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Abstract
Dwell time plays a vital role in determining the accuracy and convergence of the computer-controlled optical
surfacing process. However, optimizing dwell time presents a challenge due to its ill-posed nature, resulting in
non-unique solutions. To address this issue, several well-known methods have emerged, including the iterative,
Bayesian, Fourier transform, and matrix-form methods. Despite their independent development, these methods
share common objectives, such as minimizing residual errors, ensuring dwell time’s positivity and smoothness,
minimizing total processing time, and enabling flexible dwell positions. This paper aims to comprehensively
review the existing dwell time optimization methods, explore their interrelationships, provide insights for their
effective implementations, evaluate their performances, and ultimately propose a unified dwell time optimization
methodology.
Keywords: Dwell time optimization, computer-controlled optical surfacing, finishing, polishing, and optical
fabrication

Abbreviations
CCOS: Computer-controlled optical surfacing; EUV: Ex-
treme ultraviolet; CA, Clear aperture; CAM: Computer-
aided manufacturing; FIM, Function-form iterative method;
FTM, Fourier transform method; RIFTA, Robust iterative
Fourier transform-based dwell time optimization algorithm;

RISE, Robust iterative surface extension dwell time opti-
mization algorithm; MIM: Matrix-form iterative method;
TSVD: Truncated singular value decomposition; LSQR:
Least-squares with QR factorization; LSMR: Least-squares
with MR factorization; CLLS: Constrained linear least-
squares; UDO: Universal dwell time optimization method;
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NSO, Non-sequential optimization.
1 Introduction
Over the past decade, precision machining technologies
have rapidly developed, resulting in the increased amount of
high-end optics in various applications such as telescopes
for space exploration [1, 2], extreme ultraviolet (EUV)
lithography systems [3, 4], synchrotron radiation and free-
electron laser beamlines [5, 6], and more. These optics
require stringent specifications on surface precision and as-
pherical surface shapes to better compensate for aberrations
[6] and adapt to compact designs [2, 7], which has led to the
invalidation of conventional mechanical polishing methods
and the emergence of computer-controlled optical surfacing
(CCOS) technologies [8, 9]. Nowadays, most precision
optical surfaces are manufactured using CCOS processes,
which rely on computer control of machine tools to correct
errors on an optical surface in a deterministic manner. The
machine tool used in CCOS systems is much smaller than
the clear aperture (CA), or effective area, within an optical
surface, effectively reducing any local errors with feature
sizes smaller than the machine tool stroke.

Since its inception by Jones in the 1970s [10], numerous
CCOS processes have been developed, including small-
tool polishing [11, 12], bonnet polishing [13, 14, 15],
magnetorheological finishing [16, 17, 18], ion beam figuring
(IBF) [19, 20, 21], and fluid jet polishing (FJP) [22, 23, 24].
The choice of CCOS processes largely depends on the
precision and target shape of the optical surfaces.

A typical CCOS process comprises a metrology-and-
fabrication loop, as illustrated in Fig. 1, where x = (𝑥, 𝑦)
is the surface coordinates. During the metrology phase,
the actual surface shape 𝑧𝑎 (x) is measured. The current
surface error 𝑧𝑒 (x) is calculated as the difference between
𝑧𝑎 (x) and the target surface shape 𝑧𝑡 (x). Combined with
the Tool Influence Function (TIF) 𝑟 (x) extracted from the
machine tool and the pre-defined tool path u = (𝑢, 𝑣), a
dwell time distribution 𝑡 (u) is calculated, which is then
converted to and fed as velocities 𝑣 (u) in a Computer-Aided
Manufacturing (CAM) software. This velocity distribution
is then utilized to estimate the residual error 𝑧𝑒𝑠𝑡𝑟 (x) and
guide the motion of the machine tool over the optical surface
to remove material. After each machining cycle, a new
𝑧𝑒 (x) is measured and compared to 𝑧𝑒𝑠𝑡𝑟 (x) to confirm
the convergence of the process and determine if the target
residual error requirement is satisfied.

As shown in Fig. 1, the dwell time quality directly
impacts the accuracy and convergence of a CCOS process.
The dwell time solution is derived from Preston’s equation
[25], which models material removal per unit of time as

¤𝑧 (x; 𝑡) = 𝜅 · 𝑠 (x; 𝑡) · 𝑓 (x; 𝑡) (1)

where ¤𝑧 (x; 𝑡) is the partial derivative of 𝑧(x; 𝑡) with
respect to 𝑡, 𝜅 is the Preston constant determined by the
process parameters such as the material of the surface

and abrasives, 𝑠 (x; 𝑡) and 𝑓 (x; 𝑡) are the pressure and
relative velocity between the tool and the workpiece at
the point x. By integrating Eq. (1) with respect to time
and treating 𝜅 · 𝑠 (x; 𝑡) · 𝑓 (x; 𝑡) as a static TIF, in which
𝑡 can be neglected, i.e. 𝑟 (x) = 𝜅 · 𝑠 (x) · 𝑓 (x), a two-
dimensional (2D) convolutional material removal model
[8, 10] is obtained, where the removed material 𝑧 (x) is
modeled as the convolution between the static TIF 𝑟 (x) and
the dwell time 𝑡 (x), given by:

𝑧 (x) = 𝑟 (x) ∗ ∗𝑡 (x) (2)

where “∗∗” denotes the 2D convolution operation. Equation
(2) is also called a linear and shift-invariant system, where
the TIF is assumed to be temporally and spatially stable,
and the material removal is linear with respect to the
dwell time. Replacing 𝑧 (x) by 𝑧𝑒 (x) in Eq. (2), 𝑡 (x)
can be estimated through deconvolution. However, since
deconvolution is an ill-posed inverse problem without a
unique solution, 𝑡 (x) can only be obtained by optimization.
The field of 2D deconvolution has been widely explored in
image super-resolution [26] and restoration [27], and many
of the practical concepts have been applied to dwell time
optimization [10, 20, 28]. Nonetheless, as highlighted in
Fig. 1, dwell time optimization has specific objectives that
differ from those of image restoration and super-resolution.

• Accuracy: Image restoration and dwell time opti-
mization approaches aim to minimize the residual
error between the actual signal and the deconvolved
signal. However, dwell time optimization focuses on
minimizing the residual error in the CA, [𝑧𝑒 (x) −
𝑟 (x) ∗ ∗𝑡 (x)]𝐶𝐴, where [·]𝐶𝐴 denotes an argument
in the CA.

• Feasibility: Two aspects should be considered to
make the optimization feasible for actual fabrication:
1) Positivity and dynamics limits considerations.
It is important to note that the dwell time 𝑡 (x)
should always be positive and constrained by 𝑡𝑚𝑖𝑛
and 𝑡𝑚𝑎𝑥 , where 0 < 𝑡𝑚𝑖𝑛 ≤ 𝑡 (x) ≤ 𝑡𝑚𝑎𝑥 ,
since most CCOS processes are material removal
processes. These constraints are unnecessary for
general image deconvolution. Also, the lower and
upper limits, 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 , respectively, indicate
that the optimization of dwell time must consider the
constrains of machine dynamics, such as maximum
speeds and accelerations [29, 30]. 2) Smoothness.
The restored image in image deconvolution contains
more details (i.e., higher-frequency components) than
the captured image. However, in the optimization of
dwell time, 𝑡 (x) must smoothly duplicate the shape
of 𝑧𝑒 (x) [31]. Any higher-frequency components are
not expected in a dwell time solution, as they may
result in frequent accelerations and decelerations that
could compromise the stability of the CCOS process
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Fig. 1. An iterative CCOS process is composed of metrology, machine tool influence function extraction, tool path
planning, dwell time optimization and CCOS machining.

[32]. These two aspects together define the feasibility
of a dwell time solution.

• Efficiency: Efficiency is composed of process effi-
ciency and computational efficiency. 1) Achieving
the target residual error with the shortest possible
total dwell time is crucial to ensure process efficiency,
particularly in large optics fabrication, which can take
months or years to complete [2]. 2) the computational
cost of obtaining a valid dwell time solution must also
be reasonable.

• Flexibility: As shown in Fig. 1, the dwell points
u are expected to be freely distributed over the
surface coordinates x. This is different from image
deconvolution, where the coordinates of the actual
image and the restored image overlap with each other.
The flexibility of having arbitrary dwell points is
essential, as it enables the usage of advanced tool
paths [33, 34, 35] to reduce the generation of periodic,
middle-frequency errors, which can be hard to remove
[36].

In actual CCOS processes, achieving all these objectives
simultaneously is challenging. The machine dynamics
constraints, for instance, can affect the accuracy of the
process since the planned dwell time may not be realizable
by the machine. While it is possible to optimize the
machining process for minimized middle-frequency errors
and maximum efficiency by carefully selecting the dwell
points, this may impact the overall accuracy and incur
additional computation cost. Therefore, a balance must be
struck among accuracy, feasibility, efficiency, and flexibility.

Researchers have proposed a range of dwell time
optimization methods to address the challenge of achieving

the various objectives in CCOS processes. We classify
these methods into two categories, namely the function-
form and matrix-form methods, as illustrated in Fig. 2. Each
category addresses different scenarios and distributions of
dwell points relative to the surface coordinate grid, x,
defined by the optical surface. The function-form methods
directly tackle the convolution function in Eq. (2) under
the assumption that the dwell points are distributed on the
same coordinate grid defined by the surface. The matrix-
form methods handle the cases in which the dwell points are
arbitrarily distributed by discretizing Eq. (2) as

𝑧𝑒
(
x 𝑗
)
=

𝑁𝑡−1∑︁
𝑖=0

𝑟
(
x 𝑗 − u𝑖

)
· 𝑡 (u𝑖) (3)

for 𝑗 = 0, 1, ..., 𝑁𝑧 − 1, where 𝑁𝑧 is the number of elements
in 𝑧𝑒

(
x 𝑗
)
, 𝑁𝑡 is the number of dwell points, u𝑖 is the 𝑖th

dwell point, and 𝑟
(
x 𝑗 − u𝑖

)
represents the material removed

per unit of time at the point x 𝑗 when the TIF dwells at
u𝑖 . Equation (3) indicates that the coordinates defining the
optical surface and dwell points can vary. It is usually
rewritten in a matrix form as

©«
𝑧𝑒0
𝑧𝑒1
...

𝑧𝑒𝑁𝑧−1

ª®®®®¬︸    ︷︷    ︸
ze

=

©«
𝑟0,0 𝑟0,1 . . . 𝑟0,𝑁𝑡−1
𝑟1,0 𝑟1,1 . . . 𝑟1,𝑁𝑡−1
...

...
...

...

𝑟𝑁𝑧−1,0 𝑟𝑁𝑧−1,1 . . . 𝑟𝑁𝑧−1,𝑁𝑡−1

ª®®®®¬︸                                             ︷︷                                             ︸
R

©«
𝑡0
𝑡1
...

𝑡𝑁𝑡−1

ª®®®®¬︸  ︷︷  ︸
t

(4)
where R is a rectangular matrix when the numbers of
elements in 𝑧𝑒 (x) and 𝑡 (u) vary. In this context, we refer
to the methods that manipulates the matrix R as the matrix-
form methods.

The function-form methods include the function-form
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Matrix-form: 𝐳𝒆 = 𝐑𝐭

Function-form: 𝑧𝑒(𝐱) = 𝑟(𝐱) ∗∗ 𝑡(𝐱)

BAM 𝑡𝑘+1 / 𝑡𝑘 → 1

FIM 𝑡𝑘+1 − 𝑡𝑘 → 0 

𝑡0(𝐱) = 𝛼 ⋅ 𝑧𝑒(𝐱)

FTM

𝑡 𝐱 = ℱ−1 𝑍 𝝎

𝑅 𝝎

𝑡 𝐱; 𝛾 = ℱ−1 𝑍 𝝎

𝑅 𝝎;𝛾
 

RIFTA

𝑡 𝐱; ො𝛾 = ො𝛾 ⋅ 𝑧(𝐱)
where

RISE

Ƹ𝛾 = argmin
𝛾

RMS 𝑧𝑒 − 𝑡 ∗∗ 𝑟 𝐶𝐴 

s.t min ∑𝑡 
 𝑡 ≥ 𝑡𝑚𝑖𝑛 

2) 𝑡𝑘+1 = RIFTA(𝑧𝑒
𝑘+1)

1) 𝑧𝑒
𝑘

𝐶𝐴 extended to 𝑧𝑒
𝑘+1 

𝐭0(𝐮) = 𝛼 ⋅ 𝐑T𝐳𝑒(𝐱)

𝐭𝑘+1 − 𝐭𝑘 → 0 

MIM

3) Repeat 1) & 2)

3) Repeat 1) & 2)

UDO

2) 𝐭𝑘+1 = ො𝛾𝑘+1 ⋅ 𝐑T𝐳𝒆
𝑘+1

1) 𝐳𝑒
𝑘

𝐶𝐴 extended to 𝐳𝑒
𝑘+1 

TSVD / LSQR

min
1

2
𝐳e − 𝐑𝐭 2 + 𝜆𝐭2

min 
1

 2
𝐳𝒆 − 𝐑𝐭 2 

s. t 𝑡𝑚𝑖𝑛 ≤ 𝐭 ≤ 𝑡𝑚𝑎𝑥

𝐀𝐭 < 𝐛 
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Fig. 2. Links among the existing dwell time optimization methods, where F −1 denotes inverse Fourier transform, 𝛼 and
𝛾 are constant scalars, and 𝝎 denotes the frequency components.

iterative method (FIM) [10, 37, 38, 39, 40, 41], Bayesian
method (BAM) [28, 42], Fourier transform methods (FTM)
[20, 38, 43], robust iterative Fourier transform-based dwell
time optimization algorithm (RIFTA) [44], robust iterative
surface extension-based method (RISE) [45], and others
[46, 47, 48]. The matrix-form methods comprise the matrix-
form iterative method (MIM) [49], Tikhonov-regularized
methods [11, 16, 17, 29, 30, 31, 50, 51, 52, 53, 54,
55, 56, 57, 58], constrained linear least-squares methods
(CLLS) [30, 59, 60], and universal dwell time optimization
method (UDO) [32]. Based on these matrix-form methods,
modeling the surface error using Zernike polynomials [61]
or B-splines [62] before dwell time optimization help
obtain smoother dwell time solutions while maintaining a
relatively sparser and more computationally efficient dwell
time solver. Although these methods were developed
independently and prioritized different objectives illustrated
in Fig. 1, they share similar principles and strategies.
This study aims to provide a comprehensive review by
exploiting the intrinsic links among the existing dwell
time optimization methods, providing insights on their
proper implementations, evaluating their performances, and
combining them to form a universal dwell time optimization
methodology. The reviewed methods are assessed with a
simulation study and an actual experiment, facilitating their
more straightforward application in various precision optical
fabrication processes.

The rest of this paper is organized as follows. Section
2 covers the function-form methods, providing a step-by-
step explanation of the principles, the connections among

different approaches, our insights on their optimized im-
plementations, and their performance evaluations. Section
3 then discusses the matrix-form methods in the same
manner. In Section 4, strategies used in existing methods
to achieve accuracy, feasibility, efficiency, and flexibility
are summarized, leading to the development of a complete
dwell time optimization methodology. Section 5 presents an
experiment applying all the reviewed methods in an actual
CCOS process, followed by a discussion on selecting a
proper dwell time optimization method in Section 6. Section
7 concludes the paper.
2 Function-form methods
The function-form and matrix-form methods are reviewed in
detail in Sections 2 and 3, respectively. The review process
thoroughly explains each method’s theoretical aspects,
followed by performance evaluation through simulation.
Fairness in this simulation is ensured through three aspects.

