View by Category

Microsphere-assisted quantitative phase microscopy: a review
Vahid Abbasian, Tobias Pahl, Lucie Hüser, Sylvain Lecler, Paul Montgomery, et al.
Published Published online: 15 March 2024 , doi: 10.37188/lam.2024.006

Light microscopes are the most widely used devices in life and material sciences that allow the study of the interaction of light with matter at a resolution better than that of the naked eye. Conventional microscopes translate the spatial differences in the intensity of the reflected or transmitted light from an object to pixel brightness differences in the digital image. However, a phase microscope converts the spatial differences in the phase of the light from or through an object to differences in pixel brightness. Interference microscopy, a phase-based approach, has found application in various disciplines. While interferometry has brought nanometric axial resolution, the lateral resolution in quantitative phase microscopy (QPM) has still remained limited by diffraction, similar to other traditional microscopy systems. Enhancing the resolution has been the subject of intense investigation since the invention of the microscope in the 17th century. During the past decade, microsphere-assisted microscopy (MAM) has emerged as a simple and effective approach to enhance the resolution in light microscopy. MAM can be integrated with QPM for 3D label-free imaging with enhanced resolution. Here, we review the integration of microspheres with coherence scanning interference and digital holographic microscopies, discussing the associated open questions, challenges, and opportunities.

Direct laser writing on halide perovskites: from mechanisms to applications
Yuhang Sheng, Xiaoming Wen, Baohua Jia, Zhixing Gan
Published Published online: 13 March 2024 , doi: 10.37188/lam.2024.004

Metal halide perovskites have emerged as game-changing semiconductor materials in optoelectronics. As an efficient micro-/nano-manufacturing technology, direct laser writing (DLW) has been extensively used to fabricate patterns, micro/nanostructures, and pixel arrays on perovskites to promote their optoelectronic applications. Owing to the unique ionic properties and soft lattices of perovskites, DLW can introduce rich light–matter interactions, including laser ablation, crystallisation, ion migration, phase segregation, photoreaction, and other transitions, which enable diverse functionalities in addition to the intrinsic properties of perovskites. Based on their patterned structures, perovskites have numerous applications in displays, optical information encryption, solar cells, light-emitting diodes, lasers, photodetectors, and planar lenses, which are comprehensively discussed in this review. Finally, we discuss the challenges that must be addressed for the future development of this fascinating field.

Meta-device: advanced manufacturing
Borui Leng, Yao Zhang, Din Ping Tsai, Shumin Xiao
Published Published online: 07 March 2024 , doi: 10.37188/lam.2024.005

Metasurfaces are one of the most promising devices to break through the limitations of bulky optical components. By offering a new method of light manipulation based on the light-matter interaction in subwavelength nanostructures, metasurfaces enable the efficient manipulation of the amplitude, phase, polarization, and frequency of light and derive a series of possibilities for important applications. However, one key challenge for the realization of applications for meta-devices is how to fabricate large-scale, uniform nanostructures with high resolution. In this review, we review the state-of-the-art nanofabrication techniques compatible with the manufacture of meta-devices. Maskless lithography, masked lithography, and other nanofabrication techniques are highlighted in detail. We also delve into the constraints and limitations of the current fabrication methods while providing some insights on solutions to overcome these challenges for advanced nanophotonic applications.

Recent Advances in the Fabrication of Highly Sensitive Surface-Enhanced Raman Scattering Substrates: Nanomolar to Attomolar Level Sensing
Shi Bai, Koji Sugioka
Published Published online: 26 May 2021 , doi: 10.37188/lam.2021.013
Surface-enhanced Raman scattering (SERS) techniques have rapidly advanced over the last two decades, permitting multidisciplinary trace analyses and the potential detection of single molecules. This paper provides a comprehensive review of recent progress in strategies for the fabrication of highly sensitive SERS substrates, as a means of achieving sensing on the attomolar scale. The review examines widely used performance criteria, such as enhancement factors. In addition, femtosecond laser-based techniques are discussed as a versatile tool for the fabrication of SERS substrates. Several approaches for enhancing the performance of SERS sensing devices are also introduced, including photo-induced, transient, and liquid-interface assisted strategies. Finally, substrates for real-time sensing and biological applications are also reviewed to demonstrate the powerful analytical capabilities of these methods and the significant progress in SERS research.
Metasurfaces for manipulating terahertz waves
Xiaofei Zang, Bingshuang Yao, Lin Chen, Jingya Xie, Xuguang Guo, et al.
Published Published online: 22 March 2021 , doi: 10.37188/lam.2021.010
Terahertz (THz) science and technology have attracted significant attention based on their unique applications in non-destructive imaging, communications, spectroscopic detection, and sensing. However, traditional THz devices must be sufficiently thick to realise the desired wave-manipulating functions, which has hindered the development of THz integrated systems and applications. Metasurfaces, which are two-dimensional metamaterials consisting of predesigned meta-atoms, can accurately tailor the amplitudes, phases, and polarisations of electromagnetic waves at subwavelength resolutions, meaning they can provide a flexible platform for designing ultra-compact and high-performance THz components. This review focuses on recent advancements in metasurfaces for the wavefront manipulation of THz waves, including the planar metalens, holograms, arbitrary polarisation control, special beam generation, and active metasurface devices. Such ultra-compact devices with unique functionality make metasurface devices very attractive for applications such as imaging, encryption, information modulation, and THz communications. This progress report aims to highlight some novel approaches for designing ultra-compact THz devices and broaden the applications of metasurfaces in THz science.