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Abstract

Holography provides access to the optical phase. The emerging compressive phase retrieval approach can achieve
in-line holographic imaging beyond the information-theoretic limit or even from a single shot by exploring the
signal priors. However, iterative projection methods based on physical knowledge of the wavefield suffer from poor
imaging quality, whereas the regularization techniques sacrifice robustness for fidelity. In this work, we present a
unified compressive phase retrieval framework for in-line holography that encapsulates the unique advantages of
both physical constraints and sparsity priors. In particular, a constrained complex total variation (CCTV) reqularizer is
introduced that explores the well-known absorption and support constraints together with sparsity in the gradient
domain, enabling practical high-quality in-line holographic imaging from a single intensity image. We developed
efficient solvers based on the proximal gradient method for the non-smooth regularized inverse problem and the
corresponding denoising subproblem. Theoretical analyses further guarantee the convergence of the algorithms
with prespecified parameters, obviating the need for manual parameter tuning. As both simulated and optical
experiments demonstrate, the proposed CCTV model can characterize complex natural scenes while utilizing
physically tractable constraints for quality enhancement. This new compressive phase retrieval approach can be
extended, with minor adjustments, to various imaging configurations, sparsifying operators, and physical
knowledge. It may cast new light on both theoretical and empirical studies.

kKeywords: Phase retrieval, Quantitative phase imaging, Compressive sensing, Digital holography

Introduction

The phase of an optical field contains various sources of
information. Holography, invented by Gabor in 1947,
provides access to phase information and has been used as
a powerful imaging technique™. At the optical frequency,
however, electromagnetic waves oscillate so fast that the
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detection devices can directly record only the average
incident power. The loss of phase information poses unique
challenges for the numerical inversion of the imaging
process, leading to the so-called “twin-image” effect that
severely degrades the imaging quality”’. As a result, phase
retrieval, or the recovery of the phase from intensity-only
measurements, remains a longstanding issue and lies at the
heart of digital holography and many related optical
imaging techniques’. In recent years, phase retrieval has
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regained increasing research interests following the
development of computational imaging, which leverages
advancements in signal processing theory, numerical
algorithms, hardware design, and computation power'.
Existing phase retrieval methods for in-line holography
can be broadly classified into two categories, namely
diversity phase retrieval and compressive phase retrieval.
The former approach requires taking multiple images with
some data diversity that translate phase information into
intensity distribution. This can be achieved, for example,
by varying the imaging distance’” ", illumination
wavelength' ™, probe position”", illumination angle"™,
and modulation pattern’ ~*. While this approach can
achieve quantitative phase imaging with increased data
diversity and redundancy, it sacrifices the temporal
resolution, system cost, and complexity. As an alternative,
compressive phase retrieval takes a different path by
exploring additional prior knowledge of the wavefield,
which could potentially achieve phase recovery beyond the
information-theoretic limit or even from a single shot.
Historically, early works tackled the phase ambiguity
problem by utilizing simple yet effective physical
constraints such  as i
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non-negativity””’,  support’” ",
absorption™, histogram’', and atomicity”. These constraints
are typically enforced via projections in the complex
Euclidean space, and the corresponding phase retrieval
algorithms proceed by projecting the estimated wavefield
back in an iterative manner . Since the seminal
Gerchberg-Saxton™ Fienup’s  error-reduction
algorithms™, iterative projection algorithms have played a
pivotal role in phase retrieval for decades” . However,
this classical approach relies on carefully handcrafted
physical constraints, which may fail to fully extract the
inherent features of complex scenes under limited
measurements, particularly in the case of single-shot phase
retrieval”. Consequently, it has mostly been demonstrated
for simple objects. The quantitative phase analysis of
complex samples, such as dense biological specimens,
remains a challenging task.

The concept of compressive phase retrieval was formally
established by an explosion of theoretical and empirical
studies following the development of compressed
sensing' . Sparsity priors in various domains such as the
spatial ™, gradient”™', wavelet” and other domains"** or
with a dictionary-learned transform”™™” have been
demonstrated as effective regularizers for phase recovery.
More recently, implicit image priors from advanced
denoisers such as BM3D" " or represented by deep neural
networks’™” have also been studied in the context of phase

and

retrieval, resulting in improved reconstruction quality.
Although the regularization techniques generally yield
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superior imaging performance, they are highly dependent
on the scene and may require manual fine-tuning to
achieve satisfactory results.