Firstly, as shown in Fig. 3(a), a ground-truth dwell time
solution 𝑡𝐺𝑇 (x) is generated using the first 144 Chebyshev
polynomials. The spatial resolution for x in 𝑡𝐺𝑇 (x) is set
as 0.36 mm and the size of 𝑡𝐺𝑇 (x) is 20 mm × 190 mm,
thus the number of dwell points is 56 × 525 = 29,400.
Considering the dynamics constraints of the machine, zero
dwell time cannot be implemented, and thus a 𝑡𝑚𝑖𝑛 of 1.4
ms, which is calculated based on the IBF machine dynamics
[21], is added to each point in 𝑡𝐺𝑇 (x). A Gaussian TIF 𝑟 (x)
with standard deviation of 𝜎 = 1.6 mm and a peak removal
rate (PRR) equal to 10 nm/s is given in Fig. 3(b), which
is convoluted with 𝑡𝐺𝑇 (x) to generate the nominal target
removal shown in Fig. 4(a). This target removal thus can
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be perfectly achieved by 𝑡𝐺𝑇 (x). The dwell time solutions
restored using different dwell time optimization methods
will be compared to 𝑡𝐺𝑇 (x).

Secondly, we add the middle-frequency error (MFE)
and high-frequency error (HFE) to the nominal target
removal to simulate their influence in restoring the dwell
time solution, as shown in Fig. 4(b). These errors are
extracted from a pitch-polished flat mirror using a high-
pass Gaussian filter with a cut-off wavelength of 10 mm,
equal to the TIF’s diameter. These MFE and HFE thus
cannot be corrected using this TIF with 𝑡𝐺𝑇 (x). All
the dwell time optimization methods are first applied to
the noise-free nominal target removal map to examine
their methodological performances, then their robustness
in handling MFE, HFE, and noisy data.

Lastly, to avoid the influence of edge effects [41], the
calculation area 𝑧𝑒 (x) is defined to be larger than the CA by
the radius of the TIF on each side of its perimeter, but only
the estimated residual errors in the CA are compared. All the
iterative dwell time optimization methods are kept running
until the absolute root mean square (RMS) difference
between the last two consecutive iterations is less than 0.01
nm. The results for each method will be demonstrated, both
with and without MFE and HFE.
2.1 Function-form iterative method (FIM)
The additive FIM (from now on referred to as FIM) was first
introduced to CCOS by Jones in 1977 [10], following Van
Cittert’s original proposal in 1931 [63]. In FIM, as shown
in Fig. 2, the initial guess to 𝑡 (x) is taken as

𝑡0 (x) = 𝛼 · 𝑧𝑒 (x) (5)

where 𝛼 > 0 is a scalar. The subsequent iterative updates of
𝑡 (x) take the form of

𝑡𝑘+1 (x) = 𝑡𝑘 (x) + 𝛽
[
𝑧𝑒 (x) − 𝑡𝑘 (x) ∗ ∗𝑟 (x)

]
(6)

where 𝛽 > 0 is a learning rate that controls the convergence
speed and 𝑘 ∈ Z. Equation (6) indicates that the new
dwell time distribution is updated using the residual between
𝑧𝑒 (x) and the convolution of the previous dwell time and the
TIF. As shown in Fig. 2, an absolute convergence is pursued
in the FIM, meaning that the difference between 𝑡𝑘+1 (x)
and 𝑡𝑘 (x) approaches zero at the convergence. However,
this update rule poses several challenges in attaining this
ultimate convergence.

Firstly, selecting parameters 𝛼 and 𝛽 is crucial for
accuracy and convergence speed. In the conventional Van
Cittert’s formula [63, 64], values of 𝛼 = 𝛽 = 1 were used
in many applications like image restoration, where pixel
intensity values are normalized to be within [0, 1] and the
actual and recovered images share the same unit. However,
in CCOS, 𝑡 (x) and 𝑧𝑒 (x) have different units (e.g., seconds
vs. nm). Therefore, using the unities for 𝛼 and 𝛽 is not
optimal [65]. Although 𝛼 = 1 was still used in the initial

CCOS process [10], it affects the dwell time accuracy and
slows down the convergence rate since 𝑡0 may be far from
the final solution. A better 𝑡0 in CCOS can be determined
by normalizing 𝑧𝑒 (x) by the volumetric removal rate (VRR)
of the TIF 𝑟 (x) [40, 41], which is defined as

VRR =

∫
Ω

𝑟 (x) 𝑑x (7)

where Ω is the area of the TIF. Note that in discretized
implementation of Eq. (7), x is sampled in the pixel
space by a measurement instrument equipped with a charge-
coupled device. Therefore, VRR can be approximated by
a summation of all the elements in 𝑟 (x). The initial dwell
time 𝑡0 (x) is then expressed as

𝑡0 (x) = 𝑧𝑒 (x)
VRR

(8)

where 𝛼 = 1/VRR. The philosophy behind this normal-
ization is that the VRR of 𝑟 (x) can also be written as
|𝑅 (𝝎 = 0) | where 𝑅 (𝝎) is the Fourier transform of 𝑟 (x),
which makes the use of Eq. (8) equivalent to using a
normalized 𝑟 (x) with

|𝑅 (𝝎 = 0) | =
∫
Ω

𝑟 (x) 𝑑x = 1

to generate the initial guess. Equation (8) ensures that the
volume of the deconvolved 𝑡0 is correct, which is critical
for the convergence of the subsequent iterative refinements
[64].

The convergence speed is controlled by the learning rate
𝛽, also called the over-relaxation parameter [40, 41, 65, 66,
67], for it improves the speed of convergence of Eq. (7) if
set correctly. It has been proven that the reasonable value
of 𝛽 ensuring the convergence is situated in the range (0, 2]
if the normalization in Eq. (8) is adopted [66, 67]. Finding
the optimal 𝛽 requires minimizing the maximum value of
|1 − 𝛽 · 𝑅 (𝝎) |, which results in 𝛽 = 2 for a low-pass system
with 𝑅 (𝝎) real and non-negative [67]. This is the first
merit of why a Gaussian 𝑟 (x) is preferred in CCOS: the
Fourier transform of a Gaussian TIF is still a Gaussian in
the frequency domain. However, in actual CCOS processes,
such an ideal TIF is rare, and 𝑅 (𝝎) is always complex, so
finding the optimal 𝛽 is rather complicated. To ease the
turning of 𝛽, an adaptive iteration scheme was proposed,
in which another parameter 𝜂 ∈ (0, 1) was introduced to
reduce 𝛽 [41] as

𝛽← 𝜂 · 𝛽 (9)

when Eq. (6) begins to diverge. In detail, 𝛽 is
initialized with a constant in (0, 2], usually with 𝛽 = 1
for the balance between the accuracy and convergence
speed. Afterward, during the iterative refinements, the
residual errors in the CA are estimated from the current
and previous dwell time distributions, which are defined
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Ground-truth dwell time 𝑡𝐺𝑇, ∑𝑡𝐺𝑇 = 177.07 [min](a)

10 mm (b) TIF, PRR = 10 nm/s

[n
m
/s
]

**

[n
m
/s
]

Fig. 3. The ground-truth dwell time 𝑡𝐺𝑇 (a) is generated by the first 144 Chebyshev polynomials. It is convoluted with a
Gaussian tool influence function (TIF) (b) to generate the nominal removal map used in the simulation.

CA (10 mm × 180 mm)

Nominal removal in the CA, RMS = 114.02 [nm]  (a)

CA (10 mm × 180 mm)

MFE & HFE in the CA, RMS = 0.96 [nm]  (b)[nm] [nm]

Fig. 4. The nominal target removal (a) generated using the dwell time and TIF shown in Fig. 3. The middle-frequency
error (MFE) and high-frequency error (HFE) (b) are extracted from a pitch-polished mirror and added to (a). The clear
aperture (CA) is taken to be smaller than the outermost perimeters of the nominal target removal map by the radius of the
TIF.

as RMS𝑘+1
𝐶𝐴

= RMS
[
𝑧𝑒 (x) − 𝑡𝑘+1 (x) ∗ ∗𝑟 (x)

]
𝐶𝐴

and
RMS𝑘

𝐶𝐴
= RMS

[
𝑧𝑒 (x) − 𝑡𝑘 (x) ∗ ∗𝑟 (x)

]
𝐶𝐴

, respectively,
are compared. If RMS𝑘+1

𝐶𝐴
≥ RMS𝑘

𝐶𝐴
, it indicates that

the iterative refinement process is diverging, and Eq. (9)
is executed to reduce 𝛽. The iterative update is then
retried with the new 𝛽 until either RMS𝑘+1

𝐶𝐴
< RMS𝑘

𝐶𝐴
or a

maximum number of trials is reached. As claimed in Ref.
[41], this adaptive scheme eliminates the need for manual
adjustment of 𝛽 and automates the FIM.

The impact of 𝑟 (x) on the convergence of FIM is also
worth exploring. From the comprehensive convergence
criteria related to 𝑟 (x) derived in Ref. [64], two crucial
necessary conditions (NC) can be summarized. Without
loss of generality, x = 0 is defined as the center of 𝑟 (x).

The first NC of the convergence requires that 𝑟 (x) has
a solid central peak, i.e., the maximum value of 𝑟 (x) must
occur uniquely at x = 0. This condition is expressed as:

NC1 : |𝑟 (x) | < 𝑟 (0) , x ≠ 0 (10)

The second NC demands that each even derivative of
𝑟 (x) should have its absolute extremum at x = 0, and
there should be no singularities in these even derivatives,
as indicated in Eq. (11):

NC2 :
���𝑟 (𝑛) (x)��� < ���𝑟 (𝑛) (0)��� , x ≠ 0, and ( 𝑗)𝑛 𝑟 (𝑛) (0) > 0

(11)
where 𝑟 (𝑛) (x) is the 𝑛th derivative of 𝑟 (x) for 𝑛 = 0, 2, 4, ...
and 𝑗 =

√
−1. Together, NC1 and NC2 result in the second

reason why a Gaussian TIF is ideal in CCOS processes: it
automatically satisfies both conditions.

A Gaussian TIF is a rotationally symmetric function
with respect to the central peak, and its even derivatives
are always continuous. To further illustrate this point,
Fig. 5 shows the one-dimensional TIF profiles of an ideal
Gaussian TIF versus other common TIFs found in CCOS
processes. The bonnet [58], spin [68], and fluid-jet [49]
TIFs violate NC1 since they either have a biased peak
location or peaks are not unique. The spin and orbital
[68, 69] TIFs do not satisfy NC2, as their functions end
abruptly, and the second derivatives are singular. The orbital
TIF is also a piecewise function with discontinuous even
derivatives at the transition points. All these aspects affect
the convergence of the iterative routine in Eq. (6). As shown
in the following sections, the other methods are derived from
FIM. Therefore, the convergence analysis described above
applies to those methods.

Finally, the refinement in Eq. (6) brings edge effects to
the final dwell time solution. As illustrated in Fig. 4, the
convolution 𝑡𝑘 (x) ∗ ∗𝑟 (x) is only well-defined in a region
which is at least smaller than the 𝑧𝑒 (x) by the radius of a
TIF on each side of its perimeter, denoted by [𝑧𝑒 (x)]𝐶𝐴.
Consequently, FIM yields large dwell time values along the
edges of the region, which can lead to inaccurate results. If
𝑧𝑒 (x) is defined as the entire area of the nominal removal
shown in Fig. 4, the ground-truth dwell time given in Fig.
3(a) will not be fully recovered by FIM. To avoid this issue,
it is necessary to choose a 𝑧𝑒 (x) that is at least larger than
the CA by the diameter (rather than the radius) of the TIF.
If the extra area is unavailable during measurement, surface
extrapolation [32, 45, 70, 71] is necessary to generate the
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Orbital TIF

Violate NC1 
in Eq. ( 10 )

Violate NC2 
in Eq. ( 11)

Fluid-jet TIF

Bonnet TIFGaussian TIF Spin TIF

Fig. 5. One-dimensional tool influence function
(TIF) profiles of the Gaussian, bonnet, spin, fluid-jet,
and orbital TIFs. The points that lead to divergence
are circulated.

missing data before applying the FIM. It is worth noting
that, in this study, to ensure fair comparison without edge
effects, we analytically extend the nominal removal maps
shown in Fig. 4 by the radius of the TIF on each side
before applying FIM. The same process will be used for
BAM, RIFTA and MIM. By implementing these measures,
the dwell time optimization methods reviewed in this study
will be more appropriately compared.

2.1.1 Implementation of FIM

Achieving the absolute convergence of FIM in actual CCOS
processes is challenging. To enhance the robustness of
FIM in practice, an optimized implementation of FIM is
demonstrated in Algorithm 1, which incorporates three key
strategies to ensure reasonable convergence.

Firstly, the adaptive parameter tuning approach [41] is
adopted, wherein the learning rate 𝛽 is reduced, and the
update refinement is retried when the routine begins to
diverge. In this study, 𝛽 and 𝛾 are initialized to be 𝛽 = 2
[67] and 𝜂 = 0.95 [41], respectively, as shown in Line 2 in
Algorithm 1.

Secondly, we introduce an early stop mechanism that
employs the desired error RMS 𝜖 as a threshold, as shown in
Line 7 of Algorithm 1. This mechanism was not mentioned
in the existing FIM methods. However, in practice, it helps
terminate the loop early if the current dwell time solution
is already satisfactory, offering two advantages. First, it

Algorithm 1: Implementation of FIM
1 procedure FIM(𝑧𝑒, 𝑟 , 𝜖 , 𝑁 = 20):
2 𝛽 = 2, 𝜂 = 0.95, 𝑘 = 0

3 𝑡0 ← 1/VRR · 𝑧𝑒 ; /* Eq. (8) */

4 while 𝑘 < 𝑁 do
5 𝑡1 ← 𝑡0 + 𝛽

[
𝑧𝑒 − 𝑡0 ∗ ∗𝑟

]
; /* Eq. (6) */

6 𝑡1
(
𝑡1 < 𝑡𝑚𝑖𝑛

)
← 𝑡𝑚𝑖𝑛

7 if RMS1𝐶𝐴 < 𝜖 then
8 𝑡0 ← 𝑡1

9 break
10 end
11 else
12 if RMS1𝐶𝐴 < RMS0𝐶𝐴 then
13 𝑡0 ← 𝑡1

14 end
15 else
16 𝛽← 𝜂 · 𝛽 ; /* Eq. (9) */

17 end
18 end
19 𝑘 ← 𝑘 + 1
20 end
21 return 𝑡0

prevents the dwell time solution from deviating significantly
due to the influence of noise when the number of iterations is
large. This merit ensures that the result remains reasonable
and is less susceptible to inaccuracies arising from noise
or other sources of variation. Additionally, the early stop
mechanism helps avoid unnecessary iterations, reducing the
computational burden and accelerating the convergence of
the optimization procedure.

Thirdly, following Ref. [41], a maximum number of
iterations 𝑁 is set to limit the total number of trials. If the
desired error RMS cannot be achieved after 𝑁 iterations, the
last (and best) dwell time solution is accepted.

The FIM implementation shown in Algorithm 1 achieves
improved convergence performance and robustness by
implementing these three strategies. Also, the convolution
in Line 5 in each iteration can be accelerated by a fast Fourier
transform (FFT) so that FIM is computationally efficient and
can be applied to large-scale problems in CCOS processes.

