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Ultraviolet laser photolysis of hydrocarbons for
nondiamond carbon suppression in chemical vapor
deposition of diamond films

Li-Sha Fan1,*, Loic Constantin1,2,*, Da-wei Li1, Lei Liu1, Kamran Keramatnejad1, Clio Azina1,2, Xi Huang1,
Hossein Rabiee Golgir1, Yao Lu1, Zahra Ahmadi3, Fei Wang3, Jeffrey Shield3, Bai Cui3, Jean-Francois Silvain2

and Yong-Feng Lu1

In this work, we demonstrate that ultraviolet (UV) laser photolysis of hydrocarbon species alters the flame chemistry such that it

promotes the diamond growth rate and film quality. Optical emission spectroscopy and laser-induced fluorescence demonstrate

that direct UV laser irradiation of a diamond-forming combustion flame produces a large amount of reactive species that play cri-

tical roles in diamond growth, thereby leading to enhanced diamond growth. The diamond growth rate is more than doubled, and

diamond quality is improved by 4.2%. Investigation of the diamond nucleation process suggests that the diamond nucleation

time is significantly shortened and nondiamond carbon accumulation is greatly suppressed with UV laser irradiation of the com-

bustion flame in a laser-parallel-to-substrate geometry. A narrow amorphous carbon transition zone, averaging 4 nm in thickness,

is identified at the film–substrate interface area using transmission electron microscopy, confirming the suppression effect of UV

laser irradiation on nondiamond carbon formation. The discovery of the advantages of UV photochemistry in diamond growth is

of great significance for vastly improving the synthesis of a broad range of technically important materials.
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INTRODUCTION

The pathway by which energy is transferred to a reactive gas mixture
alters the chemical reaction rates1,2. Heating represents the conversion
of energy to the translational motion of reactant molecules; that
energy is then redistributed among various internal molecular modes,
including rotation, vibration and electronic excitation, as illustrated in
Figure 1. Because chemical reactions proceed through vibrationally
excited or electronically excited states, the conventional heating
strategy is low in energy efficiency and process selectivity. With the
significant advances in laser technology, lasers provide a unique means
of selectively driving chemical reactions by exciting specific transitions
in reactant molecules. Extensive experiments have shown that product
pathways can be controlled, or even steered, by irradiating one or
more laser beams into a reactive gas mixture3–5.
Lasers efficiently stimulate internal modes of gas molecules to

sustain a highly nonequilibrium environment, leading to some control
over selectivity. As illustrated in Figure 1, electronic excitation or direct
photolysis of simple molecules occurs by absorbing photons in the
ultraviolet (UV) region, in which the primary products are generally

either electronically excited molecules or their dissociation products,
that is, reactive species6. Vibrational excitation of reactant molecules
can be achieved by the absorption of infrared (IR) photons because
the molecular vibrational modes are located in the IR region
(Figure 1). Using diamond as a sample system, we have demonstrated
the significant role that vibrational excitation of precursor molecules
plays in improving diamond growth by irradiating a diamond-forming
gas phase with a high-power IR laser7–10.
In this context, an intriguing question arises, ‘What happens to

diamond growth if electronic excitations are triggered with UV laser
irradiation in the gas phase?’ UV photochemistry has long been
exploited as a means of gaining chemical control in molecular
reactions motivated by suppressing side product channels to obtain
the desired deposit. However, there have been few successes in
practical material synthesis because the photochemical effects have
been believed to be too small11–13. However, selectivity among various
competing chemical processes in material synthesis is attractive
because it enables a better understanding of the reacting channels,
leading to process control and improvements.
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As one of the most widely used synthesis techniques, chemical
vapor deposition (CVD) relies mostly on phenomena near thermal
equilibrium to activate precursor gases and induce gas reactions11. A
comparative study of the influence of IR laser and UV laser
photochemistry on the diamond CVD process provides an example
of the effects of these different energy coupling paths in material
synthesis. Several attempts have been made to use UV photolysis in
diamond synthesis14–18. Kitahama et al17 reported using a 193-nm
laser to photodissociate the acetylene precursor for diamond synthesis.
However, subsequent characterization showed the deposition to be
amorphous carbon, and the initial work was retracted15. Govo et al15