In pursuit of a compressive phase retrieval method for
in-line holography that features both robustness and high
fidelity, we propose a novel computational framework that
encapsulates physical constraints and sparsity priors as a
unified optimization problem. Specifically, we consider the
well-known absorption and support constraints and
gradient-domain sparsity, leading to a constrained complex
total variation (CCTV) model. This is because TV-
regularized problems can be solved using computationally
efficient algorithms and are thus highly scalable to large-
scale problems™”. The piece-wise smoothness underlying
the TV model can also characterize multidimensional data
such as the three-dimensional refractive index distribution,
offering good generalizability to various applications™”.
Furthermore, TV-regularized inversion algorithms offer
mathematically tractable convergence behaviors, which is
important for both theoretical soundness and practical
implementation.

Based on the CCTV model, compressive phase retrieval
is formulated as a regularized inverse problem and is
solved via an accelerated proximal gradient algorithm
together with an efficient denoiser for the proximal update.
Unlike conventional methods that rely on a heuristic basis,
we provide a rigorous analysis that
guarantees the convergence of the proposed algorithms
using prespecified parameters. We experimentally
demonstrated quantitative phase imaging of various
samples from a single in-line hologram, illustrating the
effectiveness of the CCTV model in characterizing
complex real-world scenes while leveraging physically
tractable constraints for quality enhancement. We further
elaborate on algorithmic behaviors based on extensive
numerical studies, corroborating the theoretical results
while providing general guidance for practitioners.

mathematical

Results

Phase retrieval via CCTV

For electromagnetic waves at optical frequencies,
sensors can only respond to the average power of the
incident wavefield. Thus, phase information, i.e., the
complex argument of the signal, is lost during the
measurement process. The forward model can be abstractly
expressed, regardless of the imaging configuration, in a
vectorized form as

y =|Ax| (1

where y € R™ is the observed measurement, A € C™" is the
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sampling matrix, and x € C" is the underlying complex
signal that represents the transmission of the object. In the
vectorized formulation, column vectors x and y are raster-
scanned from the corresponding two-dimensional complex
object transmission function and hologram amplitude,
respectively. It is important to note that, the purpose of
vectorization is to simplify the algorithm derivation and
notations. Vectorization is not required when implementing
the algorithm in practice.
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Generally, the sampling matrix may involve various
linear physical processes such as probe illumination, free-
space propagation and mask modulation, all of which are
determined by the optical configuration of the imaging
system. In this work, we consider the lensless in-line
holographic imaging model for illustration, which is shown
in Fig. la. The object is illuminated by a coherent plane
wave, such that the retrieved complex field directly reveals
the absorption and phase shift introduced by the object. An
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Signal priors
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Fig. 1 Schematic of the proposed compressive phase retrieval framework. a The optical configuration of an in-line holographic imaging system.
b The angular spectrum diffraction model adopted for numerical calculation. The diffraction angle 6 and the corresponding convolution kernel size
are determined by the sampling frequency (or, equivalently, the sensor pixel size). ¢ Physical knowledge, such as object support or absorption, is
often enforced as hard constraints via projection operations. d The complex TV regularizer promotes sparsity in both the gradients of amplitude
and phase. e We combine the forward model and signal priors into an optimization problem, which is solved via the proximal gradient method. An
iterative denoiser is introduced for the proximal update step. f Retrieved phase from experimental data. Combining physical constraints and
gradient sparsity yields the best performance.
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imaging sensor was placed close to the object, and the in-
line hologram was recorded. Such a simple optical
configuration enables low-cost and portable system design
for various imaging applications'”*'"". The physical process
involves only free-space propagation of the wavefield,
which is calculated using the angular spectrum method'”.
Therefore, the sampling matrix of our imaging model can
be expressed as

A=C0 2

where Qe C™ denotes the free-space propagation
operator calculated as a circular convolution with the
Fresnel kernel via fast Fourier transforms (FFTs), C € R™"
denotes an image cropping operation to model the finite
size of the imaging sensor'”. Notice that we have m < n,
that is, the object dimension is larger than the pixel number
of the sensor. This is because out-of-field objects may also
contribute to the recorded image owing to the linear
convolution effect™. This process is illustrated in Fig. 1b.

