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Abstract
Defect inspection is critical in semiconductor manufacturing for product quality improvement at reduced
production costs. A whole new manufacturing process is often associated with a new set of defects that can cause
serious damage to the manufacturing system. Therefore, classifying existing defects and new defects provides
crucial clues to fix the issue in the newly introduced manufacturing process. We present a multi-task hybrid
transformer (MT-former) that distinguishes novel defects from the known defects in electron microscope images of
semiconductors. MT-former consists of upstream and downstream training stages. In the upstream stage, an
encoder of a hybrid transformer is trained by solving both classification and reconstruction tasks for the existing
defects. In the downstream stage, the shared encoder is fine-tuned by simultaneously learning the classification as
well as a deep support vector domain description (Deep-SVDD) to detect the new defects among the existing
ones. With focal loss, we also design a hybrid-transformer using convolutional and an efficient self-attention
module. Our model is evaluated on real-world data from SK Hynix and on publicly available data from magnetic tile
defects and HAM10000. For SK Hynix data, MT-former achieved higher AUC as compared with a Deep-SVDD
model, by 8.19% for anomaly detection and by 9.59% for classifying the existing classes. Furthermore, the best AUC
(magnetic tile defect 67.9%, HAM10000 70.73%) on the public dataset achieved with the proposed model implies
that MT-former would be a useful model for classifying the new types of defects from the existing ones.

Keywords: Semiconductor defect inspection, Deep-SVDD, Multi-task learning, Anomaly detection, Hybrid-
ktransformer
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Introduction
Increasing demand for high-speed devices accelerates
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new semiconductor nanofabrication technologies to embed
more memory into small devices'. To ensure the quality of
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products from the nano-technology fabrications, using a
scanning electron microscope (SEM) is required™’. Defect
inspection is critical in semiconductor wafer fabrication
process for product quality improvement at reduced
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production costs. In general, human inspection is time-
consuming, labor-intensive and error-prone. Therefore,
algorithmic methods for anomaly detection are increasingly
essential ™. The rapid development of deep learning (DL) in
computer vision" " and the large amount of collected data
in modern industry have made data-driven methods
appealing to inspection engineers"”.

Deep autoencoder (DAE) is one of data-driven
approaches to detect anomalies”. DAE creates the latent
vectors from high-dimensional data, then reconstructs the
data from the embedding vectors. When trained on only
normal data, a DAE reconstructs normal cases well,
meaning the reconstruction error ||x—X|| between the
original image x and the reconstructed image £ is small for
normal cases. On the other hand, the reconstruction error of
the model is higher for abnormal cases™ . However, the
DAE approach in semiconductor field has its limitation
because of some defects that can be classified as normal
owing to chip designing. Therefore, reconstruction loss
function can be challenging for classifying semiconductor
defects.

Generative adversarial networks (GANs)” are widely
used for DL image analysis” " and have also been adopted
in the field of anomaly detection. AnoGAN" detects
outliers by using a GAN that is trained on normal images.
AnoGAN consists of two loss parts: residual loss and
discrimination loss. In residual loss Lg(z), a generator G
usually creates normal images G (z) from latent vector z, so
an image error ||[x—G (z)|| will be large if real data x is
abnormal. The discrimination loss Ly (z) involves training
a discriminator f on normal images, ensuring that the
latent vectors f (x) of real normal images closely match the
latent vectors f(G(z)) of generated images. This similarity
is enforced using the loss function [[f(x)—f(G(2))].
Based on the two losses, the anomaly score, i.c.
(1=A)-Lg+A-Lp, is utilized to identify anomaly cases™.
GANomaly” makes AnoGAN's basic procedure more
efficient by simultaneously generating images and
encoding latent representation. GANomaly consists of a
convolutional neural network E and a U-shaped generator
G with an encoder G and a decoder G. The model uses
the encoder loss to compute the anomaly score
G (x)— E(G ().