2.1.2 Performance evaluation of FIM

Algorithm 1 is first examined on the nominal removal shown
in Fig. 4(a) without MFE and HFE. The resulting dwell
time 𝑡𝐹𝐼𝑀 and estimated residual height error in the CA are
demonstrated in Figs. 6(a) and 6(b), respectively. After 20
iterations, 𝑡𝐹𝐼𝑀 closely replicates the shape of the nominal
removal, with only 0.4% longer than the ground truth. The
residual error in the CA is only 0.02 nm RMS, indicating
that FIM converged to the ground-truth solution in this MFE-
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HFE-free case.
When MFE and HFE were added, as shown in Figs. 6(c)

and 6(d), the calculated 𝑡𝐹𝐼𝑀 still replicated the shape of the
nominal removal and was close to the ground truth regarding
the total dwell time. However, the dwell time map shown
in Fig. 6(c) contained frequent spikes, as seen from the
one-dimensional profile at 𝑦 = 0, which indicates that MFE
and HFE lead to unsmooth dwell time. While it is possible
to correct the added MFE and HFE by this dwell time to
some extent, as shown in Fig. 6(d), this may not be practical
in actual CCOS processes since the spikes cause frequent
acceleration and deceleration, which can stress the machine
dynamics. A possible solution to mitigate the influence
of MFE and HFE is to stop the iterative routine early
once the gradients of the deconvolved dwell time exceed
a certain threshold. However, determining this threshold is
challenging, as it depends on the initial surface error and
TIF properties. The merits of FIM are its simplicity and the
well-studied convergence criteria, which lay the foundation
of the other more advanced dwell time optimization methods
that will be reviewed in the following sections.
2.2 From FIM to the Bayesian method (BAM): pursu-

ing relative convergence and modeling the noise
We move on from FIM to BAM. As illustrated in Fig. 2, the
main difference between FIM and BAM in their final formats
is that a relative convergence, 𝑡𝑘+1/𝑡𝑘 → 1, is pursued in
BAM instead of the absolute convergence, 𝑡𝑘+1 − 𝑡𝑘 → 0, in
FIM. This relative convergence form results from modeling
deconvolution as a Bayesian process. Specifically, in BAM,
the noise is modeled as a Poisson distribution, which
simplifies BAM and increases the smoothness of dwell time.
The principle behind BAM and its derivation are explained
in the rest of this section.

Due to the deconvolution problem’s ill-posed nature,
any measurement errors can be magnified and lead to
undesirable results, as illustrated in Fig. 6(c). To address
this issue, researchers in astronomy often employ statistical
estimation methods, such as BAM, for image restoration
purposes [72, 73, 74]. BAM, particularly the Richardson-
Lucy (R-L) algorithm [73, 74], was introduced to solve
dwell time for IBF in 2009 [28, 42]. BAM starts by
defining a prior distribution 𝑃 (𝑡) over the true dwell time
𝑡 (x), which incorporates the expected structure of the dwell
time. Additionally, the probability distribution of the target
removal 𝑧𝑒 (𝑥), given the true dwell time 𝑡 (x), 𝑃 (𝑧𝑒 |𝑡),
needs to be specified. Following the Bayesian paradigm, the
inference towards the true 𝑡 (𝑥) should be based on 𝑃 (𝑡 |𝑧𝑒),
which is defined as

𝑃 (𝑡 |𝑧𝑒) =
𝑃 (𝑧𝑒 |𝑡) · 𝑃 (𝑡)

𝑃 (𝑧𝑒)
∝ 𝑃 (𝑧𝑒 |𝑡) · 𝑃 (𝑡) , (12)

where 𝑃 (𝑧𝑒) is the marginal probability of 𝑧𝑒 (x) and can
be omitted as it is independent of 𝑡. Since the true dwell
time 𝑡 (x) is unknown, an estimate �̂� (x) can be obtained by

maximizing the posterior probability as

�̂� = argmax
𝑡

𝑃 (𝑡 |𝑧𝑒) = argmax
𝑡

𝑃 (𝑧𝑒 |𝑡) · 𝑃 (𝑡) (13)

which can also be expressed in the form of the minimum
negative log-likelihood as

�̂� = argmin
𝑡

𝐿1 (𝑡) = argmin
𝑡

[−log𝑃 (𝑧𝑒 |𝑡) − log𝑃 (𝑡)]
(14)

where 𝐿1 (𝑡) = −log𝑃 (𝑧𝑒 |𝑡) − log𝑃 (𝑡) is the loss function,
−log𝑃 (𝑧𝑒 |𝑡) is the data log-likelihood and −log𝑃 (𝑡) is a
penalty term. In R-L, a non-informative prior is assumed,
i.e., 𝑃 (𝑡) = const. Therefore, the second term in
Eq. (14) can be neglected. Furthermore, since most
metrology instruments use charge-coupled device detectors,
each component of 𝑃 (𝑧𝑒 |𝑡) is assumed to follow a Poisson
distribution with the parameter 𝑟 ∗ ∗𝑡 in R-L [28, 42, 72].
With this assumption, a loss function 𝐿1 is obtained from
Eq. (14) as

𝐿1 (𝑡) =
𝑀∑︁
𝑖=1

[(𝑟 ∗ ∗𝑡) − 𝑧𝑒 (x𝑖) · log (𝑟 ∗ ∗𝑡) − log 𝑧𝑒 (x𝑖)]

Since −log 𝑧𝑒 (x𝑖) is independent of 𝑡, it can be eliminated
from 𝐿1 (𝑡) and thus, the final 𝐿1 (𝑡) is written as

𝐿1 (𝑡) =
𝑀∑︁
𝑖=1

[(𝑟 ∗ ∗𝑡) − 𝑧𝑒 (x𝑖) · log (𝑟 ∗ ∗𝑡)] (15)

The optimization condition for Eq. (14) can be achieved by
making the gradients of Eq. (15) equal to zero as

∇𝐿1 (𝑡) = 𝑟★ ∗ ∗
[
1 − 𝑧𝑒

𝑟 ∗ ∗𝑡

]
= 0 (16)

where 𝑟★ (x) = 𝑟 (−x) is the adjoint of 𝑟 (x). Equation
(16) can be easily fed into a gradient-descent method with
𝑡𝑘+1 = 𝑡𝑘+𝛽·∇𝐿1 (𝑡), which is similar to the additive updates
introduced in FIM. Nevertheless, this method generates
negative values in each iteration, which should be reset
to 𝑡𝑚𝑖𝑛. This deviates the iteration point from the search
direction given by the gradient, and convergence is not
guaranteed [72]. Therefore, the R-L algorithm chose to
solve this problem multiplicatively. Dividing both sides of
Eq. (16) by the VRR of 𝑟 (x), it becomes

𝑟★

VRR
∗ ∗ 𝑧𝑒

𝑟 ∗ ∗𝑡 = 1 (17)

with (𝑟★/VRR) ∗ ∗1 = 1 (see Eq. (7)), which is also the
necessary step to preserve the volume of the initial dwell
time, as introduced in Section 2.1. Equation (17) results in
a multiplicative solution for the dwell time [28, 42] as

𝑡𝑘+1 = 𝑡𝑘 ·
(
𝑟★

VRR
∗ ∗ 𝑧𝑒

𝑟 ∗ ∗𝑡

)
(18)

with 𝑘 ∈ Z and 𝑡0 = 𝑧𝑒. The merit of Eq. (18) is that
the positiveness of the iterative updates is guaranteed if the
initial guess 𝑡0 is positive, which is usually achieved by
adding a constant piston term to offset 𝑧𝑒.
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𝑦 = 0

Dwell time, ∑𝑡𝐹𝐼𝑀 = 177.83 [min]

𝑦 = 0

Dwell time, ∑𝑡𝐹𝐼𝑀 = 178.93 [min]

[nm]Residual height error, RMS = 0.64 [nm]

(a)

[nm]Residual height error, RMS = 0.02 [nm](b)

(c)

(d)

Fig. 6. Dwell time and residual height errors calculated using FIM. (a) and (b) are the dwell time and residual height
errors without the middle-frequency error (MFE) and high-frequency-error (HFE), respectively. (c) and (d) are the dwell
time and residual height errors with MFE and HFE, respectively. It is evident that MFE and HFE result in unsmooth dwell
time.

2.2.1 Implementation of BAM

As suggested in Refs. [28, 42], to further smooth the dwell
time, a penalty term on the gradient of the dwell time was
introduced as

𝐿2 (𝑡) = 𝜁 ·
𝑀∑︁
𝑖=1

|∇𝑡 | (19)

where 𝜁 is a weighting parameter. Adding Eq. (19) to
Eq. (14) and applying the Euler-Lagrange equation [28],
the modified BAM iterations are deduced as

𝑡𝑘+1 =
𝑡𝑘

1 − 𝜁 · Δ𝑡𝑘

|∇𝑡𝑘 |
·
(
𝑟★

VRR
∗ ∗ 𝑧𝑒

𝑟 ∗ ∗𝑡

)
(20)

where Δ is the Laplace operator. However, in practice, we
found that 𝜁 is a hyperparameter that can be difficult to
adjust. As claimed in Ref. [28], a small 𝜁 has little effect on
the smoothness, while a large 𝜁 reduces the accuracy of the
dwell time. Additionally, we found that the positivity of the
dwell time in Eq. (20) cannot be automatically maintained,
and the search direction of the Bayesian function is biased,
leading to a lack of guarantee of convergence.

Therefore, in this study, the original R-L algorithm given
in Eq. (18) is implemented in BAM. As shown in Section
2.2.2, the Poisson distribution of the likelihood is already a
reasonable and smooth assumption for most optical surfaces.
We recommend that if the noise level is high, this likelihood
probability distribution needs to be redesigned [72] instead
of adding the penalty term given in Eq. (19).

Finally, to accelerate the convergence, we introduce
the over-relaxation parameter and adaptive update strategy
proposed in FIM [41] to BAM, as shown in Algorithm 2,
which is the same as Algorithm 1 except for Lines 1 and
5. In Algorithm 2, the two convolutions in Line 5 can
be accelerated by FFT. Moreover, as the adjoint operation
corresponds to the complex conjugate in the frequency

domain, the FFT of 𝑟 can be pre-computed. Therefore,
in each iteration, only two FFTs are required, which makes
BAM a computationally efficient algorithm as FIM.

Algorithm 2: Implementation of BAM
1 procedure BAM(𝑧𝑒, 𝑟 , 𝜖 , 𝑁 = 20):
2 𝛽 = 2, 𝜂 = 0.95, 𝑘 = 0
3 𝑡0 ← 𝑧𝑒
4 while 𝑘 < 𝑁 do
5 𝑡1 ← 𝑡0 · 𝛽 ·

(
𝑟★

VRR ∗ ∗
𝑧𝑒
𝑟∗∗𝑡

)
; /* Eq. (18) */

6 𝑡1
(
𝑡1 < 𝑡𝑚𝑖𝑛

)
← 𝑡𝑚𝑖𝑛

7 if RMS1𝐶𝐴 < 𝜖 then
8 𝑡0 ← 𝑡1

9 break
10 end
11 else
12 if RMS1𝐶𝐴 < RMS0𝐶𝐴 then
13 𝑡0 ← 𝑡1

14 end
15 else
16 𝛽← 𝜂 · 𝛽 ; /* Eq. (9) */

17 end
18 end
19 𝑘 ← 𝑘 + 1
20 end
21 return 𝑡0

2.2.2 Performance evaluation of BAM

We first apply Algorithm 2 to correct the nominal target
removal map without MFE and HFE as shown in Fig. 4(a).
The optimized dwell time and the corresponding residual
height error are shown in Figs. 7(a) and 7(b), respectively.
The dwell time map closely duplicates the shape of the
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nominal removal, and the total dwell time is only 0.2%
longer than the ground truth. The RMS of the residual
height error is 0.04 nm, which is similar to that of FIM and
can be neglected. BAM does not show an obvious advantage
of FIM because it essentially does the same iterative updates
as the FIM but in a multiplicative manner.

We repeat the test on the nominal target removal with
MFE and HFE shown in Fig. 4(b). As illustrated in Figs.
7(c) and 7(d), the superiority of BAM over FIM is evident
in this case. The dwell time duplicates the shape of the
nominal removal and is much smoother than that of FIM.
The residual height error, which is 0.82 nm RMS, validates
our explanation that the Poisson distribution assumption for
𝑃 (𝑧𝑒 |𝑡) is a suitable noise model, resulting in more favorable
dwell time in the presence of MFE and HFE. Therefore, we
encourage users to use BAM first to obtain a smooth dwell
time solution and inspect the resulting residual height error.
FIM can then be applied to correct this residual height error
if it is still beyond the threshold 𝜖 , in which case the final
dwell time can be obtained as 𝑡𝐵𝐴𝑀 + 𝑡𝐹𝐼𝑀 . Although 𝑡𝐹𝐼𝑀

may be spiky, the amplitude is small compared with that
of 𝑡𝐵𝐴𝑀 , which will not significantly stress the machine
dynamics in actual CCOS processes.
2.3 From FIM to the Fourier transform method (FTM)

and RIFTA: moving to the frequency domain
We have mentioned several critical convergence criteria for
FIM and validated its convergence to the ground truth in the
simulation. We now move one step further to pursue the
analytical solution for FIM in the frequency domain when it
converges, which leads to FTM.

Taking the Fourier transform of Eqs. (5) and (6) with
𝛼 = 𝛽 = 1 and using the convolution theorem, we have

𝑇0 (𝝎) = 𝑍𝑒 (𝝎)
𝑇 𝑘+1 (𝝎) = 𝑇 𝑘 +

[
𝑍𝑒 (𝝎) − 𝑇 𝑘 (𝝎) 𝑅 (𝝎)

]
where 𝑇 (𝝎) and 𝑍𝑒 (𝝎) are the Fourier transforms of 𝑡 (x)
and 𝑧𝑒 (x), respectively. Successive substitution of the
iterative updates results in

𝑇 𝑘+1 (𝝎) =
{
1 + [1 − 𝑅 (𝝎) + [1 − 𝑅 (𝝎)]]2 + . . . + [1 − 𝑅 (𝝎)]𝑘

}︸                                                                    ︷︷                                                                    ︸
binomial expansion of {1−[1−𝑅 (𝝎) ] }−1

·𝑍𝑒 (𝝎)

in which the series in the curly brace is the first 𝑘+1 terms of
the binomial expansion of {1 − [1 − 𝑅 (𝝎)]}−1. Therefore,
𝑇 𝑘+1 (𝝎) converges to 𝑍𝑒 (𝝎) /𝑅 (𝝎), if |1 − 𝑅 (𝝎) | < 1
[64, 75], resulting in

𝑡 = F −1
[
𝑍𝑒 (𝝎)
𝑅 (𝝎)

]
(21)

where F −1 denotes inverse Fourier transform. Equation
(21) is the definition of FTM, which indicates that FIM
converges to FTM when |1 − 𝑅 (𝝎) | < 1. Moreover, for
frequencies 𝝎 at which 𝑅 (𝝎) = 0, 𝑍𝑒 (𝝎) = 0 should
be enforced to ensure the convergence. Hence, there is
convergence from FIM to FTM if and only if{

|1 − 𝑅 (𝝎) | < 1, 𝑅 (𝝎) ≠ 0

𝑍𝑒 (𝝎) = 0, 𝑅 (𝝎) = 0

These conditions are only valid when noise is absent, which
cannot be achieved in actual CCOS processes. With the
presence of noise, when the amplitude of 𝑅 (𝝎) at specific
frequencies are close to zero, any noise in 𝑍𝑒 (𝝎) at those
frequencies will be amplified, resulting in an inaccurate
dwell time solution [28, 44].

To address this issue, a thresholded inverse filter
𝑅 (𝝎; 𝛾) has been introduced in place of 𝑅 (𝝎) in Eq. (21),
given by

𝑡 = F −1
[
𝑍𝑒 (𝝎)
𝑅 (𝝎; 𝛾)

]
(22)

where 𝑅 (𝝎; 𝛾) is defined as

𝑅 (𝝎; 𝛾) =
{
𝑅 (𝝎) , |𝑅 (𝝎) | > 𝛾
𝛾, otherwise

The parameter 𝛾 is the threshold for constraining the inverse
of 𝑅 (𝝎) [20, 38].

It is worth noting that, however, determining the optimal
value for 𝛾 is nontrivial and depends on the noise level in
the surface error map and TIF properties. Therefore, FTM
is hard to apply in practice, leading to the development of
RIFTA. RIFTA effectively addresses the 𝛾 tuning problem
through an optimization approach. The optimization
algorithm in RIFTA plays a crucial role in enabling FTM
to function correctly. Therefore, in the subsequent sections,
we focus on elaborating on the principle of RIFTA and only
provide its performance evaluation.