Phase reconstruction from a single in-line hologram is
inherently challenging due to the existence of ambiguous
solutions. Therefore, compressive phase retrieval takes an
inverse problem approach that utilizes regularization
techniques to ensure well-posedness. In this work, we
introduce the integration of a complex TV and a hard
constraint as the regularizer, leading to an optimization
problem in the following form:

1
min > lAx] = yIl5 + AlIDx|; + Ic(x) (3)
F(x) R(x)
where ||-]|, denotes the £, vector norm or the

corresponding matrix norm. F(x) is the data-fidelity term
and R(x) is the regularization term. The fidelity term
ensures that the solution does not deviate significantly from
the forward model in Eq. 1. Meanwhile, the regularization
term introduces additional prior knowledge of the
wavefield to improve the reconstruction quality further.
There are various choices for the fidelity function F(x)
in the phase retrieval literature, such as the intensity-based
formulation  F(x) = (1/2)||AxP —y*[?""" and the
amplitude-based formulation F(x)=(1/2)||Ax|—y|?"""".
The main reasons for choosing the amplitude-based
residual here are threefold. First,
perspective, it is closely related to the maximum likelihood
estimation under Poisson noise, which captures the noise
statistics more accurately than the Gaussian noise model'".
Second, on the practitioner’s side, using the amplitude-
based formulation ensures the convergence of the iterative
algorithms with a prespecified algorithm step size,
obviating the need for complicated line searches and

from a physical
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simplifying the implementation. Third, many empirical
studies have observed faster convergence when minimizing
amplitude-based fidelity functions' """,

The proposed regularization function R(x) comprises
two separate terms. The first term is the sparsity regularizer
with the parameter A > 0. Specifically, we considered the
anisotropic complex TV seminorm:

IDx]l; =TV(X)
ne=1 n, ne n,—1
= Z Z [ Xis1,j=Xi 1 + Z Z 1Xijoi=Xisl (4
=1 j=1 i=1 j=1

where X € C"*™ with ngn, = n denotes the non-vectorized
two-dimensional image corresponding to x. D € C*"
denotes the spatial finite-difference operator for the
vectorized x along the two directions. As shown in Fig. 1d,
the complex TV reveals both the amplitude and phase
variations between adjacent sampling points of the object
transmission function and thus serves as a good sparsifying
transform for complex-valued images'”. Apart from the
complex TV, we introduce a second regularizer I-(x),
which is an indicator function of the constraint set C. This
is motivated by conventional iterative projection (IP) phase
retrieval algorithms, where phase retrieval is formulated as
a feasibility problem, and the unknown field distribution is
assumed to belong to certain physical constraint sets. The
IP algorithms typically proceed by projecting the estimated
wavefield onto constraint sets in an iterative manner .
Here, we consider the support and absorption constraints in
particular because they are commonly adopted for
reconstructing complex objects, and their corresponding
constraint sets are both convex.
conceptual illustration of these physical constraints, and the
mathematical definitions are presented in Table 1. The
proposed regularizer R(x) comprises a complex TV and a
hard physical constraint and is thus termed the constrained
complex total variation regularizer. As a special case, when
C=C" CCTV reduces to the complex TV function
without physical constraints, and when 4 = 0, it reduces to

Fig. lc presents a

Table 1 Physical constraints for phase retrieval

Constraint Definition of C Projection X' = Pc(x)
0, ieP
Support = = >
pp x0l,=0 X { . igP
) x: /x|, k] >1
Absorption < = e !
i S { %o i<l

' The symbol ® denotes the element-wise (Hadamard) multi=
plication operator. 0 and 1 denote the zero vector and all-ones
vector, respectively. P denotes the set of pixels outside the
support region, and 1p denotes the indicator vector of P.
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the classical problem of phase retrieval from a modulus
measurement and a physical constraint.

