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Abstract
Multimode optical fibers have seen increasing applications in communication, imaging, high-power lasers, and
amplifiers. However, inherent imperfections and environmental perturbations cause random polarization and mode
mixing, causing the output polarization states to be different from the input polarization states. This difference poses a
serious issue for employing polarization-sensitive techniques to control light–matter interactions or nonlinear optical
processes at the distal end of a fiber probe. Here, we demonstrate complete control of polarization states for all output
channels by only manipulating the spatial wavefront of a laser beam into the fiber. Arbitrary polarization states for
individual output channels are generated by wavefront shaping without constraining the input polarization. The
strong coupling between the spatial and polarization degrees of freedom in a multimode fiber enables full
polarization control with the spatial degrees of freedom alone; thus, wavefront shaping can transform a multimode
fiber into a highly efficient reconfigurable matrix of waveplates for imaging and communication applications.

Introduction
The vectorial nature of electromagnetic waves plays an

indispensable role in light–matter interaction, optical
transmission, and imaging. Control over the polarization
state of light has been widely exploited in single-molecule
detection, nanoplasmonics, optical tweezers, nonlinear
microscopy, and optical coherence tomography. However,
a well-prepared state of polarization can be easily
scrambled by multiple scatterings of light in three-
dimensional disordered media. An alternative considera-
tion is that multiple scatterings couple spatial and polar-
ization degrees of freedom, enabling polarization control
of the scattered light using wavefront shaping of the
incident beam. Arbitrary polarization states have been
attained in a single or a few spatial channels1–5,

transforming the random medium into a dynamic wave-
plate. For imaging and sensing applications, full polar-
ization control of all output channels can avoid spatial
point scanning and acquire information in parallel.
However, it is extremely difficult to control the polariza-
tion state of the total transmitted light, and the relatively
low transmission through a scattering medium limits the
efficiency.
Polarization scrambling also occurs in optical fibers6.

For a single-mode fiber, the output polarization state can
be controlled by manipulating the input polarization. Due
to refractive index fluctuations introduced by inherent
imperfection and environmental perturbation such as
eccentricity, bending, and twisting, a multimode fiber
(MMF) experiences not only polarization mixing but also
mode mixing. When light is launched into a single guided
mode in the MMF, it spreads to other modes, each of
which experiences distinct polarization scrambling. Thus,
the output polarization state of the modes varies from one
mode to another (see Fig. 1a), prohibiting the control of
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output polarization states in all modes by adjusting the
input polarization of a single mode. One approach to
achieve complete polarization control is to measure the
full transmission matrix of the MMF and invert it to find
the vector fields to be injected into the individual modes.
This approach requires simultaneous control of both the
spatial and polarization degrees of freedom at the input
and is technically demanding.
The coupling between the spatial and polarization

degrees of freedom in an MMF, such as in a random
scattering medium7,8, opens the possibility of utilizing only
the spatial degrees of freedom of the input wave to control
the polarization state of the output field. The key question
is whether such control would be complete in the sense
that arbitrary polarization states can be attained for total
transmitted light regardless of the input polarization, and
each output mode has a polarization state that differs from
each other in a designed manner. If complete polarization
control can be achieved by only shaping the spatial
wavefront of an input beam, it is easier to experimentally
realize because most spatial light modulators (SLMs)
operate for one polarization. Complete control of output
polarization states is essential in the application of MMFs
in endoscopy9–17, spectroscopy18–20, microscopy21,22,
nonlinear optics23,24, quantum optics25,26, optical com-
munication27, and fiber amplifiers28–33.
In this study, we experimentally demonstrate complete

polarization control of coherent light transmitted through
an MMF with strong mode and polarization coupling. By
modulating the spatial wavefront of a linearly polarized
(LP) beam, depolarizations in the MMF are completely

eliminated, and the transmitted light retains the input
polarization. Moreover, a complete conversion of the
input polarization to its orthogonal counterpart or any
polarization state is achieved. We further tailor the
polarization states of individual output channels utilizing
spatial degrees of freedom without constraining the input
polarization state. Our theoretical analysis and numerical
modeling illustrate that full control of polarizations using
spatial wavefront shaping is only possible when mode
coupling occurs in the fiber. Random mode mixing, often
unavoidable in an MMF, can be harnessed for functional
advantages. Hence, wavefront shaping can make an MMF
function as a highly efficient reconfigurable matrix of
waveplates, converting arbitrary polarization states of the
incident field into any desired polarization state.

