world applicability of the proposed sensor concept.

[HTML FullText](1441) [PDF 3210KB](360)
Digital holography in production: an overview
Markus Fratz, Tobias Seyler, Alexander Bertz, Daniel Carl
Published Published online: 18 June 2021,  doi: 10.37188/lam.2021.015
Many challenging measurement tasks in production simultaneously have high requirements for accuracy, measurement field size, lateral sampling, and measurement time. In this paper, we provide an overview of the current state of the art in digital holography for surface topography measurements and present three applications from completely different productions with no alternative to digital holography; we describe the HoloTop sensor family, which has been designed specifically for industrial use, and present the most recent results achieved in real-life industrial applications. All applications address measurement tasks that could not be solved until now, either by optical or tactile means. We start with a description of the first-ever inline integration of a digital holographic measurement system that inspects precision turned parts for the automotive industry. We proceed by presenting measurements performed with a compact sensor that can be placed inside a tooling machine and operated fully wirelessly. In this case, the tool holder was used to position the sensor directly. Integration into a tooling machine places high demands on both robustness and reliability. Finally, the quality control of electronic interconnectors such as microbumps with the highest demand for accuracy and repeatability is demonstrated. All of these applications illustrate the major advantages of digital holographic systems: it is possible to measure a relatively large field of view with interferometric precision and very short acquisition times. Additionally, both reflective and matt surfaces can be measured simultaneously. We end this publication with an assessment of the future potential of this technology and the necessary development steps involved.
[HTML FullText](1560) [PDF 10564KB](394)
Effect of cycling heat treatment on the microstructure, phase, and compression behaviour of directed energy deposited Ti-Mo alloys
Nan Kang, Kai Wu, Jin Kang, Jiacong Li, Xin Lin, et al.
Published Published online: 26 May 2021,  doi: 10.37188/lam.2021.016
In this study, the effect of triple-cycling heat treatment on the microstructure, phase, and compression behaviour of directed energy deposited (DED) Ti-7Mo alloy was investigated with a focus on a non-equilibrium to equilibrium microstructure transition. As a result of thermal accumulation, in situ cycling, and rapid solidification, the as-deposited sample presents a continuous gradient microstructure with α-Ti in the top region and α+β in the bottom region. After the triple-cycling heat treatment, the α+β Ti at the bottom region, which is non-equilibrium, changes to a state of equilibrium near α-Ti. Meanwhile, the microstructure becomes more uniform throughout the entire sample. The morphology of the α-Ti phase changes from acicular to a short rode-like shape with increases in the number of dimensions. In terms of the mechanical properties, both the microhardness and compression properties were improved, particularly with respect to the fracture characteristics. The heat-treated sample possesses a much higher ductility than the brittle fractural behaviour. This work provides new insights into the microstructure and property optimisation and homogenisation of DED-processed Ti-based components with cycling heat treatment.
[HTML FullText](828) [PDF 16500KB](157)
Physics-based virtual coherence scanning interferometer for surface measurement
Rong Su, Richard Leach
Published Published online: 01 April 2021,  doi: 10.37188/lam.2021.009
Virtual instruments provide task-specific uncertainty evaluation in surface and dimensional metrology. We demonstrate the first virtual coherence scanning interferometer that can accurately predict the results from measurements of surfaces with complex topography using a specific real instrument. The virtual instrument is powered by physical models derived from first principles, including surface-scattering models, three-dimensional imaging theory, and error-generation models. By incorporating the influences of various error sources directly into the interferogram before reconstructing the surface, the virtual instrument works in the same manner as a real instrument. To enhance the fidelity of the virtual measurement, the experimentally determined three-dimensional transfer function of a specific instrument configuration is used to characterise the virtual instrument. Finally, we demonstrate the experimental validation of the virtual instrument, followed by virtual measurements and error predictions for several typical surfaces that are within the validity regime of the physical models.
[HTML FullText](1344) [PDF 7262KB](180)
3D printed micro-optics for quantum technology: Optimised coupling of single quantum dot emission into a single-mode fibre
Marc Sartison, Ksenia Weber, Simon Thiele, Lucas Bremer, Sarah Fischbach, et al.
Published Published online: 31 March 2021,  doi: 10.37188/lam.2021.006
Future quantum technology relies crucially on building quantum networks with high fidelity. To achieve this challenging goal, it is of utmost importance to connect individual quantum systems such that their emitted single photons overlap with the highest possible degree of coherence. This requires perfect mode overlap of the emitted light from different emitters, which necessitates the use of single-mode fibres. Here, we present an advanced manufacturing approach to accomplish this task. We combined 3D printed complex micro-optics, such as hemispherical and Weierstrass solid immersion lenses, as well as total internal reflection solid immersion lenses, on top of individual indium arsenide quantum dots with 3D printed optics on single-mode fibres and compared their key features. We observed a systematic increase in the collection efficiency under variations of the lens geometry from roughly 2 for hemispheric solid immersion lenses up to a maximum of greater than 9 for the total internal reflection geometry. Furthermore, the temperature-induced stress was estimated for these particular lens dimensions and results to be approximately 5 meV. Interestingly, the use of solid immersion lenses further increased the localisation accuracy of the emitters to less than 1 nm when acquiring micro-photoluminescence maps. Furthermore, we show that the single-photon character of the source is preserved after device fabrication, reaching a \begin{document}$ g^{(2)} (0)$\end{document} value of approximately 0.19 under pulsed optical excitation. The printed lens device can be further joined with an optical fibre and permanently fixed.This integrated system can be cooled by dipping into liquid helium using a Stirling cryocooler or by a closed-cycle helium cryostat without the necessity for optical windows, as all access is through the integrated single-mode fibre. We identify the ideal optical designs and present experiments that demonstrate excellent high-rate single-photon emission.
[HTML FullText](1585) [PDF 4203KB](229)
A review of common-path off-axis digital holography: towards high stable optical instrument manufacturing
Jiwei Zhang, Siqing Dai, Chaojie Ma, Teli Xi, Jianglei Di, et al.
Published Published online: 15 September 2021,  doi: 10.37188/lam.2021.023