Quantitative phase imaging applications

We built a proof-of-principle in-line holographic
imaging system for optical experiments, as shown in
Fig. 2a. A 660 nm diode-pumped solid-state laser (Cobolt
Flamenco 300) was used as the source for coherent
illumination. The optical beam generated by the laser
passes through a spatial filter that comprises an objective
lens and a pinhole at the back focal plane. The filtered

wave was then collimated using a convex lens to illuminate
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the object. The diffraction pattern was recorded using a
CMOS sensor (QHY174GPS, pixel size 5.86 pm,
resolution 1920x%1200) which was placed a few millimeters
away from the object. The captured raw intensity image
was then digitally processed using a personal computer for
holographic reconstruction. In all optical experiments, we
consider only the absorption constraint because the objects
have extended field distributions and thus the support
constraint is inapplicable. Before running the iterative
phase retrieval algorithm, a preprocessing step is required
to determine the imaging distance, which can be achieved
by either manual tuning or using some autofocusing
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Fig. 2 Experimental characterization of a fabricated phase plate. a Optical setup of the in-line holographic imaging system. b and ¢ show the
captured in-line holograms of two transparent patterns. The inset shows an image of the phase plate. d and e show the reconstructed phase
distribution from b and ¢, respectively. The white solid rectangle in d indicates the sensor’s field of view. f and g visualize the rendered surface
profiles and the cross-sectional height profiles of d and e, respectively. The white dashed rectangles indicate the enlarged areas, and the yellow
dashed lines indicate the cross-sections. The same applies to other figures.
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algorithms''“""°.  Each captured intensity image is

normalized by the background image which is obtained
using the same experimental conditions, only with the
object removed. This calibration process ensures the
validity of the absorption constraint™.

We demonstrated the quantitative phase imaging
capability of the proposed compressive phase retrieval
method for real-world objects. Fig. 2 shows the imaging
results of a phase plate, which was fabricated by etching
multiple self-designed binary patterns onto a JGS1 quartz
glass substrate. The retrieved phases of the spiral pattern
and Fresnel zone plate are in Fig.2d, e,
respectively. Smooth staircase profiles with sharp edges
can be accurately retrieved. Artifacts on the surface were
preserved, indicating a high spatial resolution. Given that
the object has a uniform refractive index distribution and
that the fabricated features lie only on the surface of the
substrate, the surface profiles can be directly calculated and
characterized with knowledge of the medium refractive
index, as shown in Fig. 2f, g. It is important to note that
recovering the inherently
challenging for the in-line configuration because the weak
phase transfer function diminishes to zero together with the
spatial frequency'’. Hence, slowly varying phase structures
hardly contribute to the intensity variations at the sensor
plane, rendering them particularly difficult to recover. This
has been the main drawback for in-line holography
compared to off-axis holography'*'”. Our findings suggest
that the CCTV regularizer may be a competitive solution
for this problem. In addition, because we have addressed
the issue of the circular convolution model, the retrieved
image is free from boundary artifacts, and the object
distribution outside the sensor area can be partially
recovered, as shown in Fig. 2d.

shown

low-frequency phase is
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We imaged a muscle tissue section to validate the
proposed method on complex objects, as shown in Fig. 3.
The twin image was effectively eliminated from the
amplitude phase, which visually
demonstrated the high-fidelity imaging performance of the
method. The retrieved phase reveals thickness variations
inside the tissue slice, facilitating label-free and low-cost
clinical studies or diagnoses'**"”'.

retrieved and

Ablation experiments

We conducted ablation studies based on experimental
data to quantify the performance improvements obtained
by the physical constraints and the complex TV regularizer
respectively.  For  comparison, we  implemented
compressive phase retrieval algorithms using only physical
constraints or gradient sparsity. The former, referred to as
the IP method, can be viewed as an accelerated variant of
the conventional iterative projection algorithm. This was
implemented by setting the regularization parameter A = 0.
The algorithm proceeds by iteratively minimizing the data-
fidelity function with a gradient descent step and enforcing
physical constraints with a projection step. The latter,
referred to as the CTV method, uses only the complex TV
regularizer without any physical i
implemented by defining the constraint set C = C" and thus
the projection onto set C is reduced to identity mapping.

Both the IP and CCTV methods can utilize various
physical constraints. To better differentiate among different
methods, we use the letter ‘A’ to represent the method that
uses the absorption constraint, the letter ‘S’ for the support
constraint, and ‘AS’ for both constraints. For example, ‘IP-
A’ represents an iterative projection algorithm that uses
only the absorption constraint.