Results
Mode coupling
To illustrate the critical role played by spatial mode

coupling in polarization control, let us first consider an
MMF with only polarization mixing but no mode mixing.
Linearly polarized (LP) modes are the eigenmodes of a
perfect fiber under the weak guiding approximation34.
The birefringence induced by fiber imperfections and
perturbations changes the polarization state. Light injec-
ted into each LP mode effectively propagates through a
distinctive set of waveplates with random orientations of
their optical axes. Eventually, different LP modes have
different polarizations, and the total output field becomes
depolarized. In the absence of mode coupling, the MMF
behaves similar to a bundle of uncoupled single-mode
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Fig. 1 Fiber depolarization and polarization control by wavefront shaping. The three axes are the three Stokes parameters. a Light is launched
into the fundamental LP mode with horizontal polarization and subsequently coupled to other modes with different spatial profiles and polarization
states while propagating in the fiber. The transmitted light is composed of all spatial modes in different polarization states, which are randomly
spread over the Poincaré sphere. b Wavefront shaping of the horizontally polarized light by an SLM can overcome depolarization in the fiber,
retaining the horizontal polarization for all output modes (top). A different input wavefront can convert all output modes to vertical polarization
(bottom)
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fibers. It is impossible to control the output polarization
of each mode without manipulating their individual input
polarizations.
With mode mixing in the fiber, spatial and polarization

degrees of freedom become coupled. The output polar-
ization state depends not only on the polarization but also
on the spatial wavefront of the input field. For illustration,
we consider a fiber with only two modes, each of which
has two orthogonal polarization states. The incident light
is monochromatic and LP in the horizontal direction. The
field is 1 for mode 1 and eiθ for mode 2. Without mode
coupling, the relative phase θ between the two modes
does not affect the output polarization state of either
mode. However, with mode coupling, the output field of
one mode also depends on the input field of the other. For
example, the vertical polarization of mode 1 has con-
tributions from (i) the field in mode 1 converted to the
vertical polarization and (ii) the field in mode 2 that is
coupled to the vertically polarized mode 1. The relative
phase of these two contributions can be changed by
varying θ, resulting in a constructive or destructive
interference that modifies the amplitude of the vertically
polarized field in mode 1. This degree of freedom is
effective only when there is mode mixing in the fiber.
Compared to a fiber without mode coupling, more
polarization states can be created at the output by
adjusting the input wavefront. Mode mixing enables
polarization control by utilizing spatial degrees of free-
dom, as illustrated schematically in Fig. 1b.

Polarization manipulation
Depolarization-free states
To quantitatively evaluate the polarization control using

only spatial degrees of freedom, we perform a numerical
simulation of an MMF with strong polarization and mode
coupling. The fiber has Nmodes, each of which has a two-
fold degeneracy corresponding to two orthogonal polar-
izations. We use the concatenated fiber model35 to
simulate random coupling among all modes of the MMF
(see Supplementary Materials). Without loss of generality,
we use the horizontal (H) and vertical (V) polarizations as
the basis to describe the full transmission matrix of the
MMF

t ¼ tHH tHV
tVH tVV

� �
ð1Þ

where tHH(tVH) represents the horizontal (vertical) com-
ponent of the output field when the input light is hor-
izontally polarized. tHH has a dimension of N ×N, where
N is the number of modes in the fiber for a single
polarization.