Deep Support Vector Domain Description (Deep-
SVDD)* is a one-class classifier designed to train a model
for anomaly detection-based objectives. Deep-SVDD is
devised to find abnormal cases that are beyond the range of
normality. As faulty anomaly data accumulates, supervised
learning-based research has also been conducted to classify
defect types™”. Multiview data novelty detection using
deep autoencoding support vector data descriptions
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(DMVSVDD) which jointly trains multiple DAEs to
capture the correlated knowledge of multi-view data”. And
multi-task learning strategy has also been used with Deep-
SVDD,  which learns  one-class
classification objective in addition to using DAEs to learn
reconstruction’. AdaDL-SVDD is trained on both normal
and abnormal data to generate sparse representations with
dictionary learning and adaptive boosting using some weak
classifiers’, while Deep-SVDD using VAEs improves
anomaly detection accuracy by ensuring distinctly separate
latent representations in DAE”. The Patch-SVDD that use
patches has advantages because it performs anomaly
detection on a per-patch basis. Since they use small patches
for evaluation, they localize anomalous regions well ™"
Semiconductor-fabrication field is using DL models to
analyze defects in wafers. To determine a specified cause
of problems in the manufacturing process, many
researchers try to distinguish wafer map patterns and defect
types in SEM images™" . Recently, SEM inspection
needs anomaly-detection models that detect new defects
that are different from the existing ones (Fig. 1). Many
researchers developed anomaly models to distinguish
defect types from normal cases” ™, but it is difficult to
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manufacturing technology can cause abnormal cases, which can be
observed using scanning electron microscopy. In deep support vector
domain description, existing defects are considered as normal cases
and new types of defects as abnormal.
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identify new defects due to numerous defect types. To
enable analysis of the issue arising from the new processes,
the new types of anomalies must be detected. In addition,
an anomaly-detection model should consider irregular
shapes and different sizes of defects from a complex fab
process . Therefore, a DL architecture is needed to extract
appropriate features for this purpose.

Herein, we propose an MT-former framework that
exploits multi-tasking learning (MTL) and efficient self-
attention to distinguish new semiconductor defects from
the existing defect types. The main contributions are as
follows:

e Unlike conventional anomaly models that just
distinguish defects from normal cases, the MT-former
proposes to distinguish new defects from the existing
defects.

o MTL stabilizes SVDD training process by mitigating
the fluctuation of false positive rate and false negative rate.
In addition, MTL achieves efficient clustering of each
normal class, and thereby overcomes the limitations of the
basic Deep-SVDD model, which indiscriminately clusters
the existing defect types with various patterns into a single
class.

e Hybrid transformer considering long-range
dependencies improve results by identifying irregular
patterns on a wide range of defects, and efficiently
exploiting focal loss to successfully process imbalanced
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data (Fig. 1).

e In classification of defect types, a shared encoder from
MT-former is also superior to a CNN model that simply
learns defect classification from scratch.

Methods

Deep-SVDD

Deep-SVDD (Fig. 2a) is designed to map normal data
into a hypersphere of minimum volume for one-class
classification. A shared encoder learns transformation
©(;W): X > F for input data X € R and an output
feature F € R™™ The encoder includes L € N layers that
have weights W = {W', W?,..., W"}. We basically adopt the
upstream and downstream stage of the basic Deep-SVDD,
but the classification task is simultaneously trained at the
two stages.

During the upstream stage, DAE is used both to initialize
weights of the shared encoder and to find a center point
ceF. DAE generates reconstruction images X and
searches for optimal W* to minimize a reconstruction error.
Given training dataset X = {xy,...,xy} and N € N, the error
is defined as:

N /l 2L
A 2
Loar = Ii=xlF +3 ) IW| (1)
i=1 =1

The center point is calculated as an average of all
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Fig. 2 Schematic overview of the MT-former framework. a The MT-former consists of an upstream and a downstream stage. At the upstream, U-
shaped model with an encoder and a decoder is trained to reconstruct the existing defects. The encoder part simultaneously learns classification on
the types of existing defect. At downstream, the encoder is fine-tuned by learning not only to categorize the existing defects cases, but also to
cluster them. The encoder part is composed of the convolution and the efficient self-attention layer to extract both local and global features. b The
efficient self-attention reduces the size of feature map on key and value.
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features’ coordinates as:
1 N
e= D el W) @)
i=1

Downstream is a second training phase, where the
normal samples are clustered to the center point. The goal
of the SVDD is to form the smallest hypersphere with
radius R that encompasses normal samples from center
point c.

N L
A
Lsvon= ) llp (i W) =clF +3 S IIWIF. for ¥ € [1.N]
i=1 =1
3)

s.t |lo (x5 W)—clP<R:, R>0

Anomaly cases are identified if anomaly score s(x)
exceeds R, i.e. s(x) > R%:

5(x) =l (x; W) — 4

Hybrid Transformer Model

Models that apply transformers use multi-head self-
attention (MHSA) modules to capture long-range
dependency at different scales”. Such models require a
huge training dataset, so a hybrid-transformer model, UT-
Net, was introduced; it has an appropriate mix of
convolutional layers and transformers™. We utilize the UT-
Net’s encoder which only applies convolution to the input
image size. Unlike the encoder of UTNet, the self-attention
module is applied on the input image size because our
input image size is small.