We first performed phase imaging of a quantitative
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Fig. 3 Holographic imaging results of a muscle tissue section. a Experimentally recorded intensity image. The inset is an image of the sample
slide. b and c are the retrieved amplitude and phase, respectively.
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phase microscopy target (Benchmark Technologies) using
three methods, namely IP-A, CTV, and CCTV-A, as shown
in Fig. 4. Note that the object has an extended distribution
and thus the support constraint is inapplicable. The IP
algorithm fails to eliminate the twin-image artifact
completely, and the phase structures are not clearly
revealed, which implies that the physical constraint alone is
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insufficient to suppress the phase ambiguities. The CCTV
method achieved better imaging quality than CTV, as
illustrated by visual and quantitative comparisons. The
ground-truth phase values were calculated using the
structures’ height and medium refractive index, which are
both provided by the manufacturer. The root-mean-square
errors (RMSEs) of the cross-sectional phase profiles
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Fig. 4 Experimental comparison of different phase retrieval algorithms with a quantitative phase resolution target. a Full field-of-view phase
reconstruction by the proposed CCTV-A method. b The calculated surface profile corresponding to a. ¢, d and e show the retrieved phase and
height profiles by the IP-A, CTV, and CCTV-A methods, respectively. f The cross-sectional phase profiles, where the dashed line indicates the
calculated theoretical phase value.




Gao et al. Light: Advanced Manufacturing (2023)4:6

retrieved using the IP-A, CTV, and CCTV-A methods were
0.880, 0.463, and 0.418 rad, respectively. In addition, the
finest resolved features of the USAF 1951 resolution target
are highlighted. Group 6, Element 3 is resolved by all three
methods, indicating a spatial resolution of 80.6 lines/mm,
which agrees with the maximum resolution of 85.3
lines/mm of the sensor. All three methods achieve the same
sampling-limited resolution, which implies that the TV-
based regularizer does not sacrifice the spatial resolution
for quality enhancement. The resolution can be further
improved beyond the Nyquist sampling limit, however, if
one takes into account the down-sampling effect of the
sensor pixels'>"*",

Similar improvements in the CCTV method over the IP
and CTV methods were also observed in the imaging
results of an amplitude object. Fig.5 compares the
amplitudes of a positive 1951 USAF test target (Thorlabs,
Inc.) retrieved by the IP-A, CTV, and CCTV-A methods.
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Quantitatively, the RMSEs of the retrieved amplitude
profiles 1/2 in Fig. 5d are 0.331/0.338, 0.240/0.239,
0.238/0.232 for the IP-A, CTV and CCTV-A methods,
respectively. Furthermore, as indicated by a qualitative
visual comparison, the IP method suffers from high
reconstruction noise, and the CCTV model improves the
performance of CTV by suppressing artifacts with no loss
of spatial resolution.

Materials and methods

The proximal gradient framework

In the regularized inverse problem of Eq. 3, the fidelity
function F(x) is a (almost everywhere) differentiable
function whereas the regularizer R(x) is
differentiable function. Because we are dealing with real-
valued functions over complex-valued variables, CR-
calculus is adopted'”’. The gradient of F(x) is given by'"”

a non-
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Fig. 5 Experimental comparison of different phase retrieval algorithms with an amplitude resolution target. a, b and ¢ show the retrieved amplitude
using the IP-A, CTV, and CCTV-A algorithms, respectively. The inset indicates the finest structures resolved by the corresponding method. Below

are the corresponding enlarged areas. d Cross-sectional profiles.
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VR = Al 45 Jax-n
where (-)!' denote the conjugate transpose (Hermitian)
operator. Non-smoothness only occurs when Ax has zero
entries, which, as we will show below, does not affect the
algorithm’s convergence behavior.

The difficulty in minimizing the objective function
mainly arises from the non-differentiability of R(x). The
proximal gradient method provides a general framework
for solving composite non-smooth optimization problems
in the form of Eq. 3 by minimizing the non-differentiable
R(x) via its proximal operator prox.,, which is defined as™

) 1
Prox,,(v) = arg)rrnmR(x) + lex -3 (6)

where y > 0 is the step size. Notice that Eq. 6 coincides
with an image denoising problem, with R(x) serving as a
regularization function. For the CCTV regularizer, the
denoising subproblem can be solved efficiently using the
gradient projection algorithm introduced in the next
subsection. The proximal gradient algorithm proceeds by
iteratively applying a gradient update and proximal update.
A variant using the Nesterov’s acceleration technique was
adopted'”, as shown in Algorithm 1. The accelerated
proximal gradient (APG) algorithm is also known as the
fast iterative shrinkage thresholding algorithm (FISTA)".
APG is well known for its superior convergence speed over
the basic proximal gradient algorithm in the convex setting.
Through numerical studies, we empirically demonstrate
that it also helps to speed up convergence for the
nonconvex phase retrieval problem.