Digital holography possesses the advantages of wide-field, non-contact, precise, and dynamic measurements for the complex amplitude of object waves. Today, digital holography and its derivatives have been widely applied in interferometric measurements, three-dimensional imaging, and quantitative phase imaging, demonstrating significant potential in the material science, industry, and biomedical fields, among others. However, in conventional off-axis holographic experimental setups, the object and reference beams propagate in separated paths, resulting in low temporal stability and measurement sensitivity. By designing common-path configurations where the two interference beams share the same or similar paths, environmental disturbance to the two beams can be effectively compensated. Therefore, the temporal stability of the experimental setups for hologram recording can be significantly improved for time-lapsing measurements. In this review, we categorise the common-path models as lateral shearing, point diffraction, and other types based on the different approaches to generate the reference beam. Benefiting from compact features, common-path digital holography is extremely promising for the manufacture of highly stable optical measurement and imaging instruments in the future.

[HTML FullText](509) [PDF 4544KB](305)
Review of laser powder bed fusion (LPBF) fabricated Ti-6Al-4V: process, post-process treatment, microstructure, and property
Sheng Cao, Yichao Zou, Chao Voon Samuel Lim, Xinhua Wu
Published Published online: 13 August 2021,  doi: 10.37188/lam.2021.020

Laser powder bed fusion (LPBF) is a timely important additive manufacturing technique that offers many opportunities for fabricating three-dimensional complex shaped components at a high resolution with short lead times. This technique has been extensively employed in manufacturing Ti-6Al-4V parts for aerospace and biomedical applications. However, many challenges, including poor surface quality, porosity, anisotropy in microstructure and property, and difficulty in tailoring microstructure, still exist. In this paper, we review the recent progress in post-process treatment and its influence on the microstructure evolution and material performance, including tensile, fatigue, fracture toughness, creep, and corrosion properties. The contradictions in simultaneously achieving high strength/ductility and strength/fracture toughness/creep resistance have been identified. Furthermore, research gaps in understanding the effects of the emerging bi-modal microstructure on fatigue properties and fracture toughness require further investigation.