2.3.1 Robust iterative Fourier transform-based dwell
time optimization algorithm (RIFTA)

The optimal threshold 𝛾 in FTM is found by RIFTA through
minimizing the estimated residual error in the CA, expressed
as

𝛾 = argmin
𝛾

RMS

{
𝑧𝑒 (x) − 𝑟 (x) ∗ ∗F −1

[
𝑍𝑒 (𝝎)
𝑅 (𝝎; 𝛾)

]}
𝐶𝐴

(23)
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𝑦 = 0

Dwell time, ∑𝑡𝐵𝐴𝑀 = 177.74 [min]

[nm]Residual height error, RMS = 0.04 [nm] [nm]Residual height error, RMS = 0.82 [nm]

(c)

(b) (d)

𝑦 = 0

Dwell time, ∑𝑡𝐵𝐴𝑀 = 177.58 [min](a)

Fig. 7. Dwell time and residual height errors calculated using BAM. (a) and (b) are the dwell time and residual height
errors without the middle-frequency error (MFE) and high-frequency-error (HFE), respectively. (c) and (d) are the dwell
time and residual height errors with MFE and HFE, respectively. BAM handles MFE and HFE better than FIM.

It is worth noting that Eq. (23) is non-linear and not
continuous due to the thresholding operations involved in
the calculation of 𝑅 (𝝎; 𝛾). As a result, any derivative-
based optimization algorithm will struggle to solve this op-
timization problem. Therefore, RIFTA utilizes derivative-
free optimization methods, such as the Nelder-Mead [76]
or pattern search (PS) algorithm [77]. These methods are
particularly effective when the number of variables is small
and the computational complexity of the loss function is low
[78]. Since 𝛾 is the only variable to be optimized and the
evaluation of Eq. (23) can be accelerated by FFT, derivative-
free optimization methods are thus suitable for finding 𝛾.

RIFTA also innovates an iterative scheme to minimize
the total dwell time. As illustrated in Figs. 3 and 4, the
area 𝑧𝑒 used for calculating the dwell time is larger than the
required CA. To ensure that the dwell time is positive, 𝑧𝑒
needs to be at least offset by a piston equal to the magnitude
of its smallest entry. Nevertheless, if the smallest entry is
located outside the CA, this piston adjustment may lead to
an unnecessary increase in total dwell time. To address this
issue, RIFTA iteratively adds pistons to 𝑧𝑒 based on the
previous residual errors in the CA, which can be expressed
as

𝑧𝑘+1𝑒 = 𝑧𝑘𝑒 +
����min

{
𝑧𝑘𝑒 − 𝑟 ∗ ∗F −1

[
𝑍 𝑘𝑒

𝑅

]}
𝐶𝐴

���� (24)

These iterations are performed until the RMS difference
between the current and previous residual errors in the CA
is less than a certain threshold or the maximum number of
iterations is reached. With this iterative scheme, RIFTA
ensures that 𝑧𝑒 is adjusted by the smallest (i.e., optimal)
piston, eliminating unnecessary dwell time increment.

2.3.2 Implementation of RIFTA

In most CCOS processes, we are only interested in the
form error correction, in which only the relatively low-
frequency error (LFE) determined by the machine tool’s
removal capability are corrected, with the MFE and HFE
components left on the optical surface, which will then
be corrected using either a smaller machine tool or a
smoothing process. With the assumption of LFE correction,
as shown in Fig. 2, RIFTA can be simplified by removing
the thresholded inverse filtering and directly using the
entire frequency components of the target removal 𝑧𝑒.
Therefore, in this study, we further simplify the implemen-
tation of RIFTA by approximating 𝑅 (𝝎; 𝛾)−1 with 𝛾 as

𝑡 (x; 𝛾) = F −1
[

1

𝑅 (𝝎; 𝛾)
𝑍𝑒 (𝝎)

]
≈ F −1 [𝛾 · 𝑍𝑒 (𝝎)] = 𝛾 · 𝑧𝑒 (x) (25)

where 𝛾 becomes the optimal multiplier such that

𝛾 = argmin
𝛾

RMS [𝑧𝑒 (x) − 𝑟 (x) ∗ ∗𝑡 (x; 𝛾)]𝐶𝐴

= argmin
𝛾

RMS [𝑧𝑒 (x) − 𝛾 · 𝑟 (x) ∗ ∗𝑧𝑒 (x)]𝐶𝐴
(26)

and the final dwell time is obtained as

𝑡 (x; 𝛾) = 𝛾 · 𝑧𝑒 (x) (27)

It is worth mentioning that the dwell time obtained in Eq.
(27) is equivalent to finding the optimal initial guess for FIM
defined in Eq. (5) that minimizes the estimated residual error
in the CA. Although the dwell time solution contains the
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same frequency components as the target removal, as will be
shown in Section 2.3.3, this is always a suitable assumption
for CCOS applications, as it guarantees that no new MFE
or HFE will be introduced to the dwell time solution,
thus adding implicit smoothness constraints. Combined
with the total dwell time reduction scheme, the optimized
implementation of RIFTA is illustrated in Algorithm 3.

Algorithm 3: Implementation of RIFTA
1 procedure RIFTA(𝑧𝑒, 𝑟 , 𝜖 , 𝑁 = 20):
2 𝛾0 = |𝑅 (𝝎 = 0) |, 𝑧0𝑒 = 𝑧𝑒, 𝑘 = 0
3 𝑡0 ← 𝛾0 · 𝑧0𝑒
4 while 𝑘 < 𝑁 do
5 𝑧1𝑒 ← 𝑧0𝑒 +

��min
(
𝑧0𝑒 − 𝑟 ∗ ∗𝑡0

)
𝐶𝐴

��
6 𝑡1 ← 𝛾1 · 𝑧1𝑒 ; /* Eqs. (26) and (27) */

7 𝑡1
(
𝑡1 < 𝑡𝑚𝑖𝑛

)
← 𝑡𝑚𝑖𝑛

8 if RMS1𝐶𝐴 < 𝜖 then
9 𝑡0 ← 𝑡1

10 break
11 end
12 if RMS1𝐶𝐴 < RMS0𝐶𝐴 then
13 break
14 end
15 𝑡0 ← 𝑡1

16 𝑧1𝑒 ← 𝑧0𝑒
17 𝑘 ← 𝑘 + 1
18 end
19 return 𝑡0

As shown in Line 2, the initial guess of 𝛾 for the first
iteration is taken as the amplitude of the direct current
component of 𝑅 (𝝎), which is 𝛾0 = |𝑅 (𝝎 = 0) |, as it is
close to the optimal value [66]. Also, it is essential to note
that 𝛾 is optimized in each iteration, as the target removal
𝑧𝑒 is continuously adjusted to minimize the total dwell time.
The iterative reduction of the dwell time is stopped when
the desired residual error is attained, or the current residual
error in the CA stops decreasing, indicating divergence.

2.3.3 Performance evaluation of RIFTA

We apply RIFTA in Algorithm 3 to the nominal removal in
Fig. 4(a) without MFE and HFE components. Figs. 8(a) and
8(b) show the optimized dwell time and the corresponding
residual height error map, respectively. Thanks to the
iterative dwell time reduction scheme with respect to the
CA, RIFTA achieves a total dwell time of 129.28 min, which
is about 50 min shorter than the ground truth, FIM, and
BAM. This can be visually observed by the smaller dwell
time entries along the edges of the dwell time map in Fig.
8(a). However, the residual height error, 0.19 nm RMS, as
illustrated by Fig. 8(b), is slightly larger than those of FIM
and BAM, indicating that RIFTA is methodologically less

accurate than FIM and BAM, as it includes a more strict
smoothness constraint defined in Eq. (27).

When MFE and HFE are present, as shown in Figs. 8(c)
and 8(d), the two advantages of RIFTA over FIM and BAM
become evident. First, RIFTA achieves a much smoother
dwell time than FIM, resulting in the same residual error
level as BAM. Second, this residual error is obtained with a
27% shorter total dwell time. This total dwell time reduction
scheme is especially significant in large optics fabrication,
where such a percentage means efficiency improvements of
days or even months. Hence, we recommend always using
RIFTA to solve the function-form dwell time optimization
problem if there is enough measurement data outside the
CA, as it handles MFE and HFE well while minimizing
the total dwell time. In most cases, this RIFTA solution is
satisfactory. However, if the desired residual error threshold
is not achieved, FIM can be further applied to the residual
error map, and the final dwell time is obtained as 𝑡𝑅𝐼𝐹𝑇𝐴 +
𝑡𝐹𝐼𝑀 .
2.4 From the RIFTA to RISE: handling the situations

when only the data in the CA is available
In the previous sections, we assumed that the data outside
the CA is always available for optimizing the dwell time.
Consequently, the dwell time solution is always satisfactory,
and the residual error in the CA is small. However, there
are cases when only the data inside the CA is available for
dwell time optimization, which typically happens when the
desired residual error is not attained after one CCOS process.
For instance, Fig. 9 shows the interferometric measurement
of an elliptical-cylindrical surface after one IBF process.
It is evident from the reconstructed height map that the
errors along the edge of 𝑧𝑒 is large, which is resulted from
the insufficient boundary dwell time during the dwell time
optimization. Suppose the desired residual error in the CA
is not achieved, and no smaller TIF is available. In that
case, the dwell time solution for the next IBF run will be
inaccurate since it will consume much dwell time to correct
the significant boundary errors, which is unnecessary.

To address this issue, a more proper way to calculate
the dwell time is to rely on surface extrapolation to obtain
the extra data in 𝑧𝑒, using only the measurements within the
CA. Conventional surface extrapolation methods include the
Papoulis-Gerchberg extrapolation [20, 70, 79, 80], nearest-
neighbors extrapolation [70, 81], Gaussian extrapolation
[70, 81], and natural neighbor extrapolation (NNE) [81].
A descending profile has even been proposed to reduce the
extended errors along the boundary and help decrease the
total dwell time [81]. However, despite the widespread
adoption of these surface extrapolation methods in CCOS
processes, two challenges remain that restrict their ability to
achieve accurate dwell time solutions.

First, the measured errors in the CA are not adequately
modeled so that the continuity along the extrapolation
boundary is not guaranteed, especially when the error in
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𝑦 = 0

Dwell time, ∑𝑡𝑅𝐼𝐹𝑇𝐴 = 128.87 [min]

Residual height error, RMS = 0.19 [nm] Residual height error, RMS = 0.85 [nm]

(c)

(b) (d)

𝑦 = 0

Dwell time, ∑𝑡𝑅𝐼𝐹𝑇𝐴 = 129.28 [min](a)

[nm] [nm]

Fig. 8. Dwell time and residual height errors calculated using RIFTA. (a) and (b) are the dwell time and residual height
errors without the middle-frequency error (MFE) and high-frequency-error (HFE), respectively. (c) and (d) are the dwell
time and residual height errors with MFE and HFE, respectively. RIFTA not only handles MFE and HFE well, but also
has shorter total dwell time than FIM and BAM.

the CA is anisotropic.
Second, MFE and HFE that a particular TIF cannot

correct are also extrapolated. This improper handling of
extrapolation results in unsatisfactory boundary data in 𝑧𝑒
and expected errors in the unreliable dwell time solution.

Polynomial-based extension. To answer these two
challenges, RISE was proposed [45]. Firstly, RISE models
the errors in the CA using orthogonal polynomials, which
eliminates the continuity issues at the boundaries of the
CA. We define a boundary condition on 𝑧𝑒 as its outermost
perimeter, denoted as 𝜕𝑧𝑒. In the fitting process, besides
the known error in the CA, [𝑧𝑒]𝐶𝐴, a boundary 𝜕𝑧𝑒
is also included to tune the fitting coefficients and the
extrapolated data. The simplest way is to set 𝜕𝑧𝑒 = 0.
However, this is so strict that it may cause significant
errors in the dwell time. Instead, 𝜕𝑧𝑒 can be initialized
as the boundary of [𝑧𝑒]𝐶𝐴 after NNE, which is denoted
by 𝑧𝑒 |𝑁𝑁𝐸 , i.e., 𝜕𝑧𝑒 = 𝜕𝑧𝑒 |𝑁𝑁𝐸 , since NNE guarantees
the 𝐶1 continuity along the extrapolation boundary [81].
Nevertheless, as NNE amplifies the errors along the CA
boundary and may bring unnecessary dwell time, RISE
introduces a factor 𝜉, 𝜉 ∈ (0, 1], which is multiplied
to 𝜕𝑧𝑒 |𝑁𝑁𝐸 to flexibly adjust the figure errors in the
extrapolation region and tune the dwell time. Based on
the above description, the polynomial-based extension in
RISE, denoted as 𝑧𝑒 |𝑃𝑜𝑙𝑦 (x𝑖), can be summarized as the
following constrained least-squares problem

𝑐 𝑗 = argmin
𝑐 𝑗

∑︁
𝑖

�����𝑧𝑒 |𝑃𝑜𝑙𝑦 (x𝑖) −∑︁
𝑗

𝑐 𝑗𝑄 𝑗 (x𝑖)
�����2

s.t. 𝜕𝑧𝑒 = 𝜉 · 𝜕𝑧𝑒 |𝑁𝑁𝐸[
𝑧𝑒 |𝑃𝑜𝑙𝑦

]
𝐶𝐴

= [𝑧𝑒]𝐶𝐴

(28)

where 𝑐 𝑗 is the coefficient of the 𝑗 th polynomial 𝑄 𝑗 . The
extrapolated surface is obtained as 𝑧𝑒 |𝑃𝑜𝑙𝑦 (x𝑖) =

∑
𝑗 𝑐 𝑗𝑄 𝑗 ,

after which the dwell time 𝑡 is optimized using RIFTA

introduced in Algorithm 3.

[nm]Large error at the edge, 𝜕𝑧𝑒

Clear aperture: 𝑧𝑒 𝐶𝐴

Measurement Region, 𝑧𝑒

Measurement region, 𝑧𝑒

Fig. 9. The large edge errors in 𝑧𝑒 will resulted from
the last IBF process due to insufficient boundary
dwell time.

Iterative refinement of the dwell time. Even with the
proposed polynomial-based extension, the obtained dwell
time may remain sub-optimal due to the possible errors
introduced during the extrapolation and the unreliable, ill-
posed deconvolution. Therefore, a refinement of dwell
time is performed by iteratively extrapolating the residual
error in the CA to approach a better dwell time solution
progressively. Denoting the residual error in the CA in the
(𝑘 + 1)th (𝑘 ≥ 0) iteration as 𝑒𝑘+1

𝐶𝐴
= 𝑧𝑒 − [𝑟 ∗ ∗𝑡]𝑘 , the

polynomial extension is applied to 𝑒𝑘+1
𝐶𝐴

to obtain 𝑧𝑘+1
𝑒 |𝑃𝑜𝑙𝑦 .

The resulting incremental dwell time Δ𝑡 obtained using
RIFTA is then added to the updated dwell time solution
𝑡𝑘+1 as

𝑡𝑘+1 = 𝑡𝑘 + ℎ · Δ𝑡 (29)

where ℎ is the learning rate that controls the convergence
speed. Additionally, to eliminate the unnecessary dwell time
added inΔ𝑡 in each iteration, an intelligent piston adjustment
[45] is performed on 𝑧𝑘+1

𝑒 |𝑃𝑜𝑙𝑦 and only the resulted Δ𝑧𝑘+1
𝑒 |𝑃𝑜𝑙𝑦
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is used with RIFTA to obtain Δ𝑡 and updates 𝑡𝑘+1 as

𝑡𝑘+1 = 𝑡𝑘 + ℎ · RIFTA
(
Δ𝑧𝑘+1
𝑒 |𝑃𝑜𝑙𝑦 , 𝑟, 𝜖 , 𝑁

)
(30)

where

Δ𝑧𝑘+1
𝑒 |𝑃𝑜𝑙𝑦 = 𝑧

𝑘+1
𝑒 |𝑃𝑜𝑙𝑦 −min

(
𝑧𝑘+1
𝑒 |𝑃𝑜𝑙𝑦 + 𝑧

𝑘
𝑒 |𝑃𝑜𝑙𝑦

)
(31)

This piston adjustment eliminates the extra removal added
during each iteration and hence relaxes the positivity
requirement of Δ𝑡 but only guarantees the final 𝑡𝑘+1 to be
positive.