UT-Net includes an efficient self-attention module
(ESAM) to avoid inefficient and redundant computations.
Given an input data X € R 1x1 convolutions project it
to the vectors that consist of query, key, value:
0,K,V e R™>_Most of the informative features in self-
attention are contained in the largest singular values’”’, K
and ¥V are downscaled to K,V e R"*>¢ by sub-sample
operation (Fig. 2b). Q,K,V is sequentially flattened and
transposed to @ €R”™ and K,V eR*
o=hxw,u=nxw, and u < o0, which is followed by a
scaled dot-product defined as:

where

0K\
\% 5
Vi ]v ®

uxd

Attention (Q',F, 7) = softmax(

oxXu

In addition, relative positional encodings use
independent relative height and relative width information
as self-attention augmentations, which prevent perturbation
while allowing for translation

equivariance™”. The relative positional embeddings r}'_,

equivariance
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and r'_, between pixel i = (i,,i,) and pixel j = (j.,j,) are
learned for relative width j,—i, and height j,—i,. The
relative attention logit for the strength of the relationship
between pixel i and to pixel j is computed as:

T
I
Vd
where g; is the i-th row of Q" and k; is the j-th row of K'.
The final self-attention formula is defined as:
0K +55 485 —
V/
Vd

(kj+ry s+ ) (6)

xlx Jy~ly

Attention (Q’,F, 7) = so ftmax
uxd

oXu

(M

11 31 — T.,.H rel [+ 31 — T W
where  S¥'[i, j]=¢! ril, and Sy [i,/1=¢q; rY.,  are

matrices of relative position logits, with S, 87 € R
(Fig. 2).

Proposed MT-former

Our proposed method, MT-former (Fig. 2, Table 1), is
composed of MTL and the hybrid transformer. MTL is a
process of training a DL network on several related tasks at
once with the intention that the shared knowledge learned
from one task will increase accuracy on other tasks”. The
goal of our task is to distinguish new defects from existing
defects, which are considered to be ‘normal’ cases in this
one-class classification study. However, we assumed that
due to the variety of defect types in shape, normal
clustering would not be successful if all of the existing
defects were grouped into a single class. This is because
considering normal classes with various patterns results in
a broad data distribution and the range of clustering. The
broad distribution makes it easier for the new defect data to
be included in the distribution of the existing defects.
Therefore, we suppose that MTL, by classifying the
existing defect types and clustering them, enables the
model to properly cluster the various-normal cases.

In this study, we take two MTL stages, one upstream and
one downstream. During the upstream stage Ly,
reconstruction loss Lpsr and classification loss Lp,. are
used. Focal loss L, is applied to cover the existing
defect classes imbalance problem®'. p, is the probability of
classification by softmax when the model performs
classification task on the existing defects. When focusing
parameter y increases, the learning weight of hard example
with low probability also gets high. After initialization of
the hybrid-transformed encoder, then during the
downstream stage, the MT-former Lp,,, is proposed by
simultaneously learning Deep-SVDD objective Lsypp and
the classification Lr,.,; on the hybrid-transformed encoder.
The losses are defined as:
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Table 1 Details of the architectures used in MT-former.
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Layer Number of filters/heads Filter size Activation function
Convolution (s = 2) 16 33 RelU
ESAM 3 _ _
Convolution (s = 2) 32 3*3 RelU
Attention encoder
ESAM 3 _ _
Convolution (s = 2) 64 3*3 ReLU
ESAM 3 _ _
AdaptiveAvgPool2D . - -
Feature extraction
Flatten 64 - _
Classification Fully Connected Layer 15 7 Softmax
Conv2DTranspose (s = 2) 32 3*3 Relu
Decoder Conv2DTranspose (s = 2) 16 3*3 Relu
Conv2DTranspose (s = 2) 1 3*3 Tanh

LFoml = _(1 _Pz)ylog([)z) (8)
LUp = LDAE + LFoca[ (9)

LDowu = LS vpp + LFocal

(10)

In a nutshell, the proposed method is trained on only the
existing defect-labeled dataset. Based on the output value,
the model detects the new defect.