The output field of the horizontal polarization is ψj i ¼
tHH ϕj i for a horizontally polarized input ϕj i. Hence, the

total intensity of the horizontal polarization is

ψjψh i ¼ ϕ tyHHtHH
��� ���ϕD E

, with tyHH being the Hermitian

conjugate of tHH. The maximum and minimum eigenva-

lues of tyHHtHH set the range of transmission that can be
reached in horizontal polarization. The largest eigenvalue
gives the maximum energy that can be retained in the
horizontal polarization after propagating through the
fiber. In contrast, the smallest eigenvalue indicates the
maximum energy that can be converted to the vertical
polarization. After simulating an ensemble of MMFs with
random mode and polarization coupling but no loss, we
obtain the eigenvalue density P(τHH) plotted in Fig. 2a. If
the fiber has only one mode (N= 1), P(τHH) has a uniform
distribution between 0 and 1 as a result of complete
polarization mixing in the fiber. When there are two
guided modes (N= 1), P(τHH) develops two peaks at
τHH= 0, 1. With the increase in N, these two peaks grow
rapidly and become dominant at N � 1. The P(τHH)
probability of having an eigenvalue close to unity or zero
is very high (see Supplementary Materials). The eigen-
vector associated with τHH= 1 retains the input polar-
ization (H) at the fiber output, whereas the eigenvector
associated with τHH= 0 makes a 100% conversion to the
orthogonal polarization (V). As τHH decreases from 1 to 0,
the percentage of transmission in the horizontal polar-
ization drops, whereas that in the vertical polarization
rises, as shown in Fig. 2b.

The numerically calculated eigenvalue density agrees
with the analytical prediction of wave transmission in a
lossless chaotic cavity (see the lines in Fig. 2a). Such an
agreement reveals the analogy between an MMF with
random mode and polarization coupling and a chaotic
cavity with two leads, as drawn schematically in Fig. 2c.
The transmission of the input polarization in the fiber is
analogous to the reflection in the chaotic cavity in the
sense that light exits the cavity through the same lead.
Hence, the eigenvalue for the MMF corresponds to the
reflection eigenvalue of the chaotic cavity.
Using the analytical theory developed previously for the

chaotic cavity36,37, we derive the probability density of the
maximum τHH eigenvalue of tyHHtHH (see Supplementary
Materials). The average value, τmaxh i ¼ 1� 1=ðN2 þ 1Þ,
approaches unity rapidly with the increase in N, in
agreement with the numerical result shown in Fig. 2d.
The polarization extinction ratio (PER), defined as the
maximal ratio of the transmissions in the two orthogonal
polarizations, is equal to τmaxh i=ð1� τmaxh iÞ ¼ N2. With a
large number of modes in the fiber, we obtain . Depo-
larization is avoided by coupling light with the eigenvector
associated with the maximum eigenvalue of tyHHtHH . The
eigenvector is a superposition of the LP modes with the
horizontal polarization and can be generated by an SLM.
The N2 scaling originates from the repulsion between
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eigenvalues, leading to the bimodal distribution of
eigenvalues8,38.
For comparison, we consider the scaling of PER in an

MMF without mode mixing. Due to different polarization
coupling for individual modes, the probability of retaining
the input polarization for all output modes vanishes when
the number of modes is large. The best solution to retain
the input polarization is to excite the mode with an output
polarization closest to the input polarization. As detailed
in Supplementary Materials, the PER of the transmitted
light scales linearly with N, inferior to the N2 scaling in the
presence of strong mode coupling. This comparison
shows that spatial mode mixing greatly enhances the
ability of overcoming depolarization.
The above results are obtained when the fiber has

negligible loss. If the loss in the fiber is significant, the

eigenvalue density is modified, and the maximum eigen-
value is <1. Consequently, the PER for the eigenvector
associated with the maximum eigenvalue of tyHHtHH is
reduced. As shown in the Supplementary Materials,
regardless of how strong the loss is, the PER of an MMF
with mode coupling is always higher than that without
mode coupling. Therefore, mode coupling enhances the
polarization control regardless of the loss in the fiber.
Furthermore, complete polarization control can still be
achieved even when the fiber undergoes significant loss, as
described in the next subsection.