reported successful diamond growth by irradiating carbon tetrachlor-
ide gas using a 193-nm laser, but the process was assisted by
predissociated hydrogen. These studies suggest that although UV laser
irradiation effectively dissociated the precursor molecules, UV-laser-
induced photolysis alone failed to provide a suitable chemical and
transport environment for diamond formation.
In this work, instead of simply relying on UV laser photolysis, we

introduced UV laser irradiation into a conventional combustion
diamond CVD process, demonstrating that the flame chemistry was
altered such that it favored diamond growth and suppressed non-
diamond carbon accumulation. Optical emission spectroscopy (OES)
and laser-induced fluorescence (LIF) demonstrated that UV laser
irradiation of the combustion flame promoted the generation of
reactive species that are critical to diamond growth, leading to
enhanced diamond growth. The growth rate and the film quality
were significantly enhanced. Cross-sections of the microstructures of
the diamond films revealed fast lateral grain size evolution rates as well
as significantly shortened nucleation times with UV laser irradiation,
suggesting that secondary nucleation, which is closely related to the
accumulation of amorphous graphitic carbon, was significantly
suppressed. A narrow amorphous carbon transition zone, averaging
4 nm in thickness, was identified at the film–substrate interface using
transmission electron microscopy (TEM), confirming the suppression
effect of UV laser irradiation on nondiamond carbon formation.
Compared with our previous results obtained with IR laser vibrational
excitation, the UV laser irradiation acted in a nonthermal fashion, in
which reactive species for diamond growth were directly produced
through photolysis. The systematic investigation of how the energy
coupling path, either through vibrational or electronic excitation,
affects the diamond growth process provides a clear guideline for fully
exploring the advantages of laser chemistry in material synthesis.

MATERIALS AND METHODS

A schematic diagram of the UV-laser-assisted combustion diamond
CVD experiment setup is shown in Supplementary Fig. S1. A detailed
illustration of the diamond growth process is provided in the
Supplementary Information. A combustion flame generated from a
mixture of ethylene (C2H4), acetylene (C2H2) and oxygen (O2) was
used for diamond growth. A UV krypton fluoride (KrF) excimer laser
beam (Lambda Physik, COMPex 205, Santa Clara, CA, USA) with a
wavelength of 248 nm and a pulse width of 23 ns was directed
perpendicularly through the combustion flames and parallel to the
substrate. Diamond growth was performed using UV laser irradiation
of the combustion flame by tuning the laser fluence from 0.6 to
1.4 J cm− 2 at a laser frequency of 35 Hz. To investigate the growth rate
and film quality, the deposition time was varied to obtain a similar
film thickness, ~ 10 μm, for comparison purposes. For the diamond
nucleation study, the deposition time was 10 min. The setup for the
OES and LIF study was similar to that reported in a previous work19.
A detailed schematic drawing of the setup and the measurement
parameters are provided in Supplementary Fig. S2.
The surface morphologies and cross-sectional microstructures of

the diamond films were characterized by a scanning electron micro-
scope (SEM, XL-30, Philips Electronics Optics, Eindhoven, Nether-
lands). The growth rate was calculated by dividing the film thickness
by the deposition time. Diamond quality was evaluated using a micro-
Raman spectrometer (inVia, Renishaw, New Mills, UK). An argon-ion
laser with a wavelength of 514.5 nm and a power of 50 mW was used
as the exciting source. The beam was focused to a spot size of ∼ 5 μm
using a 20× objective lens. TEM (FEI Tecnai Osiris, 200 kV, Thermo
Fisher Scientific Inc., OR, USA) was performed to study the growth
transition zone at the film–substrate interface.

RESULTS AND DISCUSSION

Material synthesis often proceeds through chemical processes occur-
ring in the gas phase20. Examination of the variation in the gas phase
under UV laser irradiation is therefore critical in determining the role
of irradiation in the growth process. As one of the most commonly
used techniques for detecting excited species in a reaction system, OES
of diamond-forming flames under different laser irradiation condi-
tions was studied. Supplementary Fig. S3a illustrates the acquisition
time sequences between the KrF UV laser and the intensified charge-
coupled device gate of the spectrometer. The emission peaks from
three mains species were detected in the spectra (Supplementary
Fig. S3b): (1) C2: A