Experiments

Comparison models

We compared the accuracy of MT-former with six state-
of-the-art deep anomaly detection models, i.e. DAE”,
GANomaly”, AnoGAN™, Patch-SVDD", Patchcore’ and
Deep-SVDD™.

1. DAE” uses reconstruction error as a criterion for
judging anomaly scores.

2. AnoGAN" is an early anomaly detection model based
on GAN, which calculates anomaly scores by considering
latent space in image space.

3. GANomaly” is a form in which an encoder is added
to AnoGAN, and is more intuitive than AnoGAN to learn
image and latent space at once.

4. Patch-SVDD" is an approach that can utilize local
information by embedding in patch units. For comparison,
Patch-SVDD's patch size is set to 32, which is half the
input size.

5. Patchcore™ extracts patch-wise features based on a
model trained on ImageNet data to detect anomalies.

6. Deep-SVDD* obtains a hypersphere surrounding
normal data, then uses it to identify abnormalities.

Evaluation metrics

To evaluate anomaly-detection accuracy, we defined
abnormal cases as ‘positive’ and used four evaluation
metrics: true positive rate (TPR, recall), false positive rate
(FPR), signal-to-background ratio (S/B), and area under the
receiver operating characteristic curve (AUC). Receiver
operating characteristic (ROC) curves are used to visualize
the tradeoff between TPR and an FPR at different
thresholds, while AUC shows the overall detection
accuracy as the area under the ROC curve. In classification
experiments, we adopted weighted average AUC because
from the viewpoints of quality inspection and costs,
frequent defects are the most important. The metrics are
defined as:

TP

TPR =Recall = ——— (1)
TP+FN
FpP
FPR= ——— (12)
FP+TN
TP
S/B=— 13
/B= 15 (13)
Weighted Average = ZW,-XS,- (14)

i=1
where w; is the number of data belonging to class i and s, is
the score of class i.

Data Acquisition

In this study, all experiments were conducted on 6078
datasets, including 24 new defect datasets from a domestic
SK Hynix’s FAB process (SK-defect, SK Hynix, South
Korea). SK data were collected in different settings and
system environments. The defect images were provided in
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64 to 80 pixel sizes, a size that allows engineers to visually
identify defects and enables rapid analysis. The images
typically have a field of view (FOV) ranging from 1 pm to
2 um, which corresponds to approximately 15.6 nm to
31.3 nm per pixel for 64 x 64 pixel images. For each
manufacturing process, defect types were defined
considering image shape and process characteristics
(Fig. 1). For instance, the ALIGN_ERR defect tends to
exhibit alignment errors where the target is far from the
center, the BOL defect often shows a round or circular
shape, FLKE defect looks like flakes, which are similar to
thin chip-like fragments”, and the FOCUS_ERR is
characterized by blurry or out-of-focus patterns in the
imaging. The collected data were divided into 2951
training and 3127 testing (Table 2a). The 18 defect classes
include three new types of defects and 15 existing types of
defects. This study considers the existing defects as
‘normal’ cases for the Deep-SVDD task. The data is not
publicly available. However, the authors will make the data
available upon reasonable request and with the permission
of SK Hynix.

For robustly the capability of our method, we evaluated
our models on two public dataset. The magnetic tile defect
dataset was previously utilized for another validation”.
This dataset contains one non-defect case and five defect
cases: blowhole, crack, fray, break, and uneven. To
evaluate the ability to distinguish new defects, we
performed validation by excluding the non-defect case and
using only five defect classes, and set the ‘fray’ class that
had the fewest instances as the ‘new’ defect. For normal
defect data, we split the data 8:2 for training and testing,
and all new defects were used for testing. In the final
dataset, the number of training data was 287 and the
number of testing data was 105, including 32 abnormal
cases (Table 2b). The well-known HAM 10000 consists of
6 subclasses, with an imbalanced dataset. The HAM10000
dataset is divided into 7007 training, 1003 validation, and
2005 testing (Table 2c). In our experiments with this
dataset, we treated each subclass as a ‘new’ defect in turn,
while considering the remaining subclasses as normal
defects, which allowed us to observe the performance
differences across classes.