Algorithm 1 Accelerated proximal gradient algorithm

Input: Initial guess x©@, step size y, 8, =t/(z+3), and iteration
number T.

1: 4©® = x©

2:fortr=1,2,....,T do

3: v® =u=D v, Fu) > Gradient update

4: x® = prox, (") > Proximal update via Alg. 2
5: u® = x® +/5,(x(’) _x(r—l))
6: end for

CCTV denoising algorithm

The proximal update step in Eq. 6 involves solving a
CCTV-regularized image denoising subproblem. It is a
convex optimization problem when C is closed and convex.
No exact closed-form solution to this problem is available.
Thus, an iterative solver should be invoked at every
iteration. We followed the approach proposed in Refs.
95,131 and consider solving the primal problem via its
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dual, which is given by
min {Gow) = ~|[He v =y D*w)ll5 +IIv =y D"wi5) @)
weS
where wec? denotes the dual variable, Hc(x)%

x-Pc(x) with P¢ representing the Euclidean projection
operator on C, and S denotes the convex set which contains
all w e €2 that satisfy

[Wlleo < 2 ®

where |wll. = max;|w;l. As shown in the Supplementary
Document, the desired primal optimal solution x* is related
to the dual optimal solution w* through the following
equation:
x* = Pc(v—yDHw*) )
The problem of Eq. 7 can be effectively solved using the
gradient projection algorithm, where the dual variable is
iteratively updated by a gradient step followed by a
projection operation Ps(-) onto the set S. An accelerated
variant of the algorithm is presented in Algorithm 2. The
Wirtinger gradient of the dual objective function Gw) is
given by""
VwGw) = —yDPc(v —yD"w) (10)

Algorithm 2 Accelerated gradient projection algorithm

Input: Observation v, parameter vy, step size 7, 8, = t/(t +3), and
subiteration number Tgyp,.
1: w© =0, 70 = ©
cfort=1,2,...,Tqp do
w® = Ps (20°D —nV.G(zD))

2
3
4: 20 = w4 B, (w® — =D
5: end for

6

1 x=Pe(v—yDHywTsun))

Convergence analysis

In the above subsections, we introduce the proximal
gradient algorithm and the corresponding denoising
algorithm for the proximal update. We now show that the
algorithm parameters, namely the step sizes y and 5, can be
predetermined based on the measurement scheme and the
sparsifying transform.

Considering the nonconvexity of the problem of Eq. 3,
we present a weaker result by showing the convergence of
the basic (non-accelerated) proximal gradient algorithm,
which is summarized by the following theorem. The
detailed proof is provided in the Supplementary Document.
Furthermore,
demonstrated that the accelerated algorithm converges
following the same step size selection rule.

Theorem 1 The basic proximal gradient algorithm (with
B: =0 in Algorithm 1) for the problem of Eq. 3 converges to

extensive  numerical  studies  have
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a stationary point using a fixed step size y that satisfies

2

< (AR (b

Y

where p(-) denotes the spectral radius.

The above theorem is an extension of the gradient
descent algorithm'” to the more general class of the
proximal gradient algorithms.

The sampling matrix A4 depends only on the physical
model. Thus, the step size can be known a priori. Recall
that the sampling matrix comprises a circular convolution
operator @ and an image cropping operator C. Circular
convolution can be efficiently calculated via FFTs as
Q = F'diag(h)F, where F is the Fourier matrix and # is the
transfer function. Note that |r/=1. Thus, Q is a unitary
matrix that satisfies Q"Q = I, where 1 is the identity matrix.
It can be easily verified that p(A"A4) < 1, which, according to
Theorem 1, implies that we should use step size y=2 for
the proximal gradient algorithm. This choice of step size is
in fact nontrivial and generally applicable to any passive
measurement scheme.

The next theorem establishes the convergence of the
accelerated gradient projection algorithm to solve the
convex denoising subproblem via its dual (Eq. 7). The
proof can be found in the Supplementary Document.