3Πg→X’3Πu (Δv=− 1, 0, 1, 2), (2) CH: A2Δ→X2Π
(Δv= 0) and (3) OH: A2Σ+→X2Π (Δv= 0)19. All species’ emission
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Figure 1 Schematic illustration of how different energy coupling pathways affect diamond synthesis. (a) Chemical reactions can be promoted by activating
precursor molecules with laser excitations. (b) Different energy coupling pathways enabled by laser excitation of specific transitions, IR laser for vibrational
excitation, and UV laser for electronic excitations/photolysis. (c) Comparison of diamond growth results (Ephoton: photon energy, Rl and Rnl: growth rate with
and without laser, ΔQi: diamond quality factor increment, and ΔTflame: flame temperature increment) with IR or UV laser irradiation. *Denotes data from
Ref. 7.

Laser photolysis for chemical control in diamond CVD
LS Fan et al

2

Light: Science & Applications doi:10.1038/lsa.2017.177



peaks grew as the laser fluence increased. The OES peak intensities
assigned to each excited species were integrated and summed,
representing their abundance in the flame.
It was difficult to determine two-dimensional distributions of the

species using spectroscopic diagnostics with point measurements21,22.
Two-dimensional natural emission flame images under different UV
irradiation conditions provided more insight into the radical distribu-
tion within the flame, as shown in Figure 2a. False coloring was used
to indicate the emission intensities, representing the excited species’
abundance. Notably, the total emission from the flame became
brighter as the laser fluence increased. Three filters were placed in
the optical path to measure the two-dimensional emission images
created by the emission band from each excited species: diatomic
carbon (C2), methylidyne radical (CH) and hydroxyl radical (OH).
Upon inspection of the images, it was clear that UV laser irradiation
effectively induced generation of all three excited species, following the
same trend demonstrated in the spectra. It was noted that the increase
in OH was concentrated in the center of the flame, while the amounts
of C2 and CH were more significant at the flame edges.
A limitation of OES is that it only probes excited-state species,

which are usually not important in the overall chemistry of a reaction
because their number densities are several orders of magnitude smaller
than those of the ground state. LIF is often the technique of choice for
selectively and unambiguously detecting ground-state species by their
excitation spectrum, and the LIF signal is directly proportional to the
density of the probed ground-state species. The detailed LIF measure-
ment procedure and results are shown in the Supplementary
Information. The LIF signals of C2 (A-X (1,1)) at 512.9 nm, CH
A-X (0,0) at 431.4 nm and OH A-X(0,1) at 347.2 nm by exciting
C2 (X-A (0,1)) at 473.7 nm, CH (X-B (0,0)) at 388.9 nm and OH

(X-A (0,0)) at 307.8 nm were separately observed, as shown in
Supplementary Fig. S4. The LIF signals assigned to each ground-
state species were integrated, representing their abundance in
the flame.
The integrated intensities of OES peaks and LIF signals of C2, CH

and OH are plotted as a function of the laser fluence in Figure 2b and
2c. Compared with the values obtained without UV laser irradiation,
significant increases in the integrated peak intensities for both excited-
and ground-state species (C2, CH, OH) were observed with UV laser
irradiation, suggesting that more excited- and ground-state species
were generated with UV irradiation. However, the increase in the
integrated peak intensities decreased as the laser fluence increased
from 0.6 to 1.4 J cm− 2.
Distinct increments in the concentrations of both excited- and

ground-state C2, CH and OH species were observed in the UV-laser-
irradiated flame. These species are all considered to be critical for
diamond formation23–27. The next pertinent question that arises is,
‘How were these species generated? By pyrolysis or photolysis?’ To
determine how these species were generated, the flame temperature,
Tflame, was analyzed at different laser fluences. Due to strong coupling
between the translational and rotational energy states, the flame
temperature can be approximated by the rotational temperature
derived from a high-resolution rotational line emission intensity of
CH using the Boltzmann plot28,29. The detailed calculation procedure
is illustrated in Supplementary Fig. S5. As shown in Figure 2d, the
flame temperature was found to remain nearly constant with respect
to the laser fluence, suggesting that the UV-laser-induced generation
of both excited- and ground-state species (C2, CH and OH) was
attributed to nonthermal processes: electronic excitation and direct
photolytic processes. This finding is significantly different from what
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we observed with IR laser vibrational excitation, in which the flame
temperature increased by 252 K under wavelength-matched laser
irradiation, as shown in Figure 1 and Ref. 7.
The difference, in terms of flame temperature variation, suggests

completely distinct energy coupling mechanisms of IR laser and UV
laser photochemistry. UV photochemistry is a ‘cold’ process, con-
tributing little to the gas-phase temperature variation. As illustrated in
Figure 3, UV photons absorbed by the molecules can directly excite
electronic transition to the state in which dissociation is ready to occur
when the photon energy, hv, exceeds the bond dissociation energy, D0