2.4.1 Implementation of RISE

Algorithm 4 illustrates the implementation of RISE based
on RIFTA (see Algorithm 3) and the iterative polynomial-
based surface extrapolation. In this study, the polynomial
order 𝑀 is selected as 144, the same as the generated
ground-truth dwell time shown in Fig. 3(a) for comparison
among different methods. In practice, the residual error
between [𝑧𝑒]𝐶𝐴 and

[
𝑧0
𝑒 |𝑃𝑜𝑙𝑦

]
𝐶𝐴

can guide the selection
of appropriate polynomial orders [45]. One candidate
threshold for the RMS of the residual error can be selected as
the random errors of the measurement instruments employed
in the CCOS process. Additionally, the learning rate
ℎ = 0.5 ∼ 0.8 is a proper range that allows RISE to converge
in less than ten iterations [45], and in this study, ℎ = 0.5
is used, as shown in Line 2. Finally, the multiplier 𝜉 is set
to 1 for the boundary condition defined in Eq. (28), as we
prioritize accuracy in the comparison.

Algorithm 4: Implementation of RISE
1 procedure RISE(𝑧𝑒, 𝑟 , 𝜖 , 𝑀 = 144, 𝑁 = 20):
2 Δ𝑡 = 0, ℎ = 0.5, 𝑘 = 0

3 𝑡0 ← RIFTA
(
𝑧0
𝑒 |𝑃𝑜𝑙𝑦 , 𝑟, 𝜖 , 𝑁

)
; /* Eq. (28) */

4 while 𝑘 < 𝑁 do
5 𝑡1 ← 𝑡0 + ℎ · Δ𝑡 ; /* Eq. (29) */

6 if RMS1𝐶𝐴 ≤ 𝜖 then
7 𝑡0 ← 𝑡1

8 break
9 end

10 if RMS1𝐶𝐴 ≤ RMS0𝐶𝐴 then
11 break
12 end
13 Δ𝑡 ← RIFTA

(
Δ𝑧1

𝑒 |𝑃𝑜𝑙𝑦
, 𝑟 , 𝜖 , 𝑁

)
; /* Eq. (30) */

14 𝑘 ← 𝑘 + 1
15 end
16 return 𝑡0

2.4.2 Performance evaluation of RISE

Figures. 10(a) and 10(b) demonstrate the dwell time and
estimated residual error after applying Algorithm 4 to the
nominal removal in Fig. 4(a) without MFE and HFE,
respectively. While RISE achieves the same residual error
level in the CA as RIFTA, the edge errors are more prominent
than RIFTA, and a longer total dwell time is required,
resulting from the iterative, polynomial-based extension
strategy.

We then test the nominal removal with the addition of
MFE and HFE given in Fig. 4(b). The results are given in
Fig. 10(c) and 10(d), respectively. While the obtained total
dwell time is similar to that of the MFE-HFE-free case and
a lower residual error RMS is attained compared to RIFTA,
the smoothness of the dwell time is degraded in RISE, which
exposes another effect of the polynomial-based extension in
RISE, that the smoothness of the dwell time may be affected
if the polynomial orders are not well selected.

To obtain smoother dwell time solutions, smaller
numbers of polynomial orders can be attempted using the
thresholding method introduced in Section 2.3.1. Also, to
reduce the total dwell time, a smaller 𝜉 can be employed
in restricting the amplitude of the boundary conditions.
Since RISE adopts RIFTA, a very computationally efficient
method, multiple trials with different values of the polyno-
mial orders and 𝜉 can be conducted to balance the total dwell
time and the residual error in the CA.
2.5 Summary of function-form methods
We have introduced four function-form methods in this
section. As shown in Fig. 2, FIM applies the additive
Van Cittert’s iterations to converge to the optimal dwell
time solution progressively. Similarly, BAM uses the
multiplicative, R-L algorithm to obtain a smooth dwell time
solution with the assumption of a Poisson distribution of
the noise model. While FIM pursues absolute convergence,
BAM minimizes the relative difference between consecutive
iterations. With the absence of noise, FIM converges to
FTM. However, to handle the noisy CCOS processes, a
threshold is required to restrict the noisy frequencies in
FTM, leading to the development of RIFTA, which finds
the optimal threshold for FTM while minimizing the total
dwell time through an iterative piston adjustment scheme.
RIFTA, if we assume that only low-frequency components
are corrected in a CCOS process, is equivalent to finding the
best initial guess for FIM, which further simplifies RIFTA.
RISE improves upon RIFTA by using a polynomial-based
surface extrapolation method to optimize dwell time when
only data in the CA is available and iteratively refine the
dwell time solution. RIFTA and RISE achieve comparable
accuracy and smoothness to the state-of-the-art methods
with significantly reduced total dwell time. Therefore, we
recommend the users use RIFTA and RISE in function-form
dwell time optimization problems for CCOS processes.
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𝑦 = 0

Dwell time, ∑𝑡𝑅𝐼𝑆𝐸 = 144.68 [min]

[nm]Residual height error, RMS = 0.18 [nm] [nm]Residual height error, RMS = 0.73 [nm]

(c)

(b) (d)

𝑦 = 0

Dwell time, ∑𝑡𝑅𝐼𝑆𝐸 = 144.50 [min](a)

Fig. 10. Dwell time and residual height errors calculated using RISE. (a) and (b) are the dwell time and residual height
errors without the middle-frequency error (MFE) and high-frequency-error (HFE), respectively. (c) and (d) are the dwell
time and residual height errors with MFE and HFE, respectively. RISE has larger edge residual errors and longer total
dwell time than those of RIFTA, but it only uses the measurements in the clear aperture.

3 From function-form methods to matrix-
form methods

This section will discuss the matrix-form methods for dwell
time optimization in depth. These methods are based on the
linear system given in Eq. (4). The main challenge with
this method is that the matrix R is always near singular,
making it hard to obtain a stable solution. The most
important merit of the matrix-form method is that it enables
arbitrary dwell positions, meaning that the dwell points u𝑖
and surface points x 𝑗 can be different, i.e., u𝑖 ≠ x 𝑗 in Eq.
(3). This adds flexibility when more complex tool paths are
needed to restrain MFE [34] or fabricate free-form optics.
In this section, we will review the matrix-form dwell time
optimization methods that can obtain reasonable dwell time
solutions.
3.1 From FIM to the matrix-form iterative method

(MIM): an adaptation for the matrix form
Analogous to Eq. (6), Van Cittert’s iterations can be
performed in discrete matrix form [49, 66] as

t𝑘+1 = t𝑘 + 𝛽
(
z𝑒 −Rt𝑘

)
(32)

In fact, FIM is a special case of MIM, in which R is a square
matrix. The NC1, given in Eq. (10), can be represented in
matrix form [66] as

[R]𝑖𝑖 ≫
∑︁
𝑗≠𝑖

[R]𝑖 𝑗 (33)

Like FIM,when NC1 and NC2 hold, there is a convergence
criterion in MIM related to the learning rate 𝛽 determined
from the matrix R. First, it has been found that if R is a
positive definite matrix, the convergence interval for R is

0 < 𝛽 <
2

𝜆𝑚𝑎𝑥
R

where 𝜆𝑚𝑎𝑥R is the largest eigenvalue of R [66]. However,
as R is always near singular, we need to multiply R by its

transpose, and hence RTR becomes positive definite. By
multiplying the two sides of Eq. (3) with RT, we obtain

RTz𝑒 = RTRt

for which the iterative form of Eq. (32) becomes

t𝑘+1 = t𝑘 + 𝛽
(
RTz𝑒 −RTRt𝑘

)
(34)

Therefore, the range of 𝛽 can be determined by finding the
maximum eigenvalue 𝜆𝑚𝑎𝑥

RTR
of RTR. Indeed, an estimate of

the maximum eigenvalue is sufficient for MIM. As illustrated
in Ref. [66], the estimated range for 𝛽 is approximated as

0 < 𝛽 ≤ 𝜆𝑚𝑎𝑥
RTR
≤ 2∑𝑀

𝑚

�� [RTR
]
𝑖𝑚

�� (35)

It is worth mentioning that multiplying by RT not only
simplifies the determination of the learning rate but also
brings two benefits. First, it enables MIM to be used
even when the dwell points u𝑖 and surface points x 𝑗 are
with different sampling positions. The operation of RTz𝑒
projects z𝑒 to the same space as t. More importantly,
multiplying by RT acts as a low-pass pre-filtering process.
In each iteration, 𝑡𝑘+1 is updated by the filtered residual,
RT

(
z𝑒 −Rt𝑘

)
. As demonstrated in Section 3.1.2, this pre-

filtering operation helps smooth the dwell time solution.

3.1.1 Implementation of MIM

Algorithm 5 shows the implementation of MIM, which is
very similar to that of FIM. Both methods can use the
adaptive learning rate [41] and early stop strategies. The
maximum value in Eq. (35) initializes the learning rate 𝛽 in
Line 2. If the iteration becomes divergent, 𝛽 will be reduced
in Line 16 and the iteration is retried. The initial guess for
the dwell time in MIM, as shown in Line 3, is given as

t0 = 𝛼 · RTz𝑒 (36)
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where 𝛼 = 1/VRR. It is worth noting that the most time-
and memory-consuming operation in Algorithm 5 is the
construction of the convolution matrix R when the size of
the optical surface is large, and the dwell points are dense.
However, since R is sparse, with all non-zero elements
concentrating along its diagonals, storing R using sparse
matrix structures, such as compressed-row or compressed-
column format is always recommended. The subsequent
operations on R involve sparse matrix arithmetic, which
have been well accelerated by math libraries on modern
computing hardware.

Algorithm 5: Implementation of MIM
1 procedure MIM(z𝑒, R, 𝜖 , 𝑁 = 20):
2 𝛽 = 2/∑𝑀

𝑚

�� [RTR
]
𝑖𝑚

��, 𝜂 = 0.95, 𝑘 = 0

3 t0 ← 1/VRR · RTz𝑒 ; /* Eq. (36) */

4 while 𝑘 < 𝑁 do
5 t1 ← t0 + 𝛽 · RT

(
z𝑒 −Rt0

)
; /* Eq. (34) */

6 t1
(
t1 < 𝑡𝑚𝑖𝑛

)
← 𝑡𝑚𝑖𝑛

7 if RMS1𝐶𝐴 < 𝜖 then
8 t0 ← t1

9 break
10 end
11 else
12 if RMS1𝐶𝐴 < RMS0𝐶𝐴 then
13 t0 ← t1

14 end
15 else
16 𝛽← 𝜂 · 𝛽 ; /* Eq. (9) */

17 end
18 end
19 𝑘 ← 𝑘 + 1
20 end
21 return t0

3.1.2 Performance evaluation of MIM

We applied MIM on the simulation data given in Fig. 4,
and the results are shown in Fig. 11. In the case without
MFE and HFE shown in Figs. 11(a) and 11(b), compared
to FIM, the total dwell time is about 1-min longer while the
residual height error RMS is slightly larger. This negligible
reduction in accuracy resulted from the introduction of RT

for pre-filtering.
On the other hand, in the case of MFE and HFE shown

in Fig. 4(c) and 4(d), the merit of multiplying with RT is
evident. With a slight degradation of algorithmic accuracy,
the dwell time profile is much smoother than that obtained
from FIM shown in Fig. 6(c), indicating that the dwell
time optimization is unaffected by MFE and HFE in MIM.
Therefore, we recommend that users always use MIM with
RT pre-filtering to obtain more reliable dwell time solutions.

Moreover, as FIM is a special case of MIM, this pre-
filtering idea in MIM can also be introduced to FIM as

𝑡𝑘+1 (x) = 𝑡𝑘 (x) + 𝛽 · 𝑟★(x) ∗ ∗
[
𝑧𝑒 (x) − 𝑟 (x) ∗ ∗𝑡𝑘 (x)

]
,

if the smoothness of the dwell time solution optimized
with the conventional FIM is unsatisfactory and the small
influence on the residual error is acceptable.
3.2 Tikhonov-regularized methods
Instead of solving the matrix-form equation (see Eq. (4))
iteratively using MIM, it can also be solved directly with
the least-squares method. However, as the least-squares
solution to Eq. (4) is known to be unstable, the Tikhonov
regularization has been introduced to obtain a reasonable
dwell time solution. With the Tikhonov regularization,
the solution to Eq. (4) can be obtained by optimizing the
following equation [57]���� [R𝜌I] t − [

z𝑒
0

] ����
2

=

√︃
|Rt − z𝑒 |22 + 𝜌2 |t|22 (37)

where 𝜌 is a damping factor that penalizes the magnitude
of the solution vector. This section will demonstrate how
Tikhonov regularization helps stabilize the solution and
improve the overall performance.

3.2.1 Truncated Singular Value Decomposition (TSVD)

The Tikhonov-regularized solution to Eq. (37) is equivalent
to finding the particular least-squares solution, which is the
minimum in the 𝑙1-norm sense [57] expressed as

|t|1 = |𝑡0 | + |𝑡1 | + . . . + |𝑡𝑀−1 | (38)

SVD can be used to find the solution of t in this sense as

t =
𝑀−1∑︁
𝑖=0

uT
𝑖
z𝑒

𝜎𝑖
v𝑖 (39)

where 𝜎𝑖 , 𝑖 = 0, 1, 2, . . . , 𝑀 − 1, are the singular values
appearing in non-increasing order; u𝑖 and v𝑖 are the left and
right singular vectors of R, respectively. As many of the
singular values are close to zero since R is nearly singular,
TSVD should be used instead of SVD [54], in which only
the first 𝐾 singular values are kept as

t =
𝐾−1∑︁
𝑖=0

uT
𝑖
z𝑒

𝜎𝑖
v𝑖 , 𝐾 ≤ 𝑀 (40)

There are two difficulties in solving for t directly using
Eq. (40) in practice. First, the total dwell time is not
guaranteed to be minimal, even though |t|1 is minimized,
since the positivity of t cannot be ensured in Eq. (40).
To mitigate the negative entries in t, multiple trials of
extra piston adjustments of z𝑒 are necessary. Additionally,
determining the optimal number of singular values 𝐾 is
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𝑦 = 0

Dwell time, ∑𝑡𝑀𝐼𝑀 = 178.19 [min]

𝑦 = 0

Dwell time, ∑𝑡𝑀𝐼𝑀 = 179.03 [min]

Residual height error, RMS = 0.16 [nm] Residual height error, RMS = 0.70 [nm]

(a)

(b)

(c)

(d)

Fig. 11. Dwell time and residual height errors calculated using MIM. (a) and (b) are the dwell time and residual height
errors without the middle-frequency error (MFE) and high-frequency-error (HFE), respectively. (c) and (d) are the dwell
time and residual height errors with MFE and HFE, respectively. It is evident that prefiltering with RT smooths the dwell
time.

difficult. While the “L” curve approach has been attempted
[54], in which 𝐾 at the turning point on the curve was
selected, the computation of SVD is extremely time-
consuming, making it impractical to generate sufficient data
points for plotting the “L” curve.

3.2.2 From TSVD to LSQR: improved computational
efficiency

To address the two difficulties associated with TSVD,
an efficient iterative solver names LSQR [82] has been
proposed, taking advantage of the sparse nature of R.
Instead of directly calculating all the singular values, the
LSQR algorithm employs iterative steps to refine the dwell
time solution. It gradually converges to a solution that
balances the minimization of the residual error and the
regularization imposed by TSVD [16, 29, 30, 50, 51, 52,
56, 57]. The final solution to Eq. (37) is closely related to
the minimum 𝑙1-norm solution given by Eq. (39) as

t =
𝑀−1∑︁
𝑖=0

𝜎𝑖u
T
𝑖
z𝑒

𝜎2
𝑖
+ 𝜌2

v𝑖 (41)

When 𝜌 = 0, Eq. (41) is equivalent to Eq. (39). The 𝜌2 term
in the denominator “damped” the least-squares solution by
preventing small values of 𝜎𝑖 from causing the solution t
to grow excessively large. The parameter 𝜌 plays a crucial
role in balancing the smoothness, accuracy, and distribution
of negative entries in t [53]. The choice of 𝜌 impacts the
characteristics of the solution. Larger values of 𝜌 tend to
result in a smoother dwell time profile with fewer negative
entries, but at the cost of reduced accuracy. Conversely,
smaller values of 𝜌 can lead to increased accuracy but may
result in a less smooth dwell time profile and potentially
more negative entries in t [53, 57].