Theorem 2 Assuming that the constraint set C is closed
and convex, the accelerated gradient projection algorithm
for the problem of Eq. 7 converges to the global optimum
using a fixed step size n that satisfies

1

< 20" D) (12)

n

Theorem 2 suggests that the step size for the denoising
algorithm can also be determined beforehand based on y
given by Theorem 1 and the sparsifying transform p.
Specifically, for the finite-difference operator, we show in
the Supplementary Document that p(DHD)<8, which,
together with y =2, suggests » = 1/32 for this particular case.
The convergence established by Theorem 1 assumes that
an exact solution to the denoising subproblem is obtained
at each iteration. The algorithm may converge to a
suboptimal solution when the proximal update is inexact,
as with the CCTV regularizer. Readers can refer to Ref.
133 and references therein for convergence results
regarding inexact proximal gradient algorithms. Therefore,
the iteration number used for the gradient projection
algorithm should be chosen as a balance between
reconstruction quality and computation efficiency.

Discussion
We performed numerical studies based on the same in-
line holographic imaging model as described in the
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experiment section to quantitatively evaluate the
algorithmic behaviors and further shed light on our
empirical observations and theoretical results. The

wavelength was set to 500 nm, the pixel size was 5 pm,
and the imaging distance was 5 mm. Eight standard test
images of size 256x256 were used to generate the virtual
phase objects for the simulation. The phase of the object
was assumed to have a range of [0,7]. The objects have a
uniform amplitude distribution and were zero-padded to
avoid boundary artifacts. Additive white Gaussian noise
was added to each hologram such that the signal-to-noise
ratio (SNR) was 20 dB by default. We calculated the phase
RMSE as a metric to quantitatively compare the
reconstruction quality of different methods.

In all numerical studies, the algorithms were initialized
with an initial estimate of x© = AHy. The algorithms were
implemented using MATLAB on a personal computer with
Core i7-11700F CPU @ 2.50GHz (Intel) and 16 GB of
RAM. The MATLAB code is publicly available in Ref.
134.

Hyperparameter selection

We first investigated the influence of the subiteration
number Ty, of the gradient projection denoising algorithm
on the convergence of the proximal gradient algorithm. As
previously pointed out, Ty, is a key hyperparameter that
should be determined beforehand. We ran the APG
algorithm for 1000 iterations using different Ty, values
ranging from one to ten. Meanwhile, four regularization
parameters, 1=1x1073, 3x1073, 1x1072, and 3x 1072 were
considered for comparison. To quantify the convergence
behavior of the inexact APG algorithms, we calculated the
relative error of the final objective function value for each
Ty relative to that with Ty, = 10. Fig. 6a indicates that the
relative error decreases monotonically as Ty,;, increases, and
thus, a more accurate proximal update can be obtained by
increasing the number of subiterations. We empirically
selected the smallest 7, that yielded an error below 1% as
the optimal choice. Another observation made from Fig. 6a
is the dependence of Ty, on regularization parameter 1. As
A increases, one needs more subiterations for the denoising
algorithm to obtain an adequate solution. This seems quite
natural, considering the nonlinear nature of the denoising
operation. A larger 4 imposes a stronger regularization
force on the image, thus requiring more linear iterative
steps to approximate the solution.

Another hyperparameter of great importance is the
regularization parameter 1, which offers a tradeoff between
model consistency and signal priors. We compared
different selections of 4 in terms of both the reconstruction
quality and computational efficiency. Fig. 6b plots the
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convergence curves against runtime, where the optimal Ty,
was used for each A, that is, Tgp =1 for 1=1x1073, Ty =2
for 1=3x1073, Typw=5 for A=1x102, and Ty,=8 for
1=3x10"2. A larger regularization parameter can help
accelerate the convergence at the beginning stage.
However, the final result tends to be over-smoothed, as
shown in Fig. 6¢. Therefore, we set 1= 1x10"2 for balanced
performance in terms of speed and accuracy.

Comparison of physical constraints

Having determined the optimal hyperparameters for the
complex TV, we evaluated the effect of incorporating
additional physical constraints. Fig. 7 shows the results
obtained wusing no constraints, support constraint,
absorption constraint, or both. For the support constraint,
the support region was set to the central 256 x256 pixels of
the image. The introduction of the absorption constraint
can significantly improve the overall quality, while the
support constraint can help suppress artifacts at the
boundaries. Incorporating physical constraints also helps
accelerate convergence.