(Ref. 3). The photon energy of the UV laser, 5 eV, was high enough to
induce both electronic excitations of CH, OH and C2 and direct
photolysis of CH and OH, whose bond dissociation energies were
lower than the UV photon energy (Figure 3). Based on the comparison
of LIF and OES signals, it was found that both electronic excitation and
photolysis occurred in the flame with UV laser irradiation.
In addition to the three emissive species that were detectable using

OES and LIF, there was a large number of other nonemissive
hydrocarbons existing in the flame, including CH3 (D0= 4.69 eV)
and C2H4 (D0= 4.81 eV), whose bonding energies were lower than the
UV photon energy30. Photolysis of C2H2 and more than 20 organic
molecules by either a 193- or 248-nm laser has also been reported
previously14,15. The higher the laser fluence is, the greater the photon
flux becomes, leading to the generation of more reactive species. This
situation is different from what occurred with IR laser irradiation in
our previous work. IR laser energy was coupled into the gas phase
through vibrationally exciting precursor molecules. The fact that IR
photon energy, 0.12 eV, is much lower than the bond-breaking energy
of most hydrocarbon species, 3–6 eV, suggests that direct molecular
dissociation by simply absorbing IR photons is less likely. As shown in
Figure 1, IR-laser-induced excitation promotes targeting molecules
from the vibrational ground state to the excited state but within the
same ground electronic manifold. Rapid intermolecular and intramo-
lecular vibrational energy transfer serves as a heat bath for enhancing
the reactivity of precursor molecules and accelerating chemical
reactions. Released heat from the accelerated reactions contributes to
an increase in flame temperature with IR laser irradiation3. Therefore,
IR laser chemistry should be viewed as a ‘hot’ process compared with
‘cold’ UV laser photochemistry, as indicated in Figure 1. Instead of
pooling energy to drive chemical reactions and subsequently produ-
cing critical species for diamond formation, the electronic excited
reactive species and active species were generated from direct UV
photolysis in a ‘nonthermal’ fashion.
Based on an understanding of the variation of the flame gas phase

with UV laser irradiation, we prepared diamond films under UV laser
irradiation at a fixed laser frequency of 35 Hz with the laser fluence
tuned from 0.6 to 1.4 J cm− 2 to study the influence of UV laser
irradiation on diamond growth. The surface morphologies of the
diamond films deposited at different laser fluences, from 0.6 to
1.4 J cm− 2, are shown in Figure 4a. The diamond film deposited
without UV laser irradiation consisted of randomly oriented grains
with an average size of 2 μm. The average diamond grain size
increased with the laser fluence, reaching a value of 5 μm at a laser
fluence of 1.4 J cm− 2.
CVD diamond grows as a columnar structure with a grain size that

is initially very small and that increases through the film thickness31.
To determine how UV laser irradiation affects the grain size evolution,
the cross-sectional microstructure of the films was evaluated. As
shown in Figure 4a, large, uniform grains were obtained with UV laser
irradiation, and the lateral grain size increased with the laser fluence.
The fast lateral grain size evolution suggests that diamond crystal

growth under UV laser irradiation encountered less secondary
nucleation, which is known to impede expanded growth of a single
grain. Secondary nucleation is believed to arise from amorphous
graphitic carbon accumulation that alters the initial crystal growth
direction and subsequently induces secondary nucleation32. The
significantly enlarged lateral grain size indicated that UV laser
irradiation greatly suppressed the formation of amorphous graphitic
carbon during diamond growth.
Diamond film quality was evaluated using Raman spectroscopy. A