Implementation Details

The experiments were conducted using the PyTorch
framework and executed on an NVIDIA Tesla T4 GPU
with 16 GB of RAM. The initial learning rate was set to
0.001, and the Adam optimizer updated the model
parameters with a weight decay of 0.0005. All images in
datasets were resized to 64 x 64. Additionally, random
horizontal-flip or vertical-flip data augmentations were
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Table 2 Class ditribution of train and test in defect image
dataset.
(a) SK-defect
Data subclass Train et Total
Normal Abnormal
ALIGN_ERR 178 90 - 268
ARCI 76 3 - 79
BOL 347 56 - 403
BOL2 278 1522 - 1800
CMSC 199 27 - 226
CRAC 257 75 - 332
DDGG 451 743 - 1194
DESF 222 296 - 518
FLKE 153 8 - 161
FOCUS_ERR 147 26 - 173
L_FLKE 26 2 - 28
LFVO 106 9 - 115
NOIS 150 60 - 210
RESI 119 12 - 131
SBPT 242 174 - 416
GOTGAM - - 9 9
L_SFPT - - 2 2
SFPT - - 13 13
Total 2951 3103 24
(b) Magnetic tile defect
Data subclass Train fest Total
Normal Abnormal
Blowhole 92 23 - 115
Break 68 17 - 85
Crack 45 12 - 57
Uneven 82 21 - 103
Fray - - 32 32
Total 287 73 32
(c) HAM10000
Data subclass Train Test Total
0 228 66 294
1 359 103 462
2 769 220 989
3 80 23 103
4 779 223 1002
5 4693 1341 6034
6 99 29 128
Total 7007 2005
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applied. All models were trained for 100 epochs for
upstream tasks and 800 epochs for downstream tasks, using
a batch size of 128.

The same settings were also used for the external
validation of magnetic tile defect and HAM10000 dataset.
For the HAM10000 with small input size was scaled to
32 x 32 to account for the minimum input size of 32 for
typical anomaly models for effective learning and
sufficient feature representation Ref. 33. The proposed and
comparison models were trained for 100 epochs with batch
size 2. To deal with the small size of input data, all the
comparative models parameterized to the same network
architecture with our proposed model, including latent
vector size 64 and model depth 3.

Results

Anomaly Detection Performance Comparison

The anomaly performance of our proposed MT-former
was compared with several state-of-the-art anomaly-
detection models on the SK dataset (Table 3, Fig. 3). DAE
achieved the lowest AUC (0.3220); this result indicates
that DAE reconstruction scores do not work well on multi-
normal classes because appropriate reconstruction is
difficult when the normal shapes are diverse. The models
that used GAN with discriminator show higher AUC
(GANomaly 0.5897, AnoGAN 0.6912) than DAE.
AnoGAN had higher TPR and AUC than GANomaly.
Although GANomaly shows slightly lower FPR than
AnoGAN, the lower TPR of GANomaly suggests that it
mainly predicts the negative class. Patchcore demonstrates
high TPR (0.7083) by leveraging a patch-level approach to
analyze localized information. However, the FPR and AUC
are poorer than our model, indicating challenges in
handling multiple normal classes. A high FPR further
reduces anomaly detection efficiency, especially in an

Page 7 of 13

imbalanced SK dataset, where the large number of normal
cases leads to more misclassifications as abnormal. The
base model, Deep-SVDD, exhibits a low TPR at the trained
threshold, suggesting that the Deep-SVDD model is not
well trained when various defect cases are considered as
one class. Our proposed model, MT-former, shows the
highest AUC (0.7821) by solving the problem of diverse
defect types. Even if S/B metric of our proposed method is
lower than GAN-based models, the proposed method
achieved a higher AUC and TPR for overall small FPR
than the other models (Fig. 3).

The Deep-SVDD based model (i.e., Deep-SVDD and
MT-former) also has fewer parameters than models that
use GAN (i.e., AnoGAN and Ganomaly) or based on
patch-based models (i.e., Patch-SVDD and Patchcore). In
terms of computational efficiency, MT-formers may be
slightly slower than other models, but they offer high
performance and compact model size with reasonably fast
processing speed for automated defect detection. Since

1.0
0.8 F
0.6
-4
)
= /
04+ ]
/& DAE (0.3220)
== AnoGAN (0.6912)
02 F / == GANomaly (0.5897)
/- = PatchSVDD (0.6354)
mm Patchcore (0.6020)
== Deep-SVDD (0.7229)
0F X ) ) - MT—Fom‘ler (0,7821.)

0 0.2 0.4 0.6 0.8 1.0
FPR

Fig. 3 Receiver operating characteristic (ROC) curve analysis of
different state-of-the-arts and our proposed network on SK-defect
dataset.