Influence of measurement noise

The inherent ill-posedness of single-shot phase retrieval
leads to high sensitivity to measurement noise. To
quantitatively compare the phase reconstruction quality
under noisy conditions, we added different levels of
additive white Gaussian noise with an SNR ranging from 5

to 30 dB to the simulated hologram, as shown in Fig. 8a.
The corresponding phases retrieved by the CCTV-AS
method are presented in Fig. 8c. The CCTV method can
achieve high-quality phase retrieval under moderate-noise
conditions. However, when the hologram is severely
degraded by measurement noise, a larger regularization
parameter A is required to suppress reconstruction artifacts.
The retrieved phase may then exhibit a staircase artifact
when the regularization parameter is too large, which is an
inherent problem for TV-based regularizers. Therefore,
more advanced image priors are required to achieve better
reconstruction quality under noisy conditions.

Generalization to different scenes

To further examine the generalizability of the CCTV
model, we tested the algorithm on various test images and
compared it with IP and CTV methods. The results are
shown in Fig. 9. The conventional IP algorithm generally
suffers from a high reconstruction error because the
physical constraints alone are insufficient to suppress the
twin-image artifact. On the other hand, the CTV model
often yields visually appealing results, yet its performance
is highly dependent on the sparsity of the scene. For
example, the CTV model tends to perform well for scenes
with very sparse gradients, such as the House image, but it
may be unsuitable for retrieving complex scenes, such as
the Goldhill and Mandrill images. In all cases, the CCTV
model offers the best reconstruction quality owing to the
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calculated phase RMSEs are shown below.
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number. b The upper and lower rows show the reconstructed phase after 200 iterations and the corresponding phase residuals, respectively. The

B 17

SNR.= 30 dB

0.0699 rad 0.1045 rad

| ks

Fig. 8 Effect of measurement noise on reconstruction quality. a Simulated noisy holograms with different SNRs. b Corresponding enlarged areas
of a. ¢ Retrieved phase by the CCTV-AS method. d Phase residuals of ¢. The calculated phase RMSEs are shown below.
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combination of sparsity priors and physical constraints. We
also set 1=1x10"2 as fixed throughout the simulation
experiments. This implies that the selection of 1 is not very
sensitive to the scene content.

Nesterov acceleration for nonconvex optimization
We also empirically validated the effectiveness of
Nesterov’s method for the nonconvex phase retrieval

problem by comparing the APG algorithm with the non-
accelerated version in both unconstrained and constrained
cases, as shown in Fig. 10a, b, respectively. Nesterov’s
method significantly improved the convergence speed in
both cases. The APG algorithm involves only an additional
extrapolation step per iteration, whose time consumption is
negligible compared with the gradient and proximal update
steps. The empirical success of Nesterov’s method can be
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Fig. 10 Convergence of the proximal gradient (PG) algorithm and its
accelerated variant (APG) in a unconstrained case and b constrained
case.

explained partly by the similarity between the amplitude-
based fidelity function and the convex least-squares

formulation'”.

Conclusion

We have proposed a unified compressive phase retrieval
framework for in-line holography that combines the
complex total variation and physical knowledge of the
wavefield. The resulting CCTV model can characterize the

sparse nature of complex real-world scenes while
leveraging physically tractable constraints to further
improve imaging quality, as confirmed by both simulated
and optical experiments. In addition, we conducted a
detailed theoretical mathematical
viewpoint, which provides general guidance for algorithm
parameter selection to ensure convergence, obviating the
need for laborious manual tuning. We emphasize that the
proposed framework is generally applicable to various
optical configurations and can easily adapt to other
physical constraints and sparsifying operators.

Although  numerically extending the proposed
algorithmic framework to coherent diffraction imaging is
straightforward, retrieving complex-valued images from a
single far-field diffraction pattern remains challenging.
Future work will explore more advanced image priors that
enable snapshot coherent diffraction imaging of complex

analysis from a

samples'”. Another direction for future research is to
achieve quantitative phase imaging of objects with a large
phase shift, as only weak phase objects have been tested in
this work. Comparison of the proposed method with other
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existing quantitative phase imaging methods also remains

36,137

to be studied in the future'
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