Polarization conversion
The efficiency of converting the input polarization (H)

to the orthogonal polarization (V) is given by the mini-
mum eigenvalue of tyHHtHH . When loss in the MMF is
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a bimodal distribution, in agreement with the analytical expression for the reflection eigenvalue density in a chaotic cavity with two leads (black so
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chaotic cavity with two leads. A wave enters the cavity through the input lead and undergoes multiple reflections from the cavity wall before exiting
through the output lead (transmission) or the input lead (reflection). d The maximum transmission of horizontal polarization approaches 1 rapidly
with increasing N. The PER scales as N2. The symbols represent numerical data and the solid lines are the analytical results
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negligible, the minimum eigenvalue of tyHHtHH and the
maximum eigenvalue of tyVHtVH correspond to the same
eigenvector because tyHHtHH þ tyVHtVH ¼ 1. When the
polarizations are completely mixed, the transmitted field
has no memory of its initial polarization; thus, the
transmission matrix tVH has the same statistical property
as tVH. The eigenvalue density P(τVH) is identical to P
(τHH) and has a bimodal distribution. We obtain the
ensemble-averaged value τmin

HH

� � ¼ 1� τmax
VH

� � ¼ 1=ðN2 þ
1Þ and PER=N2. In Supplementary Materials, we provide
the analytical expression for its probability density
Pðτmin

HH Þ. When N � 1, light is almost completely trans-
formed into the orthogonal polarization by spatially
coupling light to the eigenvector of tyHHtHH with the
minimum eigenvalue.
If the fiber suffers significant loss, the maximum

eigenvalue becomes <1, but the minimum eigenvalues
remain close to 0. The eigenvector associated with the
minimum eigenvalues can be used for complete polar-
ization control, despite the reduced total transmission.
For example, if the input light is horizontally polarized, by
coupling it to the eigenvector of tyVHtVH with an eigen-
value close to 0, the transmitted light has a vanishing
vertical component. Thus, depolarization is avoided, but
part of the incident light is lost instead of being trans-
mitted. Additionally, the transmitted light can be

converted to vertical polarization by exciting the eigen-
vector of tyHHtHH with the minimum eigenvalue.
Thus far, we have considered only the horizontal and

vertical polarizations for the input and output fields, but
the same concept applies to any polarization state. As long
as the polarization of light is completely scrambled in the
fiber, all polarization states are equivalent. For example,
let us consider the conversion from the horizontally
polarized (H) input to the right-hand circular polarized
(R) output. The corresponding transmission matrix
tyRHtRH has the same eigenvalue density as tyHHtHH . With
strong mode coupling and negligible loss in the fiber, P
(τRH) is bimodal, and the peak at τRH= 1(τRH= 0) allows
full conversion of the horizontal polarization to right (left)
circular polarization.

Multi-channel polarization transformation
Let us take one step further: instead of controlling the

polarization state of the total transmission, we can have
different polarization states for different modes. As an
example, we transform the horizontal polarization (H) of
the input field (Fig. 3a) into a complex polarization state
(A) at the output of an MMF with 60 modes. As shown in
Fig. 3b, the polarization state A has the vertical polar-
ization (V) for modes 1–30 and right-hand circular
polarization (R) for modes 31–60. The conversion is
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achieved by coupling the incident light to the eigenvector
of tyAHtAH with the eigenvalue close to 1, when the loss in
the fiber is negligible. When the loss is significant, we
resort to the output polarization state B that is orthogonal
to A. In this case, B has horizontal polarization (H) for
modes 1–30 and left-hand circular polarization (L) for
modes 31–60. By exciting the eigenvector of tyBHtBH with
the eigenvalue close to 0, the output polarization state is
orthogonal to B and thus identical to A.
Finally, our scheme can also handle arbitrary input