Table 3 Results of different state-of-the-arts and our proposed network on SK-defect dataset.

SK-defect

Model Param # Training '\nference
TPR (1) FPR()  AUC(H) S/B (1) Time (sec)  Time (msec)
DAE' 0 0 03220 Inf 46K 20 5
AnoGAN’ 05417 0.1369 06912 3.06% 167K 10 83
GANomaly 02916 00728 05897 3.10% 910K 7 5
PatchSVDD 05417 0.2684 06354 0.45% 106K 80 10
Patchcore 0.7083 04402 06020 1.24% 68M 60 192
Deep-SVDD™ 0 0 0.7229 Inf 23K 12 19
MT-former (Proposed) 0.7083 02491 0.7821 2.20% 66K 46 24

Notes. Training time shows the time required to train one epoch. Inference time indicates inference time per one image.
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semiconductor manufacturing plants require significant
resources, our lightweight MT-former model with high
performance can be practically utilized for anomaly
detection in this field.

In addition, the MT-former achieved the highest AUC
(0.6798) on the magnetic tile defect dataset (Table 4
magnetic tile defect) and AUC (mean 0.7073) on the
HAM10000 dataset (Table 4 HAM10000). Specifically, for
the HAM10000 data, our model achieved the highest AUC
scores in six of the seven classes except for class 5,
demonstrating robust performance across different types of
abnormal These results show the model's
generalization capabilities to a variety of external data

cases.
sources.

The analysis of MT-former

In this section, we analyze the effectiveness of MTL,
focal loss, and ESAM (Table 5). A basic Deep-SVDD
model (Table 5a) had with TPR = 0 and FPR = 0; i.e., it
identified all outcomes as ‘normal’.

MTL applied upstream showed increased AUC (0.7751)
with a slightly better TPR (0.1667) than basic Deep-SVDD
(Table 5b) but did not adequately cluster features (Fig. 4b).
In addition, an unstable validation error (Fig. 5b) still
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seems to limit the anomaly-detection accuracy. Compared
to applying MTL upstream, applying MTL downstream
increased TRP by 29% (Table 5¢), and clustered each
normal class (Fig. 4c). When MTL was applied both
upstream and downstream (Table 5d), its FPR (0.1795)
AUC (0.7268) and clustering of normal classes all
improved (Fig.4d) with the stabilized error (Fig. 5c).

These results demonstrate that the basic Deep-SVDD
does not detect new anomalies when multiple classes are
present, whereas MTL that considers different normal class
types increases overall detection accuracy. The violin plot
of Deep-SVDD (Fig. 6a) shows that distance between the
latent vectors and the center point is very short (3.8 x 107)
on y-axis compared to the other plots (Fig. 6b-d), and this
distance does not even distinguish normal from abnormal
at all. This result demonstrates that the Deep-SVDD only
learns clustering to minimize the distance among all data
without considering visual differences of data types. In this
setting that includes a variety of normal classes, we found
that separate clustering by types of normal classes in
advance helps to increase detection of new types of
anomalies.

We also make use of focal loss to compensate for data
imbalance (Table 5¢), and ESAM to extract global context

Table4 AUC score of different state-of-the-arts and our proposed network on magnetic tile defect and HAM10000 external

dataset.
Model Magnetic tile defect MAMITO000
0 1 2 3 4 5 6 Mean
DAE"™ 03258 0.7220 06828 06214 04388 0.6376 0.3366 05807 0.5743
AnoGAN™ 0.5360 0.5008 06279 04919 05769 04827 0.5426 0.5980 0.5444
GANomaly 0.6644 0.6981 0.6505 06027 05582 0.5493 04042 04512 0.5592
PatchSVDD 06357 04853 04842 0.5000 0.3908 0.6420 04707 04858 04941
Patchcore™ 0.3840 04457 04004 0.3935 03758 04958 0.1646 0.3783 0.3791
Deep-SVDD™ 03540 05103 0.5000 0.5444 05071 05073 04757 04502 04993
MT-former (Proposed) 06798 0.7480 08193 06767 0.8020 06807 04324 0.7918 0.7073
Table 5 Ablation studies of the proposed method on SK Hynix data.
MTL-DAE MTL-SVDD Focal ESAM TPR (1) FPR (1) AUC (1)
(@) 0 0 0.7229
(b) N 0.1667 0.0342 0.7751
() N 04583 0.3032 0.5489
(d) N N 04583 0.1795 0.7268
(e) N N N 04583 0.2056 06658
(f N N N 03750 0.1579 06527
(g N N N N 0.7083 0.2491 0.7821
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Fig. 4 Embedded feature visualization by t-SNE”. a Deep-SVDD. b Deep-SVDD with multi-task learning applied only to the upstream phase
(DAE). ¢ Deep-SVDD with multi-task learning to the downstream phase (SVDD). d Deep-SVDD with multi-task learning at both the upstream
and the downstream phase. e Proposed MT-former with multi-task learning, focal loss, and ESAM.

