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Beyond the acoustic diffraction limit:
superresolution localization optoacoustic
tomography (LOT)
Chulhong Kim1

Localization optoacoustic tomography provides
superresolution imaging capability in 3D beyond the
acoustic diffraction limit, which can be crucial for
mapping microcirculation in cancers, brain functions,
peripheral vascular diseases, etc.
Optoacoustic (also referred to as photoacoustic) tomo-

graphy (OAT) has been gaining popularity for preclinical
and clinical imaging during the past couple of decades1.
OAT breaks the long-standing shallow imaging depth
limitation of conventional optical imaging by forming an
image using the optoacoustic (OA) effect. Through
advances in ultrasound imaging technologies, OAT pro-
vides rich optical contrast while achieving high spatial
resolution deep inside living subjects (up to several cen-
timeters). Thanks to these hybrid technologies, the use of
preclinical OAT to study cancer physiopathology, neural
physiology, drug delivery, vascular diseases, etc., has
spread globally to many laboratories. More importantly,
the applications of OAT have been extended to include
many clinical trials, such as early diagnosis and treatment
monitoring of cancers, imaging of the bowel for diseases,
human neuroimaging for diagnosing neurological defects,
imaging of peripheral arteries and veins for detecting
vascular disease, and intravascular imaging for char-
acterizing plaque.
OAT is mainly implemented in two domains: the optical

ballistic regime (<~1mm in biological tissues) and the
optical diffusive regime (>~1mm in biological tissues). In
the optical ballistic regime, the lateral resolution of OA
imaging is determined by the tight optical focus, and the

technology is referred to as optical-resolution OA
microscopy (OAM). In the optical diffusive regime, the
resolution is determined by the acoustic focus and/or
ultrasound parameters, and this technology is referred to
as acoustic-resolution OAT. The resolutions of OAT in
both regimes are limited by either the optical or acoustic
diffraction limit. Recently, several attempts were made by
multiple researchers to exceed these diffraction limits to
achieve superresolution imaging. In the optical ballistic
domain, Lihong’s group explored subdiffraction OAM
using either nonlinear optical saturation or photobleach-
ing effects2, 3. In addition, Lee et al. developed super-
resolution photoactivated atomic force microscopy and
improved the resolution to ~8 nm4. In the optical diffusive
domain, Thomas et al. demonstrated superresolution
OAT beyond the acoustic diffraction limit by either
probing the fluctuations of OA signals with dynamic
optical speckle excitation or detecting the fluctuating OA
signals from flowing optical absorbers5, 6. Furthermore,
Donald et al. applied a wavefront-shaping technology to
squeeze the spatial resolution of OAT to smaller than the
acoustic diffraction limit 7.
Compared to the previous results, Luís et al. applied the

localization imaging approach to OAT to enhance the
visualization of flowing particles that are embedded in an
optical scattering medium in 3D and referred to this
approach as localization optoacoustic tomography (LOT).
In LOT, multiple OA images are obtained at the same
location using a portable volumetric OAT system that is
equipped with a spherical array probe (Fig. 1a)8. Then, the
OA images are superimposed after filtering each image to
obtain local maximum pixels (bright dots in Fig. 1b) that
correspond to the particle’s OA signals. In the final
superimposed image, the OA signals overlap and the final
LOT image shows the path of the moving particle in 3D
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(Fig. 1c). Compared to the conventional OA images, the
blurring effect of the point spread function disappears in
the LOT images since only the locations of the point
sources are used for localization of the signals. For high-
resolution imaging of vasculatures, injection of exogenous
agents into the blood stream is required. Table 1 com-
pares the mechanisms and performances from previous
reports with those of LOT.
LOT is suitable for imaging any structure with the flow

of optical absorbers. For biomedical applications, imaging
of vascular structures with high resolution is very

attractive for studying cancers, brain activities, peripheral
vascular diseases, etc.
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Fig. 1 Imaging principles of localization optoacoustic tomography. a A spherical array of ultrasound transducers is used to acquire a three-
dimensional optoacoustic image of flowing absorbers in an optical scattering medium for each laser pulse. b The positions of sparsely distributed
absorbers are measured (localized) in a sequence of images. c An image is formed by superimposing the localized positions

Table 1 Comparison of the imaging domain, superresolution mechanism, image formation mechanism, and dimensions
from previous reports and of LOT

Imaging domain Superresolution mechanism Image formation mechanism Dimensions

Lee et al.4 Surface OA/photothermal detection using AFM tips Point-by-point scanning 2D in x and y

Danielli et al.2 Ballistic Nonlinear optical excitation using optical saturation Point-by-point scanning 3D

Yao et al.3 Nonlinear optical excitation using photobleaching

Chaigne et al.5, 6 Diffusive Fluctuations of OA signals with dynamic optical

speckle excitation

Ultrasound beamforming using a linear

array probe

2D in x and z

Fluctuations of OA signals with flowing particles

Conkey et al.7 Optical excitation with wavefront shaping Point-by-point scanning 3D

Luís et al.8 Fluctuations of OA signals with flowing particles Ultrasound beamforming using a spherical

array probe

3D
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