sharp diamond peak at ∼ 1332 cm− 1 was observed in all spectra, as
shown in Figure 4b. The D-band at 1370 cm− 1 and the G-band
centered at 1500 cm− 1 represent the disordered carbon content and
graphitic carbon content in the films, respectively33. The diamond
peak became sharper and more intense as the laser fluence increased,
suggesting that higher diamond quality and a purer diamond phase
were obtained with UV laser irradiation. A quality factor, Qi= Idiamond/
(Idiamond+Ia-carbon/233), was derived from the Raman spectra, where
Idiamond and Ia-carbon are the integrated intensities of the diamond peak
and the sum of the integrated intensities of the nondiamond carbon
bands, respectively34. The diamond quality factor exhibited a nearly
linear increase with respect to the laser fluence, reaching a value of
97.4% at a laser fluence of 1.4 J cm− 2, 4.2% higher than that of the
film prepared without laser irradiation (Figure 4c). The large diamond
grains observed in the films prepared by UV laser irradiation at a high
fluence led to the improved diamond quality because of a weaker
contribution from the grain boundaries where nondiamond carbon
formed. The narrowing diamond Raman peak was also closely related
to the large diamond grains obtained with UV laser irradiation,
through which the detecting laser light encountered less deformation.
The growth rate, R, showed a linear increase with respect to the laser
fluence, as shown in Figure 4c, reaching a value of 15 μm h− 1 at
1.4 J cm− 2, more than twice the value obtained without UV laser
irradiation. The enhanced growth rate and the improved quality
suggest the positive role of UV laser irradiation in promoting diamond
growth.
Raman mapping based on the full-width at half-maximum of the

diamond Raman peak was performed to evaluate the cross-sectional
grain crystal quality and uniformity. As shown in Figure 4d, the cross-
section of the diamond film prepared with UV laser irradiation at
1.4 J cm− 2 was more uniform than that prepared without laser
irradiation, exhibiting an average full-width at half-maximum value
of 5.7 cm− 1, 3.1 cm− 1 narrower than that prepared without a laser. A
uniform increase in diamond quality was thus confirmed through the
film thickness with UV laser irradiation.
The morphology and quality characterizations of the diamond films

suggested that UV laser irradiation affected the diamond growth
process such that it suppressed graphitic carbon formation and
favored diamond growth. The nucleation stage is the most sensitive
to amorphous graphitic carbon accumulation because diamonds
nucleate from spontaneous precipitation of a pure sp3 carbon cluster
from the amorphous graphitic carbon matrix that forms during the
incubation stage35,36. To confirm the suppressing effects of UV laser
irradiation on amorphous graphitic carbon accumulation, the dia-
mond nucleation process was further investigated by in situ monitor-
ing of the field-enhanced thermionic emission current36 and preparing
diamond films within a short period, that is, 10 min. The current
measurement setup and the thermionic current evolution as a
function of the deposition time are illustrated in the Supplementary
Information. The surface morphologies of the 10-min diamond films
prepared at different laser fluences are shown in Figure 5a.
Cauliflower-like nanodiamond films were obtained without laser
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irradiation, while UV laser irradiation transformed the nanodiamond
features into larger, faceted microcrystal structures. The cauliflower-
like grains formed under conditions in which continuous growth of
initially formed crystalline nuclei was severely disturbed by the
secondary nucleation process due to the accumulation of amorphous
graphitic carbon. As indicated by the Raman spectra (Figure 5b), the 10-
min diamond film prepared without laser irradiation exhibited a typical
nanodiamond feature. The Raman peaks appearing at ∼ 1150 (υ1) and

1480 cm− 1 (υ3) are related to the trans-polyacetylene phase present at
the grain boundaries as the grain size reached the nanometer scale,
representing a signature of nanodiamond33. These two peaks became
weaker, and the diamond peak rose as the laser fluence increased. At a
laser fluence of 1.4 J cm− 2, the υ1 and υ3 peaks were difficult to retrieve,
and a microdiamond Raman feature was exhibited.
As shown in Figure 5c, the nucleation period was clearly shortened