Validation error curve
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Fig. 5 Validation error curves for anomaly detection and classification task loss. a Deep-SVDD with ESAM. b Deep-SVDD with ESAM,
including multi-task learning at the upstream phase. ¢ Proposed MT-former with ESAM, including multi-task learning to both the upstream and the
downstream phase. d Comparison of classification loss. a, b show fluctuation of FPR and FNR according to a training step.

Epochs

Epochs Epochs

(Table 5f). Compared with Table 5d, use of only focal loss
did not increase TPR (Table 5¢). Use of only ESAM
slightly improves the FPR, but still limits the TPR
(Table 5f). On the other hand, the combination of focal loss
with ESAM achieved the highest TPR (0.7083) and AUC
(0.7821) (Table 5g). From the results, it is illustrated that
the simultaneous use of focal loss and ESAM module
mutually leverage each method’s effect by improving TPR.
In other words, the ESAM module improves the efficiency
of the focal loss. This effect can also be observed in
(Fig. 4e), which shows that both normal and abnormal
cases are better clustered than when MTL was used alone
(Fig. 4d). Furthermore, embedded features
significant difference between normal case and abnormal
case (p <0.0001) (Fig. 6d).

In addition, we conducted an ablation study that
considered different numbers of heads for ESAM
(Table 6). The best results (TPR = 0.7083, AUC = 0.7821)
were obtained with three heads; i.e., both too many heads
and too few heads impair ESAM results.

show a

Normal class classification result
The effectiveness of MTL, focal loss, and ESAM on

normal class examined
(Table 7). Overall accuracy was quantified using a
weighted average of the AUCs of each class. As a baseline,
a basic Deep-SVDD encoder was trained from scratch for
classification purposes only (Table 7a). Fine tuning of an
encoder extracted from MTL at both upstream and
downstream (Table 7b) achieved the best score for the
BOL class (0.8776), but poor results for most classes. The
application of focal loss for imbalance multi-class data
(Table 7c) achieved the highest score on L_FLKE (0.9487)
and second best on five classes (ALIGN ERR, ARCI,
BOL2, FLKE, and NOIS), improved weighted average
(0.8985) and showed better loss reduction (Fig. 5d).

Fine-tuning the encoder from MT-former achieved
superior accuracy in most classes, and yielded the highest
overall weighted average (0.9290) (Table 7d) and the best
loss convergence (Fig.5d). These results indicate that
ESAM achieves the best identification of new defect types,
and it improved its ability to classify irregular patterns by
considering the global context. Furthermore, from the
embedded features in the previous analysis (Fig. 4¢e), we
deduce that effectively clustering each class with the MT-
former can also be helpful in classification tasks.

classification accuracy was
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Fig. 6 Violin plots of distance distributions from a center point. The
y-axis means distance between latent vectors of data and a center
point. Red dotted line: threshold representing distance of decision
boundary between abnormal (new types of defects) and normal
(existing types of defects). a Deep-SVDD. b Deep-SVDD with multi-
task learning applied both upstream and downstream. ¢ Deep-SVDD
with multi-task learning and focal loss. d Proposed MT-former with
multi-task learning, focal loss, and ESAM. *, p < 0.05; **, p < 0.01;
¥k p <0.001; *¥*** p<0.0001.

Table 6 Ablation study on different number of attention heads
on SK Hynix data.