Therefore, finding an appropriate value for 𝜌 is a trade-
off between achieving the desired level of smoothness,

accuracy and minimizing negative entries in t. Traditionally,
the selection of a proper damping factor 𝜌 has been based
on trial-and-error [53, 57] or the “L” curve obtained by
time-consuming exhaustive search [54], which can be time-
consuming. Researchers have also explored finding a
typical range for 𝜌 based on the PRR of a TIF, which
provides some guidance for choosing 𝜌 [52]. However,
this range is unstable when the desired residual error is
small. Due to the sensitivity of the damping factor, it is
essential to carefully and automatically evaluate and choose
the optimal 𝜌 based on specific criteria. The derivative-free
optimization method used in RIFTA and RISE reviewed
above can be employed to automate the determination of the
optimal 𝜌 in this problem [58], which will be detailed in the
following section.

3.2.3 Implementation of LSQR

The optimized implementation of LSQR is shown in
Algorithm 6, which automates the damping factor tuning
while maintaining the positiveness of the dwell time solution
[58].

Algorithm 6: Implementation of LSQR
1 procedure LSQR(z𝑒, R, 𝜖 , 𝑁 = 20):
2 𝜌𝑖𝑛𝑖 ← PSO (MeritFun, R, z𝑒, 𝜖 , 𝑁)
3 𝜌 ← PS (MeritFun, R, z𝑒, 𝜖 , 𝑁)
4 t← CalcTime(𝜌, R, z𝑒, 𝜖 , 𝑁)
5 return t

6 procedure MeritFun(𝜌, R, z𝑒, 𝜖 , 𝑁):
7 t←CalcTime(𝜌, R, z𝑒, 𝜖 , 𝑁)
8 return RMS (z𝑒 −Rt)
9 procedure CalcTime(𝜌, R, z𝑒, 𝜖 , 𝑁):

10 t←LSMR(𝜌, R, z𝑒, 𝜖 , 𝑁) ; /* Eq. (41) */

11 t← t −min(t) + 𝑡𝑚𝑖𝑛
12 return t
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The automatic 𝜌 optimization algorithm uses the merit
criterion of the residual error RMS, as indicated in Lines 6
- 8. The positivity in the evaluation of t is ensured through
Line 11, where t is adjusted such that its smallest value
min(t). Calculating the derivatives of the merit function
is challenging, making it necessary to employ derivative-
free optimization methods as introduced in Section 2.3.1
are used. The PS optimization method [58, 77] is selected
in this study, as shown in Line 3. It is worth mentioning that
the iterative Least-squares with MR factorization (LSMR)
solver is utilized to calculate t instead of LSQR, as shown
in Line 10 because it converges faster for incompatible
linear systems (i.e., the dwell points are less than the
sampling points of a measured workpiece surface) and is
more computationally efficient [58, 83].

For PS to converge faster, a suitable initial guess for 𝜌,
denoted as 𝜌𝑖𝑛𝑖 , is required. While 𝜌𝑖𝑛𝑖 can be selected as
a value suggested in Ref. [29] or randomly picked from the
typical range [52], it has been observed that these values
may not be appropriate for the positiveness adjustment.
Instead, as depicted in Line 2, a more reliable derivative-free
optimization method, Particle Swarm Optimization (PSO),
is utilized to generate a well-suited 𝜌𝑖𝑛𝑖 , eliminating the need
for manually determining an initial guess [58]. To mitigate
the computational burden of PSO, the algorithm is stopped
early when it stalls at a merit function value. Ultimately, the
calculation of t involves utilizing the optimized damping
factor 𝜌 obtained from PS in Line 4.

3.2.4 Performance evaluation of LSQR

We apply Algorithm 6 to optimize dwell time for the nominal
removal maps with and without MFE and HFE. The results
are presented in Fig. 12. As shown in Figs. 12(a) and 12(c),
both dwell time maps closely resemble the ground truth, and
the smoothness of the dwell time profile is not affected much
by MFE and HFE thanks to the damping factor optimization
method.

However, as depicted in Figs. 12(b) and 12(d), the
accuracy of LSQR is lower than those obtained from
MIM. Notably, both residual error maps exhibit LFE
components that could have been corrected, indicating that
more iterations may be required for LSQR to achieve the
same level of accuracy as MIM. Thus, we recommend
that users relax the constraint of the maximum number of
iterations and mainly rely on the residual error RMS to stop
the LSQR method.
3.3 From Tikhonov-regularized method to CLLS: from

regularization to constrained optimization
In the Tikhonov-regularized method, the damping factor
is added to penalize the significant variations in the dwell
time solution, improving the smoothness and reducing
the number of negative entries [57]. Alternatively, these
objectives can be achieved by solving Eq. (4) with the CLLS

algorithm [30, 60, 59, 84], which incorporates appropriate
constraints to limit the search space of the dwell time
solution. The CLLS problem can be formulated as

t̂ = argmin
t

1

2
|z𝑒 −Rt|22

s.t. 𝑡𝑚𝑖𝑛 ≤ t ≤ 𝑡𝑚𝑎𝑥
At ≤ b

(42)

where 𝑡𝑚𝑖𝑛 ≤ t ≤ 𝑡𝑚𝑎𝑥 is the bounding constraints that
ensure the positivity of t [59] and can be tuned based on
the constraints of the machine dynamics [30]; A is the
adjacency matrix of t and b is the upper limit of the absolute
difference between every two adjacent elements in t [59, 84].
Therefore, the inequality constraints can impose smoothness
constraints on the dwell time solution. To solve Eq. (42),
it can be reformulated as a general quadratic programming
problem by letting H = RTR and q = −RTz𝑒, resulting in

t̂ = argmin
t

1

2
tTHt + qTt

s.t. 𝑡𝑚𝑖𝑛 ≤ t ≤ 𝑡𝑚𝑎𝑥
At ≤ b

(43)

and any quadratic programming method (e.g., the active-set
method in Ref. [59]) can be employed to solve this problem.

3.3.1 Implementation of CLLS

It can be observed from Eq. (42) that setting proper values
for the dwell time difference constraints in the vector b is a
non-trivial task. Direct utilization of the CLLS algorithm
may lead to inaccurate dwell time solutions, especially when
the constraints in b are too strict while the local shape
changes in the target removal z𝑒 are large. To answer
this challenge, the optimized implementation of CLLS,
employing the coarse-to-file scheme [59], is presented in
Algorithm 7.

Algorithm 7: Implementation of CLLS
1 procedure CLLS(z𝑒, R, A, b, 𝜖):
2 Calculate t𝑖𝑛𝑖 ; /* Eq. (44) */

3 t𝑐𝑜𝑎𝑟𝑠𝑒 = Polylfit(t𝑖𝑛𝑖)
4 e𝑐𝑜𝑎𝑟𝑠𝑒 = z𝑒 −Rt𝑐𝑜𝑎𝑟𝑠𝑒
5 e 𝑓 𝑖𝑛𝑒 = z𝑒 − e𝑐𝑜𝑎𝑟𝑠𝑒
6 Calculate t 𝑓 𝑖𝑛𝑒 ; /* Eq. (42) */

7 return t𝑐𝑜𝑎𝑟𝑠𝑒 + t 𝑓 𝑖𝑛𝑒

On the coarse level, as shown in Lines 3 and 4, the
inequality constraints in Eq. (42) are disabled, and an initial
dwell time solution t𝑖𝑛𝑖 is calculated as

t𝑖𝑛𝑖 = argmin
t

1

2
tTHt + qTt

s.t. 𝑡𝑚𝑖𝑛 ≤ t ≤ 𝑡𝑚𝑎𝑥
(44)
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𝑦 = 0

Dwell time, ∑𝑡𝐿𝑆𝑄𝑅 = 175.17 [min]

𝑦 = 0

Dwell time, ∑𝑡𝐿𝑆𝑄𝑅 = 176.29 [min]

Residual height error, RMS = 0.79 [nm] Residual height error, RMS = 1.08 [nm]

(a)

(b)

(c)

(d)

Fig. 12. Dwell time and residual height errors calculated using LSQR. (a) and (b) are the dwell time and residual height
errors without the middle-frequency error (MFE) and high-frequency-error (HFE), respectively. (c) and (d) are the dwell
time and residual height errors with MFE and HFE, respectively.

which is not always smooth enough. Therefore, a polyno-
mial fitting is performed on t𝑖𝑛𝑖 to smooth it and obtain a
new dwell time solution t𝑐𝑜𝑎𝑟𝑠𝑒. Subsequently, t𝑐𝑜𝑎𝑟𝑠𝑒 is
utilized to calculate the residual at the coarse level, denoted
as e𝑐𝑜𝑎𝑟𝑠𝑒.

On the fine level, as shown in Lines 5 and 6, the residual
e 𝑓 𝑖𝑛𝑒 = z𝑒−e𝑐𝑜𝑎𝑟𝑠𝑒 is substituted to Eq. (42) to calculate the
dwell time t 𝑓 𝑖𝑛𝑒. Since the residual error e 𝑓 𝑖𝑛𝑒 is small, the
necessary difference constraints in b are small and relatively
easier to set. The final dwell time is calculated as t =

t𝑐𝑜𝑎𝑟𝑠𝑒 + t 𝑓 𝑖𝑛𝑒. As both t𝑐𝑜𝑎𝑟𝑠𝑒 and t 𝑓 𝑖𝑛𝑒 are smooth,
t is thus smooth. This optimized CLLS implementation
allows for a more accurate and smooth dwell time solution
by refining the solution at different levels of detail.

3.3.2 Performance evaluation of CLLS

The implementation of CLLS introduced in Algorithm 7 is
tested on the nominal removal maps shown in Fig. 4, and the
results are demonstrated in Fig. 13. As we know the ground
truth, the maximum absolute dwell time difference between
adjacent dwell time entries in 𝑡𝐺𝑇 shown in Fig. 3(a), which
is 1.3 ms, is used as the constraint in b. Additionally, 𝑡𝑚𝑎𝑥 =
+∞ is set as the upper bound constraint.

As shown in Figs. 13(a) and 13(c), the dwell time maps
obtained from both the cases with and without MFE and
HFE resemble the shape of the nominal removal maps, with
a slightly larger total dwell time than the ground truth. When
comparing Fig. 13(c) with Fig. 12(c), the dwell time profile
with MFE and HFE present in CCLS is smoother than that
in LSQR, thanks to the constrained optimization and coarse-
to-fine scheme. However, introducing these improvements
results in a higher computational burden of CCLS than
LSQR.

On the other hand, the residual error maps, as shown
in Figs. 13(b) and 13(d), are slightly smaller than those
obtained using LSQR. However, they are still less accurate
than the other matrix-form dwell time optimization methods,

indicating that the constraints fed into CLLS may still be
sub-optimal. A possible improvement may be varying the
difference constraints in b by referencing the local slopes of
z𝑒, however, incorporating this enhancement may increase
the complexity of the CLLS method. Therefore, we leave
this aspect for users to explore and experiment with in the
future.
3.4 From RIFTA, RISE, and MIM to UDO: combining

the merits of the three methods
By closely examining MIM, RIFTA, and RISE, we have
discovered an opportunity to further enhance matrix-form
dwell time optimization by leveraging their advantageous
strategies.

First, UDO borrows the arbitrary dwell points from
MIM. The matrix-form update of dwell time in Eq. (34)
is introduced to ensure that the dwell time can be iteratively
refined to approach the convergence.

Moreover, UDO extends the simplifications of FIM
proposed in RIFTA in Section 2.3.2 to simplify the MIM
iterations in Eq. (34) by eliminating the RTRt𝑘 term.
Building on this, as analogous to Eqs. (26) and (27),
MIM can be modified by finding the optimal initial guess
expressed in Eq. (36) as

t = 𝛾 · RTz𝑒 (45)

where

𝛾 = argmin
𝛾

RMS
(
z𝑒 − 𝛾 · RRTz𝑒

)
𝐶𝐴

(46)

As explained in Ref. [32], Eq. (45) implies that the
computation of t is equivalent to determining an optimized
proportion of a pre-filtered surface error, denoted as z𝑒(i.e
RTz𝑒). Since the matrix R is constructed with the TIF in
each of its columns, this pre-filtering is a low-pass process,
which inherently results in a smooth dwell time solution t, as
elucidated in Section 3.1. However, as explained in Section
3.4.1, this pre-filtering process introduces unnecessary
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𝑦 = 0

Dwell time, ∑𝑡𝐶𝐿𝐿𝑆 = 180.09 [min]

𝑦 = 0

Dwell time, ∑𝑡𝐶𝐿𝐿𝑆 = 180.48 [min]

Residual height error, RMS = 0.60 [nm] Residual height error, RMS = 0.99 [nm]

(a)

(b)

(c)

(d)

Fig. 13. Dwell time and residual height errors calculated using CLLS. (a) and (b) are the dwell time and residual height
errors without the middle-frequency error (MFE) and high-frequency-error (HFE), respectively. (c) and (d) are the dwell
time and residual height errors with MFE and HFE, respectively.

dwell time to each dwell point, which is eliminated in
Algorithm 8 by an appropriate piston adjustment in each
iteration.

Finally, in cases where only the CA data is avail-
able, the RISE concept can be employed to refine the
dwell time solution iteratively through polynomial-based
extrapolations. In the (𝑘 + 1)th (𝑘 ≥ 0) iteration, the
RISE-based extrapolation is applied to the residual error
e𝑘+1
𝐶𝐴

=
(
z𝑒 −Rt𝑘

)
𝐶𝐴

to obtain the target removal z𝑘+1
𝑒 |𝑃𝑜𝑙𝑦 ,

from which the incremental dwell time Δt𝑘+1 is calculated
using Eqs. (45) and (46) as

Δt𝑘+1 = 𝛾𝑘+1RTz𝑘+1
𝑒 |𝑃𝑜𝑙𝑦 (47)

which is then used to update the (𝑘 +1)th dwell time solution
as

t𝑘+1 = t𝑘 + Δt𝑘+1 (48)

With the same smoothness and low-frequency correction
assumptions illustrated in Fig. 2, the modifications from
RIFTA, RISE, and MIM culminate in the proposal of UDO.
UDO combines the benefits of RIFTA and RISE while
incorporating the advantage of arbitrary dwell positions
from matrix-form methods.

3.4.1 Implementation of UDO

UDO is implemented in Algorithm 8, which is a “matrix-
form” RISE except Line 13, where the zero-mean version
of Δz𝑘+1

𝑒 |𝑃𝑜𝑙𝑦 , denoted as Δz̄𝑘+1
𝑒 |𝑃𝑜𝑙𝑦 , is used for dwell time

reduction. As analogues to Eq. (31) in RISE, this operation
is necessary for UDO to eliminate the unnecessary increase
of the total dwell time during iterations because of the pre-
filtering process with RT. This is manifested by letting
Δz̄𝑘+1
𝑒 |𝑃𝑜𝑙𝑦 = Δz̄𝑘+1

𝑒 |𝑃𝑜𝑙𝑦 − 𝜇, where 𝜇 is the mean of Δz̄𝑘+1
𝑒 |𝑃𝑜𝑙𝑦 .

Equation (47) can be rewritten as

Δt𝑘+1 = 𝛾𝑘+1RT
(
Δz̄𝑘+1
𝑒 |𝑃𝑜𝑙𝑦 + 𝜇

)
= 𝛾𝑘+1

(
RTΔz̄𝑘+1

𝑒 |𝑃𝑜𝑙𝑦 +R
T𝝁

)
(49)

where 𝝁 = [𝜇, 𝜇, . . . , 𝜇]T. It can be observed in Eq. (49)
that the distribution of Δt𝑘+1 is described by RTΔz̄𝑘+1

𝑒 |𝑃𝑜𝑙𝑦 ,
while RT𝝁 introduces constant dwell time to each entry
in Δt𝑘+1 except the ones along the boundary, which is
unnecessary and can be eliminated.