[HTML FullText](625) [PDF 19078KB](311)
Multi-material multi-photon 3D laser micro- and nanoprinting
Liang Yang, Frederik Mayer, Uwe H. F. Bunz, Eva Blasco, Martin Wegener
Published Published online: 21 June 2021,  doi: 10.37188/lam.2021.017
Three-dimensional (3D) laser micro- and nanoprinting based upon multi-photon absorption has made its way from early scientific discovery to industrial manufacturing processes, e.g., for advanced microoptical components. However, so far, most realized 3D architectures are composed of only a single polymeric material. Here, we review 3D printing of multi-materials on the nano- and microscale. We start with material properties that have been realized, using multi-photon photoresists. Printed materials include bulk polymers, conductive polymers, metals, nanoporous polymers, silica glass, chalcogenide glasses, inorganic single crystals, natural polymers, stimuli-responsive materials, and polymer composites. Next, we review manual and automated processes achieving dissimilar material properties in a single 3D structure by sequentially photo-exposing multiple photoresists as 3D analogs of 2D multicolor printing. Instructive examples from biology, optics, mechanics, and electronics are discussed. An emerging approach – without counterpart in 2D graphical printing – prints 3D structures combining dissimilar material properties in one 3D structure by using only a single photoresist. A controlled stimulus applied during the 3D printing process defines and determines material properties on the voxel level. Change of laser power and/or wavelength, or application of quasi-static electric fields allow for the seamless manipulation of desired materials properties.
[HTML FullText](1908) [PDF 2997KB](536)
Recent Advances in the Fabrication of Highly Sensitive Surface-Enhanced Raman Scattering Substrates: Nanomolar to Attomolar Level Sensing
Shi Bai, Koji Sugioka
Published Published online: 26 May 2021,  doi: 10.37188/lam.2021.013
Surface-enhanced Raman scattering (SERS) techniques have rapidly advanced over the last two decades, permitting multidisciplinary trace analyses and the potential detection of single molecules. This paper provides a comprehensive review of recent progress in strategies for the fabrication of highly sensitive SERS substrates, as a means of achieving sensing on the attomolar scale. The review examines widely used performance criteria, such as enhancement factors. In addition, femtosecond laser-based techniques are discussed as a versatile tool for the fabrication of SERS substrates. Several approaches for enhancing the performance of SERS sensing devices are also introduced, including photo-induced, transient, and liquid-interface assisted strategies. Finally, substrates for real-time sensing and biological applications are also reviewed to demonstrate the powerful analytical capabilities of these methods and the significant progress in SERS research.
[HTML FullText](971) [PDF 10691KB](258)
Review of geometric error measurement and compensation techniques of ultra-precision machine tools
Zongchao Geng, Zhen Tong, Xiangqian Jiang
Published Published online: 08 May 2021,  doi: 10.37188/lam.2021.014
Inevitable machine motion errors change the cutting tool trajectory and degrade the machined surface quality. Compared to the mature error measurement technologies developed for traditional precision CNC machine tools, the increasing use of ultra-precision machine tools (UPMTs) has shown some distinctive characteristics in error modelling, measurement, and compensation. This paper attempts to summarise state-of-the-art research in the calibration of geometric errors of UPMTs. A general routine for a UPMT error calibration is proposed in this literature review. Various error modelling methods, instruments, and measurement methods applicable to the geometric error measurement of both the linear and rotary axes are discussed using typical case studies. With respect to these achievements, there is a real concern regarding the reproducibility of measurement sensors used for the calibration of UPMTs and it remains challenging to decompose the volumetric motion error of UPMTs. Owing to the high flexibility in practice, trial cutting and a sensitivity analysis-based error measurement and compensation provide a promising solution to achieve a fast UPMT calibration.
[HTML FullText](1164) [PDF 7943KB](112)
Extracellular scaffold design for ultra-soft microtissue engineering
Jiaqi Wang, Xiaowei Tang, Zitian Wang, Jiawei Li, Shaohua Ma
Published Published online: 10 April 2021,  doi: 10.37188/lam.2021.011
Soft and ultra-soft extracellular scaffolds constitute a major fraction of most human internal organs, except for the skeletal system. Modelling these organs in vitro requires a comprehensive understanding of their native scaffolding materials and proper engineering approaches to manufacture tissue architectures with microscale precision. This review focuses on the properties of soft and ultra-soft scaffolds, including their interactions with cells, mechanical properties (e.g. viscoelasticity), and existing microtissue engineering techniques. It also summarises challenges presented by the conflict between the properties of the materials demanded by cell behaviours and the capacities of engineering techniques. It proposes that leveraging the engineering ability of soft and ultra-soft scaffolds will promote therapeutic advances and regenerative medicine.
[HTML FullText](604) [PDF 6915KB](82)
Metasurfaces for manipulating terahertz waves
Xiaofei Zang, Bingshuang Yao, Lin Chen, Jingya Xie, Xuguang Guo, et al.
Published Published online: 22 March 2021,  doi: 10.37188/lam.2021.010
Terahertz (THz) science and technology have attracted significant attention based on their unique applications in non-destructive imaging, communications, spectroscopic detection, and sensing. However, traditional THz devices must be sufficiently thick to realise the desired wave-manipulating functions, which has hindered the development of THz integrated systems and applications. Metasurfaces, which are two-dimensional metamaterials consisting of predesigned meta-atoms, can accurately tailor the amplitudes, phases, and polarisations of electromagnetic waves at subwavelength resolutions, meaning they can provide a flexible platform for designing ultra-compact and high-performance THz components. This review focuses on recent advancements in metasurfaces for the wavefront manipulation of THz waves, including the planar metalens, holograms, arbitrary polarisation control, special beam generation, and active metasurface devices. Such ultra-compact devices with unique functionality make metasurface devices very attractive for applications such as imaging, encryption, information modulation, and THz communications. This progress report aims to highlight some novel approaches for designing ultra-compact THz devices and broaden the applications of metasurfaces in THz science.
[HTML FullText](2049) [PDF 16800KB](550)
Letter to the Editor

ISSN 2689-9620

EISSN 2689-9620

Diamond Open Access