from 9.5 to 5.5 min as the laser fluence increased. Diamond nuclei
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grow through transformation of amorphous carbon into diamond at
the amorphous matrix–diamond interface. This transformation is
governed by a kinetic balance between the etching rate and the growth
rate of graphitic carbon and diamond36. The longer the nucleation
process is, the thicker the amorphous carbon transition layer that
forms at the initial stage becomes. The significantly shortened
nucleation process confirmed that the UV laser irradiation affected
the diamond growth process by quickly balancing the kinetic
competition process such that it favored diamond nucleation and
suppressed amorphous graphitic carbon codeposition. The signifi-
cantly reduced nucleation time and the morphology/Raman charac-
terization of the 10-min diamond films suggest that UV laser
irradiation helped complete the nucleation process quickly, which
was accompanied by greatly suppressed nondiamond carbon
accumulation.
Figure 6a shows a TEM image of the cross-section of a 389-nm

thick diamond film on WC prepared with UV laser irradiation at
1.4 J cm− 2. A thin platinum (Pt) layer was deposited on the diamond
film to protect it from ion beam damage during sample preparation. A
high-resolution TEM (HRTEM) image (Figure 6b) of the diamond
crystal region marked by a blue square, in Figure 6a, clearly shows
continuous diamond {111} family planes, confirming the good dia-
mond grain quality. Diamond has an interplane d111 value of 2.06 Å. A
distance of 10 planes was measured to accurately determine the d value
of diamond {111} planes, 2.08 nm, well matching the theoretical value.
The corresponding fast Fourier transform (FFT) pattern shows
diamond (440) spots, suggesting the beam direction was [110].
To further confirm that the nucleation time was greatly reduced and

the amorphous carbon transition layer was suppressed with UV laser
irradiation, HRTEM was performed to reveal the film–substrate
interface of the diamond film prepared with UV laser irradiation in
Figure 6c. No sharp interface was identified because the tungsten
carbide (WC) substrate was not atomically flat and had nanometer-
scale roughness. Tungsten carbide has a theoretical d001 value of

2.82 Å. Based on the atomic-resolution HRTEM images (Figure 6d–6f)
of different zones and their FFT patterns, shown in the inset, it is easy
to differentiate the zones based on the calculated d value. As shown in
Figure 6c, the average transition zone thickness of the diamond film
prepared with UV laser irradiation was ∼ 4 nm, which was significantly
narrower than that observed for the 765-nm thick graphite carbon
zone between the diamond coating and the WC substrate in the
diamond film prepared without UV laser irradiation, as shown in
Figure 7a. The TEM diamond sample prepared without UV laser
irradiation exhibited a typical polycrystalline graphitic carbon feature,
as indicated in the Raman spectrum (the inset of Figure 7a). An
HRTEM image (Figure 7b) of the diamond crystal region marked by a
green rectangle in Figure 7a shows fringes from the diamond {111}
planes with some particle inclusions, which can be assigned to
graphitic carbon quantum dots with {1120} planes according to the
measured d value. An HRTEM image of the transition zone marked by
a purple rectangle in Figure 7a shows graphitic carbon particles
embedded in an amorphous matrix, matching the Raman spectro-
scopy results. This narrow transition zone in the diamond film
prepared with UV laser irradiation was comparable to that in the
diamond films on WC prepared using microwave-enhanced CVD and
hot-filament CVD, as previously reported37,38, which are known to
produce higher-quality diamond films than combustion CVD. The
narrow transition zone observed with UV laser irradiation again
confirms that UV laser irradiation altered the diamond growth process
by suppressing the formation of nondiamond carbon.
The observation of fast lateral grain size evolution and the

significantly reduced nucleation time can be explained by the
observation of gas-phase variation in the flame. Figure 2a shows a
pronounced increase in OH abundance in the central region of the
flame. OH radical plays a critical role in combustion synthesis of
diamond by etching surface-bound hydrogen and stabilizing sp3-
hybridized surface carbon bonds23,24. The increase in the amount of
OH radical explains why graphitic carbon accumulation was greatly

ba

c

Figure 7 TEM microstructure characterization of the film-substrate interface of a diamond film prepared without UV laser irradiation. (a) TEM image of a
diamond film prepared without UV laser irradiation and HRTEM images of (b) the diamond crystal region and (c) the nondiamond carbon transition zone
marked by green and purple rectangles in a, respectively. The inset in a is a Raman spectrum collected from a cross-section of the TEM sample.
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suppressed by UV laser irradiation. Another possible contribution to
the significantly promoted diamond growth is an increased atomic H
concentration due to promoted H-abstraction processes with UV laser
photolysis. The photoinduced dissociation of hydrocarbons preferen-
tially occurs at C–H bonds through H-abstraction processes rather
than at C–C bonds7. The primary processes of 193 nm UV photolysis
of C2H2 are