By doing so, in each iteration, t𝑘+1 has an equal
possibility of positive and negative adjustment, and thus
reduces the increase of the total dwell time. To keep the
positivity of the final t, a piston adjustment is performed for
t0 as shown in Line 3. If t still contains negative entries
after the iterative refinement, their magnitudes are always
small and can be safely offset as t = t −min(t) + 𝑡𝑚𝑖𝑛 [32].

To solve Eq. (46), the same derivative-free optimization
algorithms [44, 45, 58] can be employed, since 𝛾𝑘+1 is

the only unknown scalar to be optimized. A good initial
guess for 𝛾𝑘+1 can be chose as the least-squares solution of
1
2

���z𝑘+1
𝑒 |𝑃𝑜𝑙𝑦 − 𝛾

𝑘+1RRTΔz̄𝑘+1
𝑒 |𝑃𝑜𝑙𝑦

���2
2

as

𝛾𝑘+1
𝑖𝑛𝑖

[(
RRTΔz̄𝑘+1

𝑒 |𝑃𝑜𝑙𝑦

)T
z𝑘+1
𝑒 |𝑃𝑜𝑙𝑦

]
(
RRTΔz̄𝑘+1

𝑒 |𝑃𝑜𝑙𝑦

)T (
RRTΔz̄𝑘+1

𝑒 |𝑃𝑜𝑙𝑦

) (50)

3.4.2 Performance evaluation of UDO

We initially evaluate UDO on the nominal removal without
MFE and HFE. The dwell time and the corresponding
residual height error maps are demonstrated in Figs. 14(a)
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Algorithm 8: Implementation of UDO
1 procedure UDO(z𝑒, R, 𝜖 , 𝑀 = 144, 𝑁 = 20):
2 Δt = 0, ℎ = 0.5, 𝑘 = 0

3 t0 ← 𝛾0 ·
[
RTz̄0

𝑒 |𝑃𝑜𝑙𝑦 −min
(
RTz̄0

𝑒 |𝑃𝑜𝑙𝑦

)]
+ 𝑡𝑚𝑖𝑛

4 while 𝑘 < 𝑁 do
5 t1 ← t0 + ℎ · Δt ; /* Eqs. (48) and (49) */

6 if RMS1𝐶𝐴 ≤ 𝜖 then
7 t0 ← t1

8 break
9 end

10 if RMS1𝐶𝐴 < RMS0𝐶𝐴 then
11 break
12 end
13 Δt← 𝛾0 · RTΔz̄1

𝑒 |𝑃𝑜𝑙𝑦 ; /* Eq. (47) */

14 𝑘 ← 𝑘 + 1
15 end
16 return 𝑡0

and 14(b), respectively. Although the total dwell time is 25-
min shorter than the ground truth, the residual error RMS is
slightly higher than those of RIFTA, RISE, and MIM. The
higher residual error can be primarily attributed to the pre-
filtering process. Despite both UDO and RISE employing
the same surface extrapolation method, there is a crucial
distinction: UDO performs surface extrapolation on RTz𝑒,
while RISE does so on 𝑧𝑒. The sparsity of matrix R along
the edges results in insufficient filtration, thus making UDO
more susceptible to extrapolation errors.

Nevertheless, the extrapolation errors introduced by the
pre-filtering strategy become negligible when dealing with
surface errors containing MFE and HFE components. As
illustrated in Figs. 14(c) and 14(d), UDO consistently
achieves a lower residual error RMS compared to RIFTA,
RISE, and MIM in the presence of MFE and HFE.
Additionally, in comparison with RISE, UDO not only
attains a smoother dwell time profile but also maintains
a similar total dwell time (only 5 mins longer), highlighting
its effectiveness in handling MFE and HFE. Consequently,
we recommend the use of UDO for matrix-form dwell time
optimization. Integrating the advantages of RIFTA, RISE,
and MIM in UDO results in a comprehensive approach that
offers improved accuracy, efficiency, and flexibility in dwell
time optimization for various CCOS processes.
4 Strategies for obtaining reliable dwell time

solutions
In Sections 2 and 3, eight dwell time optimization methods
have been reviewed. The optimized implementations
and performance evaluations are demonstrated. Notably,
it is worth recognizing that function-form methods are
essentially special cases of matrix-form methods. All
function-form methods can be solved within the matrix-form

framework. The advantage of the function-form emerges
mainly when the matrix R is square. In this scenario, the
function-form methods prove advantageous as the explicit
construction of matrixR becomes unnecessary, enabling the
application of specialized function-form techniques.

To provide a comprehensive summary of the perfor-
mance of the reviewed dwell time optimization methods, the
results of applying these methods to the nominal removal
map with MFE and HFE present are presented in Fig.
15, where their accuracy, total dwell time, dwell time
smoothness, and computational efficiency are assessed.
The statistics of the comparison of accuracy, feasibility,
efficiency, and flexibility among the reviewed dwell time
optimization methods are further detailed in Table 1. All
the tests are performed on a workstation with an Intel Xeon
Gold 5118 CPU (2 processors, 12 cores/processor, 2.30 GHz
main frequency) and 256 GB RAM.
4.1 Comparison of function-form and matrix-form

methods
While the accuracy and processing efficiency are re-

ferred to as the residual RMS in the CA and the total
dwell time, respectively, the dwell time smoothness is
quantitatively evaluated as the slope RMS magnitude of the
profile of a dwell time map along the 𝑥 direction at 𝑦 = 0,
calculated as

RMS𝑡𝑦=0 = RMS

(
𝑡𝑖+1 − 𝑡𝑖
𝑥𝑖+1 − 𝑥𝑖

)
(51)

where 𝑖 = 0, 1, . . . , 524 is th 𝑖th dwell point in the 𝑥

direction. Finally, computational efficiency is measured by
the computation time needed for each method and reflected
by the sizes of the circular markers in Fig. 15.

Upon careful comparison, it becomes evident that
the function-form methods, RIFTA and RISE, and the
matrix-form method, UDO (as highlighted in Table 1),
exhibit remarkable superiority over the ground truth in
accuracy and processing efficiency. Notably, these methods
have surpassed the ground truth benchmark, demonstrating
outstanding performance in dwell time optimization.

In terms of accuracy, these methodologies have col-
lectively achieved surface error RMS values at a sub-
nanometer scale in the CA. This achievement signifies a
notable enhancement over the ground truth value of 0.96 nm
RMS. The convergence of these approaches towards sub-
nanometer precision underscores their capability to yield
exceptionally accurate dwell time solutions, elevating the
standards of dwell time optimization. Furthermore, the
processing efficiency of these methods is evidenced by their
consistently shorter total dwell times compared to the ground
truth.

Regarding computational efficiency, all the function-
form methods, FIM, BAM, RIFTA, and RISE, are con-
siderably faster than the matrix-form methods, namely
MIM, UDO, LSQR, and CLLS. Among the function-form
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𝑦 = 0

Dwell time, ∑𝑡𝑈𝐷𝑂 = 152.05 [min]

𝑦 = 0

Dwell time, ∑𝑡𝑈𝐷𝑂 = 149.43 [min]

Residual height error, RMS = 0.42 [nm] Residual height error, RMS = 0.63 [nm]

(a)

(b)

(c)

(d)

Fig. 14. Dwell time and residual height errors calculated using UDO. (a) and (b) are the dwell time and residual height
errors without the middle-frequency error (MFE) and high-frequency-error (HFE), respectively. (c) and (d) are the dwell
time and residual height errors with MFE and HFE, respectively. UDO handles MFE and HFE well and reduces the total
dwell time.

Table 1: Comparison of accuracy, feasibility, efficiency, and flexibility among the dwell time optimization methods of
FIM, BAM, RIFTA, RISE, MIM, UDO, LSQR, and CLLS.

Accuracy Feasibility Efficiency Flexibility
RMS𝐶𝐴
[nm] 𝑡 ∈ [𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥]

Smoothness
[s/mm]

∑
𝑡

[min]
Computation

Time [s] u ≠ x

Ground Truth 0.96 ✓ 4.75 177.07 - -
Function-form methods

FIM 0.64 ✓ 14.19 178.93 0.28 ×
BAM 0.82 ✓ 4.90 177.74 1.30 ×

RIFTA 0.85 ✓ 4.90 128.87 8.08 ×
RISE 0.73 ✓ 6.33 144.68 20.04 ×

Matrix-form methods
MIM 0.70 ✓ 5.43 179.03 165.75 ✓
LSQR 1.08 ✓ 4.89 176.29 209.66 ✓
CLLS 1.00 ✓ 4.84 180.48 384.88 ✓
UDO 0.63 ✓ 4.82 149.43 98.88 ✓

methods, FIM and BAM are the fastest methods. However,
the smoothness of FIM’s result is not satisfactory. On
the other hand, all the matrix-form methods demonstrate
a similar level of smoothness in their results comparable
to the ground truth. Nonetheless, these methods have
a significantly heavier computational burden, particularly
LSQR and CLLS. These methods require more computa-
tional resources and time to achieve accurate and smooth
dwell time solutions.

Given these insights, we recommend consistently uti-
lizing RIFTA and RISE for dwell time optimization when
the dwell points are uniformly defined on a rectangular
grid and refer to UDO when more flexible dwell positions
are required. In the subsequent sections, we further
encapsulate the strategies embedded within the reviewed
dwell time optimization methodologies and other essential
aspects. These strategies collectively achieve dwell time
solutions characterized by accuracy, feasibility, efficiency,
and adaptability.

4.2 Minimization of the residual errors in the CA
Upon examination, it becomes apparent that all the opti-
mized implementations of the reviewed methods, except
CLLS, employ an iterative refinement procedure of dwell
time. The CLLS method indeed includes an implicit
refinement procedure in its active-set solver. Therefore,
an iterative refinement procedure is crucial for minimizing
residual errors in the CA, particularly in applications that
prioritize ultra-precision, such as synchrotron X-ray mirrors
and EUV lithography optics fabrication.

In cases where ample measurement data is available,
the iterative updates are directly performed on the residual
errors. However, when only the data in the CA is accessible,
an iterative surface extrapolation technique (such as RISE
or UDO) [45, 32] can be performed to add additional data
for the further refinement of the dwell time solutions.
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Matrix-form methodsFunction-form methods

Our proposed methods are all better than the ground truth

Marker size: computation time, 
Marker color: smoothness

Fig. 15. Comparisons of residual error in the CA, total dwell time, dwell time smoothness, and computation time obtained
from each of FIM, BAM, RIFTA, RISE, MIM, UDO, LSQR, and CLLS methods. The sizes of the circular markers
indicate the computation time for each method and the colors denote the smoothness computed using Eq. (51). It is
evident that RIFTA, RISE, and UDO attain the results better than the ground truth in terms of accuracy and processing
efficiency.

4.3 Minimizing the total dwell time
There are two primary sources for the increase in the total
dwell time. One is from the piston adjustment on the target
removal map, 𝑧𝑒, to ensure the non-negativity of the dwell
time. This adjustment increases the overall dwell time by
redistributing the removal amount. To solve this problem,
the piston adjustment can also be iteratively performed with
FIM or MIM [40]. In each iteration, instead of using
min(𝑧𝑒 − 𝑟 ∗ ∗𝑡𝑘) to adjust the piston, a piston, 𝑝, is added.
When negative entries appear in 𝑡𝑘 , they are set to zero
and rely on the next iteration for further refinement. The
appropriate values for 𝑝 can be set as 𝜂 ·RMS(𝑧𝑒 − 𝑟 ∗ ∗𝑡𝑘),
where 𝜂 > 1.

The second factor arises from including unnecessary
contributions of the dwell time outside the CA. In RIFTA,
it has been proposed to perform the piston adjustment using
only the data in the CA. As shown in Fig. 15, this adjustment
is very effective and achieves a total dwell time even less than
the ground truth.
4.4 Ensuring smoothness of dwell time solutions
It can be found that smoothness is enforced by incorporating
smoothness assumptions in each dwell time optimization
method. For example, BAM employs the Poisson dis-
tribution to model noise [42], and RIFTA assumes that
the initial dwell time solution is proportional to the target

removal map. Also, the pre-filtering process proposed in the
matrix-from methods helps smooth the target removal before
performing dwell time optimization. As shown in Fig.
15, combining this pre-filtering process with the strategy
proposed in RIFTA, UDO achieves the smoothest dwell time
solution [32].

Additionally, parameterizing the surface error with
Zernike polynomials [61] or B-spline surfaces [62] before
dwell time optimization helps improve the smoothness
of dwell time solutions, owing to the inherently smooth
and continuous properties of these parametric modeling
methods. The smoothness of the dwell time solution
can be controlled by the order of Zernike polynomials
or the number of knots of the B-spline surface, which
also determines the number of total dwell points and
computational efficiency. In practice, an appropriate trade-
off between the residual error and the number of dwell points
should be made based on the complexity of the surface error,
the computational efficiency, and the dynamics constraints
of the machine tool.
4.5 Improvement of the computational efficiency
As illustrated in Fig. 15, function-form methods are much
more computationally efficient than matrix-form methods
since FFT has been employed to accelerate the convolution
operations. Even if the shape of a target removal map
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is irregular, as long as the dwell points are defined on a
rectangular grid, we can still use FFT by excluding the
invalid points from the final results (e.g., the nanfft function
used in MATLAB).

However, when arbitrary dwell points are required, the
matrix-form methods must be used, especially when we
want to optimize dwell time for different machine tools
simultaneously, the most computationally expensive LSQR
or CLLS must be employed. While sparse-matrix structures
should be used to save memory, the sub-matrix stitching
method [52] further reduces the computation time for large
optics fabrication at the cost of decreasing the accuracy.
Alternatively, the B-spline surface approximation method
[62] can be used to reduce the number of dwell points by
the optimization of the knot positions during dwell time
calculation.
4.6 From sequential to non-sequential optimization:

balancing the dwell time of all the TIFs
A sophisticated CCOS system typically comprises multiple
machine tools of varying types, shapes, and sizes, which
allows for effective and efficient correction of surface
errors with different spatial frequencies. Traditionally,
the dwell time for each machine tool is sequentially
calculated, optimizing it individually. However, this
sequential approach fails to consider the overall contribution
of multiple tools simultaneously [11, 58]. As a result, the
total dwell time is not well balanced among the employed
tools, which can negatively impact processing efficiency.

In practice, although a CCOS process is usually
scheduled using the TIFs with the sizes from big to small
sequentially, the dwell time optimization can be performed
non-sequentially for all the TIFs [11, 31, 58] by taking
advantage of the discretized, matrix-form formula as

(
R1 R2 . . . R𝑃

) ©«
t1
t2
...

t𝑃

ª®®®®¬
= z𝑒 (52)

where 𝑃 is the number of TIFs and R𝑖 is the convolution
matrix for the 𝑖th TIF. This non-sequential system can be
solved with either LSQR or CLLS. It considers all the TIFs
simultaneously, which has been shown to reduce MFE and
HFE errors while improving the smoothness of the dwell
time solutions for each tool [11, 31]. Moreover, the LSQR
solution balances the total dwell time along different TIFs,
thereby advancing the overall processing efficiency [58].