Number of heads TPR (1) FPR (1) AUC (1)

1 04583 02555 0.6497

2 02917 0.1985 04696

3 0.7083 0.2491 0.7821

4 02917 02346 04993

5 04167 02775 0.5039
Conclusion

Conventional anomaly detection only distinguishes
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between non-defective and defective images, the models
are just required to identify regular patterns of normal
images. Deep autoencoders (DAEs), a classic anomaly
detection model, perform poorly when applied to multi-
normal classes, because it is difficult to accurately
reconstruct different normal shapes. Deep Support Vector
Domain Description (Deep-SVDD) is known to classify
anomaly cases given single-normal case. Since the normal
cases have similar shapes and patterns in conventional task,
the latent vectors are clustered properly even if they are
trained as one class. However, it is observed that the
vectors are not properly clustered if the existing abnormal
cases are heterogeneous in shape and pattern, as in our
task. We analyzed that training diverse patterns of existing
defects as a single class led to a broad data distribution on
the existing defects, causing new defects to be included
into the broad distribution. To solve this problem, we used
multi-task learning (MTL) to simultaneously learn to
distinguish the existing abnormal classes, avoiding the
broad distribution and leading to the well-clustered latent
vectors. In addition, since our model is only trained on the
existing defects, the model does not require retraining
when a new defect is identified. Considering intricate
patterns of the current defect classes, we introduced MT-
former that uses MTL and an ESAM to detect unknown
defects that existing inspection systems cannot find in
scanning electron microscope (SEM) images. MTL can
simultaneously classify the existing defect kinds with
various forms, so it can cluster existing classes efficiently
for anomaly identification. MTL also greatly stabilizes
training with respect to false positive rate (FPR) and false
negative rate (FNR). ESAM takes global contextual
features to consider irregular patterns from complex
fabrication systems, and maximizes the efficiency of focal
loss to effectively analyze imbalanced data.

Compared with SOTA models, our method shows better
TPR result for especially the region < 20% FPR region
with high AUC (Fig.3), representing that our model

Table 7 Quantitative results of classification performance (AUC score) on existing defect cases.

Model /igRGF,{\I ARCI  BOL BOL2 CMSC CRAC DDGG DESF  FLKE F?E(E{LSS LFVO L_FLKE NOIS RESI  SBPT VZjEZ;id
(@ 07544 09431 08684 0.7924 08338 08572 09299 09700 09738 08287 09774 09163 08408 08723 08128 08477
(b) 07896 09169 08776 09096 0.7674 08556 08510 09647 09116 07466 09485 08896 0.8412 07672 07200  0.8805
() 09108 09527 0.7868 09135 0.7955 0.7999 0.8980 0.9630 0.9582 0.7368 0.9708 0.9487 08986 06753 0.7808  0.8985
(d) 09534 09627 08664 09357 08657 09306 09337 09586 09188 08161 09828 0.8660 09211 08987 08368 09290

Notes. a Training an encoder of Deep-SVDD from scratch. b Fine tuning an encoder from multi-task learning at both the upstream and
the downstream phase. ¢ Fine tuning an encoder from multi-task learning with focal loss at both the upstream and the downstream
stage. d Fine tuning an encoder from proposed MT-former with multi-task learning, focal loss, and ESAM.
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provides more balanced performance at various thresholds.
Table 3 demonstrates that while GANomaly records low
FPR at an optimal threshold, the TPR remains below 50%
(Table 3). This indicates that missing even a few defects
could lead to significant economic losses in the
semiconductor industry, making the model unsuitable for
practical applications. Hence, our model proves to be more
effective than other methods for this field. These
improvements are attributed to the integration of the
ESAM and convolutional module as a block, enabling
effective extraction of both local and global features. As a
result, our model successfully detects defects across both
localized areas and broader regions, enhancing overall
reliability. Finally, the pretrained model for anomaly
detection demonstrates that the model can also serve as a
weight-initialization technique to classify the existing-
defect classes.

For future works, we discuss potential challenges. First
of all, a small increase in FPR indicates a large number of
normal cases are misclassified as abnormal because of the
imbalanced data. Therefore, further improvements in
reducing FPR are essential to achieve reliable anomaly
detection. Second, the sub-sampling approach of the
ESAM should be further studied. In its
implementation, the sub-sampling reduces resolution at a
fixed ratio across all layers. However, applying the same
subsampling rate to smaller feature maps of last layers can
cause substantial loss of abstract information. Therefore, it
is needed to study finding the optimal sub-sampling
approach with less information loss. Last, the model's
explainability should be covered more. While visualization
techniques like t-SNE provide valuable insights into the
model's behavior, incorporating methods such as Class
Activation Mapping (CAM) could highlight the regions the
model focuses on during classification or anomaly
tasks. This advancement would improve
interpretability and offer deeper insights into the model’s
decision-making process, fostering greater transparency
and trust in its application.

current

detection
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