39

C2H2-C2HþH ð1Þ

C2H2-C2þH2 ð2Þ
The primary processes of 147 nm UV photolysis of C2H4 are

40

C2H4-C2H2 þH2 ð3Þ

C2H4-C2H2 þ 2H ð4Þ
The reactions of atomic hydrogen not only control the gas-phase

chemistry but also determine the availability of reactive sites. Diamond
growth from an oxyacetylene flame proceeds through two critical
surface reactions: (1) addition of reactive hydrocarbon radicals to the
active surface sites and (2) H-abstraction from hydrocarbon radicals to
create more reactive sites to accept hydrocarbons and stable sp3-
hybridized carbon bonds31. The H-abstraction processes induced by
UV laser photolysis of hydrocarbons thus could play a dominant role
in promoting diamond growth. However, a more detailed study is
required to confirm this hypothesis because the KrF excimer laser used
in this study has a longer wavelength, 248 nm, than that of lasers used
in the reported photochemistry study of C2H2 and C2H4, making the
photoinduced H-abstraction rate much smaller39,40.
Compared with the diamond growth results obtained with two

different energy coupling paths, IR vibrational excitation and UV
photolysis in Figure 1, IR vibrational excitation acted thermally to
enhance the reactivity of reactant molecules and accelerate the total
reaction rate, while UV photolysis contributed nonthermally to the
diamond growth process by providing critical reactive species through
direct molecular photofragmentation. Both energy coupling paths
promoted the diamond growth rate and quality simultaneously.
However, compared with the continuous IR laser energy input using
a continuous-wave CO2 laser, the interaction time between the UV
laser and the diamond-forming flame was determined by the laser
pulse width, 23 ns, but with an extremely high peak power density of
61 MW cm− 2. Under such high peak power, multiphoton absorption
leading to molecular photofragmentation is achievable. The lifetime of
the photon-induced reactive species, C2 and CH, were measured using
time-resolved OES with an intensified charge-coupled device gate
width of 200 ns. The detailed measurement procedure is illustrated in
the Supplementary Information and Supplementary Fig. S7. The
deduced lifetimes of C2 and CH were 0.7 and 1.6 μs, respectively.
Taking the laser repetition rate of 35 Hz into consideration, the actual
UV impact time occupied only 5.7× 10− 2% of the total growth time.
Although it is still not clear why, it is impressive that such a short-lived
effect of the gas significantly altered diamond growth on a much larger
time scale. Compared with UV laser irradiation, IR laser irradiation
produced a more pronounced increase in the diamond growth rate
and diamond quality, which could be attributed to the enormously
different power capabilities of the lasers. The UV KrF excimer laser
used for the photolysis study outputs up to 7W of power, two orders
of magnitude lower than the power output of the IR CO2 laser used
for the vibrational excitation study, 1800W. However, the fact that the
growth rate increase under UV laser irradiation was comparable to
that under IR laser irradiation suggests that the ‘cold’ electronic energy

coupling achieved using UV laser irradiation affects the combustion
process more efficiently than the ‘hot’ vibrational energy coupling
achieved using IR laser irradiation.

CONCLUSIONS

The influence of UV-laser-induced photolysis on diamond growth was
investigated. OES and LIF of the flame indicated that UV-laser-
induced photolysis produced large amounts of reactive radicals in the
flame, contributing directly to the promotion of diamond growth.
Investigation of the nucleation process suggested that UV laser
irradiation modified diamond growth such that it favored diamond
formation and suppressed nondiamond carbon accumulation, leading
to an enhanced diamond deposition rate and improved diamond
quality. The diamond growth observed under UV laser irradiation was
compared with that assisted by IR vibrational excitations. The results
suggest that both energy coupling paths facilitated diamond growth to
some extent, although the working mechanisms were completely
distinct. The discovery of the advantages of laser photochemistry in
diamond growth is of great significance for vastly improving the
synthesis of a broad range of technically important materials.
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