Furthermore, the matrix-form discretization can facili-
tate multi-objective optimization problems, where desired
residual error criteria are set for height and slope [5, 55, 60].
Instead of building separate R𝑖 matrices for different TIFs,
R𝑥 and R𝑦 are utilized, representing the convolution
matrices for the slopes of the TIF in the 𝑥 and 𝑦 directions,
respectively. It has been discovered that an alternate

objective optimization method associated with the LSQR
solver can help achieve desired residual height and slope
errors simultaneously more efficiently [5].
5 Experiment
The dwell time optimization methods reviewed in this
study are further evaluated through an IBF experiment
involving finishing an off-axis, elliptical-cylindrical mirror.
As illustrated in Fig. 16(a), the mirror is designed for hard
X-ray focusing and has a CA size of 150 mm × 10 mm. The
mirror’s off-axis ellipse geometry is depicted in Fig. 16(b),
with the specific parameters: object distance 𝑝 = 46.42
m, image distance 𝑞 = 0.33 m, and grazing angle 𝜃 = 2.2
mrad. This mirror has undergone pre-figuring using IBF,
utilizing a TIF with a full-width half maximum (FWHM) of
4.7 mm. After pre-figuring, the residual target removal, as
presented in Fig. 17(a), is 6.48 nm RMS. Subsequently, the
finishing process is carried out using the same IBF system
but a smaller TIF, with an FWHM of 1.2 mm and a PRR
of 3.2 nm/s, as shown in Fig. 17(b). The desired residual
error in the CA is specified as ≤ 0.5 nm RMS. To keep
the comparison fair, the dwell points are distributed over
the surface with the same sampling interval as the target
removal map in Fig. 17(a), which is 0.275 mm/pixel.

All eight dwell time optimization algorithms reviewed
in this study are applied to the target removal and TIF
given in Fig. 17. The dwell time solutions and estimated
residuals obtained from these methods are compared. In
the actual IBF experiment, only the dwell time solution
achieving the best balance in accuracy, feasibility, efficiency,
and flexibility is utilized to guide the finishing. This
comprehensive evaluation aims to identify the most suitable
dwell time optimization method that meets the specific
requirements of the sub-nanometer-level IBF experiment,
ensuring the results obtained from a real-world scenario
coincide with the ones concluded from the simulation
studied shown in Sections 2, 3, and 4.

The dwell time solutions optimized through FIM, BAM,
RIFTA, RISE, MIM, UDO, LSQR, and CLLS are visualized
in Figs. 18(a – h), respectively. The corresponding
estimated residual errors within the CA are shown in Figs.
18(i – p) respectively. The dwell time solution is analyzed
based on the accuracy, feasibility, efficiency, and flexibility
criteria below.

• Accuracy: In achieving sub-nanometer level finish-
ing, the primary criterion for a reliable dwell time
solution is its accuracy, as reflected by the residual
error in the CA. From Figs. 18(i – p), it is evident
that all methods, except LSQR and CLLS, yield
comparable levels of accuracy. The maximum RMS
difference among the residual error maps is merely
0.05 nm, which can be considered negligible.

• Feasibility:
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(a) Elliptical-cylindrical mirror to be finished by IBF  

z

𝑥𝑜 = 0
𝜃 = 2.2 mrad

x

Off-axis ellipse in the tangential dimension (b) 

y
x

Fig. 16. (a) The elliptical-cylindrical mirror to be finished by IBF. (b) The geometry of the ellipse is the object distance
𝑝 = 46.42 m, image distance 𝑞 = 0.33 m, and grazing angle 𝜃 = 2.2 mrad.

Target removal in the CA, RMS = 6.48 nm             (a)

z 
[n

m
/s

]

[nm/s]
TIF, FWHM = 1.2 mm(b)

Fig. 17. (a) The target removal for the experiment is 6.58 nm RMS. (d) The IBF TIF used in the finishing has a FWHM
= 1.2 mm and a PRR = 3.2 nm/s.

– Dynamics constraints: it is noteworthy that
all the implementations presented in this study
inherently account for dynamic constraints,
ensuring the rationality of the resulting dwell
time solutions.

– Smoothness: FIM has the largest slope RMS
magnitude value of 23.36 s/mm, which indicates
a insufficient smoothness and coincides with the
conclusions in Table 1.

• Efficiency:

– Processing efficiency: From Figs. 18 (c), 18(d),
and 18(h), it can be observed that RIFTA, RISE,
and UDO achieve the shortest total dwell time.
Notably, the dwell time calculated by RISE and
UDO is more than two hours shorter than that
of RIFTA.

– Computational efficiency: the computation time
of RISE and UDO, using the same computer
illustrated in Section 4, is 7.1 s and 47.8 s,
respectively, for a total number of 25,756 dwell
points. Although the computation time of UDO
is 40 s longer than RISE, we still keep it in our
final dwell time solution list, as its smoothness

(16.71 s/mm) is better than that of RISE (18.25
s/mm).

• Flexibility: as illustrated in Section 3, UDO is a
matrix-form method featuring flexible dwell posi-
tions. Thus, the computation time of UDO can be
reduced by using fewer dwell points. As shown in
Fig. 19, if we use 0.5 mm as the dwell time interval,
the number of dwell points is reduced to 8,289, while
the total dwell time (

∑
𝑡𝑈𝐷𝑂 = 229.80 min, as shown

in Fig. 19(a)), and the estimated residual in the CA
(0.2 nm RMS, as shown in Fig. 19b)) are very similar
to those shown in Figs. 18(h) and 18(p), respectively.
The computation time for this dwell time solution is
merely 16.8 s, comparable to that of RISE (2.4 times
longer).

Based on the above analysis, it is evident that the perfor-
mance of the eight dwell time solutions applied in this
experiment follows the same conclusions obtained from the
simulation results shown in Fig. 15 and Table 1.

Finally, the dwell time solution presented in Fig. 19(a)
is sent to IBF for finishing the mirror since it achieves a
good balance among accuracy, feasibility, efficiency, and
flexibility. After the IBF process, the actual measured
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FIM, Estimated residual error in the CA, RMS = 0.13 [nm]

Dwell time, σ 𝑡𝑈𝐷𝑂 = 232.81 [min], RMS𝑦=0
𝑡𝑈𝐷𝑂 = 16.71 [s/mm](h) (p) UDO, Estimated residual error in the CA, RMS = 0.16 [nm]

Dwell time, σ 𝑡𝐹𝐼𝑀 = 392.02 [min], RMS𝑦=0
𝑡𝐹𝐼𝑀 = 23.36 [s/mm](a)

(i)

(j) BAM, Estimated residual error in the CA, RMS = 0.14 [nm]

(k) RIFTA, Estimated residual error in the CA, RMS = 0.18 [nm]

(l) RISE, Estimated residual error in the CA, RMS = 0.14 [nm]

Dwell time, σ 𝑡𝐵𝐴𝑀 = 390.67 [min], RMS𝑦=0
𝑡𝐵𝐴𝑀 = 16.31 [s/mm](b)

Dwell time, σ 𝑡𝑅𝐼𝐹𝑇𝐴 = 360.11 [min], RMS𝑦=0
𝑡𝑅𝐼𝐹𝑇𝐴 = 15.38 [s/mm](c)

Dwell time, σ 𝑡𝑅𝐼𝑆𝐸 = 202.96 [min], RMS𝑦=0
𝑡𝑅𝐼𝑆𝐸 = 18.25 [s/mm](d)

Dwell time, σ 𝑡𝑀𝐼𝑀 = 417.14 [min], RMS𝑦=0
𝑡𝑀𝐼𝑀 = 19.04 [s/mm](e)

(m) MIM, Estimated residual error in the CA, RMS = 0.13 [nm]

Dwell time, σ 𝑡𝐿𝑆𝑄𝑅 = 567.07 [min], RMS𝑦=0
𝑡𝐿𝑆𝑄𝑅 = 64.40 [s/mm](f)

(n) LSQR, Estimated residual error in the CA, RMS = 0.31 [nm]

Dwell time, σ 𝑡𝐶𝐿𝐿𝑆 = 375.29 [min], RMS𝑦=0
𝑡𝐶𝐿𝐿𝑆 = 16.48 [s/mm](g)

(o) CLLS, Estimated residual error in the CA, RMS = 0.38 [nm]

y 
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m
]
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Fig. 18. Dwell time solutions (a – h) and the corresponding estimated residual errors in the CA (i – p) optimized
using FIM, BAM, RIFTA, RISE, MIM, LSQR, CLLS, and UDO, respectively. It is evident that UDO achieves the best
trade-off among algorithmic accuracy (0.16 nm RMS), feasibility (RMS𝑡𝑈𝐷𝑂

𝑦=0 = 16.71 s/mm), and processing efficiency
(
∑
𝑡𝑈𝐷𝑂 = 232.81 min).
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[s](a) Dwell �me, Reduced number of dwell points, 𝑡𝑈𝐷𝑂 = 229.80 [min] (b) UDO, Es�mated residual in the CA, RMS = 0.20 [nm]

(c) Measured residual in the CA, RMS = 0.52 [nm]

Fig. 19. (a) The dwell time optimized with UDO for the reduced number of dwell points (8,289) gives (b) an estimated
residual error in CA of 0.20 nm RMS. This dwell time is sent to IBF for finishing the mirror. (c) The measured residual
in the CA after the IBF process is 0.52 nm RMS.

residual error in the CA is 0.52 nm RMS, which meets
the specification, and thus the finishing is completed. It is
worth mentioning that there is a discrepancy between the
estimated and actual residual errors in the CA, as shown
in Figs. 19(b) and 19(c), respectively. This discrepancy
has mainly resulted from the uncertainties during the IBF
process, such as thermal effect [85], motion control [86],
positioning accuracy [87], TIF stability [88, 89], etc., each
of which is an active research topic in modern, deterministic

CCOS systems. This study only restricts its discussion to
the algorithmic performance of dwell time optimization,
aiming to minimize the optimization errors’ contribution to
the actual CCOS process.
6 Discussion on selecting a proper dwell time

optimization method
We have conducted a thorough review and comparison
of various dwell time optimization methods for CCOS,
encompassing theoretical analysis on the internal mecha-
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nisms, uncovering their relationships, and exploring imple-
mentation strategies. The performance of these methods
is evaluated across accuracy, feasibility, efficiency, and
flexibility, with results further validated through simulation
and experimentation. It is now worth reiterating the
connections among the reviewed methods illustrated in Fig.
2 and providing suggestions on selecting a proper dwell time
optimization method for different CCOS processes.
6.1 Summary of the mechanisms and relationships of

the dwell time optimization methods
FIM [10, 37, 38, 39, 40, 41] pioneers dwell time optimization
for CCOS. All the other methods can be derived from FIM
and they share the same convergence criteria. The additive
iterative process of the dwell time within FIM converges
when satisfying Eqs. (10) and (11). However, in the
presence of MFE and HFE (or noise), the smoothness of
the dwell time is compromised. Addressing this challenge,
BAM [28, 42] models the noise as a Poison distribution,
treating deconvolultion as a Bayesian process. BAM, an
iterative algorithm like FIM, differentiates in its approach by
employing multiplicative iterations, resulting in a smoother
dwell time solution. Furthermore, we demonstrate that in
the absence of noise, FIM converges to FTM [20, 38, 43],
where dwell time is solved through an inverse filtering
process. However, due to unavoidable noise in actual
measurements, a threshold is introduced in FTM to filter
out the high-frequency components during inverse filtering.
Selecting an optimal threshold value is crucial for FTM,
as an inappropriate choice may amplify noise, leading to
an unstable dwell time solution. To address this issue,
RIFTA [44] introduces an optimization algorithm to find
the optimal threshold value. Additionally, employing an
iterative refinement strategy, RIFTA refines the dwell time
to reduce the total dwell time and estimated residual error
simultaneously. Afterwards, RISE [45] introduces an
iterative surface extrapolation scheme to handle the edge
effects when only the CA data is available during the
measurement process.

The aforementioned methods assume that the dwell
points are defined on the same regular grid as the surface.
However, when dealing with arbitrary dwell points or
irregular surface shapes, matrix-form methods become
necessary. In this context, the matrix-based discretization
in Eq. (2) is employed. The simplest among these
matrix-form methods is MIM [49], which is a direct
extension of FIM. The convergence criteria of MIM in
matrix-form are provided in Eqs. (33) and (35). An
additional advantage of MIM is its pre-filtering process in
Eq. (34), where multiplication with RT acts as a low-
pass filter, resulting in a smoother dwell time solution.
Alternatively, the linear system in Eq. (2) can be directly
solved. However, due to the near singularity of the
matrix R, solvers often involve Tikhonov regularization
[11, 16, 17, 29, 30, 31, 50, 51, 52, 53, 54, 55, 56, 57, 58]

or CLLS [30, 59, 60] methods to ensure a reasonable dwell
time solution. Tikhonov regularization often takes the form
of a TSVD problem, but due to its computational burden,
a more efficient LSQR solver [82] has been introduced.
On the other hand, CLLS addresses the linear system by
incorporating necessary constraints, with the added benefit
of considering the actual dynamic constraints of a CCOS
machine. However, both LSQR and CLLS suffer from
low computational efficiency and may lead to unsmooth
dwell time solutions. To overcome these challenges and
achieve both computational efficiency and smooth dwell
time solutions in matrix-form, UDO [32] combines the
strengths of MIM with the strategies proposed in RIFTA and
RISE. Instead of directly solving Eq. (2), UDO calculates
dwell time by determining the optimal proportion of the pre-
filtered surface error, i.e., RTz𝑒. Finally, it integrates dwell
time reduction and surface extension schemes from RIFTA
and RISE, resulting in a smoother dwell time solution with
reduced total dwell time.
6.2 Selecting an appropriate dwell time solver in a

practical CCOS process
Utilizing the mechanistic analysis presented in Fig. 2
and detailed discussions in Sections 2 and 3, along with
insights from simulation and experimental results illustrated
in Fig. 15 and Table 1, we offer guidance for selecting
an appropriate dwell time optimization solver in practical
CCOS processes. As illustrated in Fig. 20, two aspects
need to be considered in a practical CCOS process: the
problem scale and the distribution of dwell points.

RISEMIMLSQRCLLS UDO ?RIFTABAMFIM

Regular grid Arbitrary

Problem 
scale

Large

Medium

Small

Fig. 20. Guidance of the choice of a dwell time
solver by considering both the problem scale and the
distribution of dwell points. Further exploration is
needed for a dwell time solver capable of effectively
handling large-scale problems and accommodating
arbitrary dwell positions.

For smaller problem scales, all methods are viable,
delivering comparable accuracy (see Fig. 18). However,
as the problem scale increases, conventional matrix-form
methods (CLLS, LSQR, and MIM) become impractical due
to their substantial computational burden. When dwell
points are distributed on a regular grid, function-form
methods (FIM, BAM, RIFTA, and RISE) are applicable.
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For cases requiring arbitrary dwell positions and addressing
descent problem scales, UDO stands out as a suitable choice.
Nevertheless, there remains a gap in dwell time algorithms
capable of handling both large problem scales and arbitrary
dwell point distributions. Concerning further enhanced
smoothness and shorter total dwell time, we recommend
employing RIFTA, RISE, and UDO for reasonably sized
problems. For matrix-form methods seeking further
smoothness, post-processing steps such as Zernike mapping
[61] or B-spline fitting [62] can be applied to the calculated
dwell time.
7 Conclusion
This paper comprehensively reviews eight well-known dwell
time optimization methods, classified into function-form
and matrix-form methods. The key contributions of this
study are summarized as follows.

First, the study provides a detailed exposition of
the principles underlying each of the eight dwell time
optimization methods. This involves a thorough mechanistic
analysis and explanation of the strategies embedded in each
method. Notably, the study unveils, for the first time in the
literature, the close interconnections between these methods,
shedding new light on their shared principles.

Second, the study proposes optimized implementation
for each method based on our best knowledge, enhancing
their practical applicability.

Third, the performance of these optimized implementa-
tions is comprehensively assessed using nominal removal
maps generated from a ground truth dwell time. The
evaluation is based on four critical criteria for assessing
dwell time solutions: accuracy, feasibility, efficiency, and
flexibility, providing readers with a deeper understanding
of the relationship between the principle and practical
performance of each method.

From the simulation results, it is concluded that
the function-form methods, namely the robust iterative
Fourier transform-based dwell time optimization algorithm
(RIFTA) and robust iterative surface extension (RISE), in
conjunction with the matrix-form method, universal dwell
time optimization (UDO), achieved the most favorable
balance across the four criteria. Therefore, we recommend
users considering these three methods for future applications
in computer-controlled optical surfacing, as they collectively
represent optimal solutions with superior performance in the
aspects of accuracy, feasibility, efficiency, and flexibility.
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