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Multiparameter resonant imaging for
studying cell interactions
José Juan-Colás 1,2 and Thomas F Krauss 1

The development of optical microscopy techniques has
provided major insights into the machinery of life, from
molecules to cells to tissues and organs. Fluorescent
techniques have been particularly successful in this
respect by elucidating biological pathways and helping us
understand the complex relationships that underpin all
living organisms. For example, the first use of fluores-
cence as an analytical tool in 18641 paved the way for
the study of biological entities and interactions, but it was
not until nearly 60 years later, in the 1930s, that
fluorophores were first employed to perform biological
investigations into specific tissue components and bac-
teria that do not autofluoresce2. These advances led to the
first labeling of an antibody with a visible label in 19413,
which gave birth to the field of immunofluorescence and
allowed us obtain unprecedented insight into antibody
structure.
Nevertheless, fluorescence techniques require the

addition of labels, which complicate the procedure and
may interfere with the very pathways that we are trying to
understand4,5. As a result, new methods have been
developed that do not require the addition of fluorescent
labels but use photonic resonances to enhance the weak
interaction between electromagnetic fields and the bio-
logical objects of interest. Moreover, it is important to
detect multiple parameters in parallel since information
about the density, adhesion, or motility of a living body
and properties such as the stiffness and impedance of
biological objects all provide insights into our under-
standing of biological pathways. An important step
toward this goal of multiparameter characterization has
now been taken with the introduction of a resonant label-
free microscopy technique that offers insights into both

the density of cells and their adhesion to a substrate. The
technique exploits guided mode resonances in photonic
crystals and is termed photonic resonator outcoupler
microscopy (PROM)6. PROM can detect changes in both
the phase and amplitude of the photonic resonance that is
caused by the presence of a cell. The change in phase is
related to the optical density, i.e., it indicates the presence
of cellular matter, while the change in amplitude is related
to the shape of the cell, which indicates adhesion to the
surface.
Related techniques include surface plasmon resonance

microscopy (SPRM)7, photonic crystal enhanced micro-
scopy (PCEM)8 and elastic resonator interference stress
microscopy (ERSIM)9. SPRM and PCEM sense changes in
the refractive index (n) within the first ~200 nm from the
substrate and have demonstrated the capability of mon-
itoring cell attachment10 and protein diffusion at the cell
membrane level11, while ERSIM detects adhesion and,
more generally, forces that are exerted by the cell on the
surface8. Deeper, complementary biological information
can be retrieved with PROM by examining the refractive
index variations more carefully; PROM is able to disen-
tangle changes in the refractive index from changes in
scattering, which predominantly occur at the edges of an
object6. The authors explore this effect in the context of
stem cell imaging to identify whether these changes are
associated with standard forces from cell-matrix adhe-
sions or with specific aggregations of proteins at the cell
membrane level. Such aggregations are known as focal
adhesions (FAs), and they regulate the engagement of the
cells with their environment as well as their motility
(Fig. 1).
Standard cell-matrix adhesion shows a significant var-

iation in the refractive index but has a low impact on
scattering. In contrast, FAs exhibit notable variations in
the refractive index and a strong increase in scattering.
Therefore, the PROM technique is able to identify the
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locations of these FAs within the cell membrane and
yields results that are closely correlated with fluorescence-
based measurements without the need for fluorescent
dyes and the inconvenience they entail. Therefore, the
PROM technique is a valuable label-free tool for per-
forming dynamic, long-term and quantitative imaging of
cell-surface interactions on a micrometer scale12.
This approach for disentangling changes in refractive

index from changes in scattering, which is exemplified
here in the context of stem cell imaging, can open
new avenues for interpreting the information provided
by label-free imaging and offers novel insights into
biological processes. If scattering can be related to
molecular density6, it can also be employed to estimate
molecular conformation, as they are highly linked in some
biological processes13. Therefore, by interpreting the
effect of scattering on some biological systems, it is pos-
sible to further characterize the ongoing biological pro-
cesses, as biological conformation determines biological
function.
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Fig. 1 Illustration of the cross-section of a cell attached to a surface. At the cell-surface interface, particular cell membrane components are
located at the outer regions of the cell membrane to regulate engagement and motility. These components agregate at the edges of a cell and
increase light scatterring, thereby reducing the amplitude of the photonic resonance, compared to the common cell-matrix adhesions, which
impact on its phase
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