polarization states; that is, individual spatial modes can
have different polarizations at the fiber input. By adjusting
the input spatial wavefront, arbitrary polarizations can be
obtained at the output. See the Supplementary Materials
for a detailed illustration of multi-channel polarization
transformation. Figure 3c, d presents one example.
Therefore, an MMF with strong mode and polarization
coupling is capable of transforming arbitrary input
polarizations into arbitrary output polarizations with
nearly 100% efficiency. Because only the spatial degrees of
freedom are deployed at the input, the output intensity in
each spatial mode, that is, the distribution of output

energy among spatial modes, cannot be controlled. To
design not only the polarizations but also the intensities of
all output modes, both the spatial and polarization
degrees of freedom at the input are utilized.

Experimental demonstration
We experimentally demonstrate complete polarization

control of an MMF with strong polarization and mode
coupling by wavefront shaping. We characterize the
polarization-resolved transmission matrix with an inter-
ferometric setup shown in Fig. 4a. A detailed description
can be found in the Materials and methods section. To
quantify the depolarization in the MMF, we measure the
total transmitted intensity It as a function of the angle of
linear polarizer θ. As shown in Fig. 4b, It only exhibits
slight (~9%) variations with θ. Furthermore, the output
intensity pattern changes with θ, and thus, the individual
output channels have distinct polarizations. We compute
the correlation function CðθÞ ¼~Ið0Þ �~IðθÞ, where~IðθÞ is a
unit vector representing the normalized intensity profile
at θ. The decay of C(θ) in Fig. 4b illustrates the decreasing
correlation of the intensity pattern with θ. The insets of
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Fig. 4b are the two intensity patterns of the orthogonal
polarizations (θ= 0, 90°), which are almost uncorrelated,
indicating nearly complete depolarization.
The amplitude of the measured transmission matrix tHH

in the LP mode basis is shown in Fig. 4c. Regardless of
which mode light is injected into, the output field spreads
over all modes, although higher order modes have lower
amplitudes due to stronger dissipations. The measured
tVH, given in the Supplementary Materials, has similar
characteristics. These results confirm strong spatial and
polarization mixing in the MMF.
To control the output polarization, we compute the

eigenvectors of the experimentally measured tyHHtHH . For
each eigenvector, the intensities of the horizontal and
vertical polarization components in the total transmitted
light IH and IV are plotted in Fig. 5. The first eigenvector
is associated with the largest eigenvalue, thus having the
maximum IH and the minimum IV. The eigenvectors are
ordered by the value of IH from high to low. The decrease
in IH is accompanied by the increase in IV. Eventually, IV
cannot reach the maximum of IH due to mode-dependent
loss in the fiber. Employing the computer-generated
phase hologram for a simultaneous phase and amplitude
modulation39, we create the input wavefront for the first
eigenvector with the SLM and launch it into the fiber.
The output intensity patterns of the horizontal and ver-
tical polarizations are recorded (left panel in Fig. 5).
Because higher order modes suffer more loss in the fiber,
the transmitted light is mainly composed of lower order
modes. The horizontal polarization component is much
stronger than the vertical one, and the PER is approxi-
mately 24. Hence, most of the energy is retained in the
input polarization (H), and depolarization is overcome.

The experimentally obtained PER is in agreement with
the numerical simulation result of a fiber with a com-
parable amount of loss (see the Supplementary
Materials).
A complete conversion to orthogonal polarization (V) is

achieved with the eigenvector of tyHHtHH with a small
eigenevalue. For example, we choose the 52nd eigen-
vector, which has a low transmission of the horizontal
polarization, and launch its input field profile into the
MMF. The measured output intensity patterns are shown
in the right panel of Fig. 5, where the transmitted light is
dominated by the vertical polarization component. The
PER is 43, exceeding that of the first eigenvector. Because
the 52nd eigenvector has more contributions from the
higher order modes, which undergo a higher attenuation
than that of the lower order modes, its transmission is
approximately half that of the first eigenvector.
We can convert the horizontally polarized light to any

polarization state at the fiber output. For example, to
obtain right circular polarization (R), we construct tRH ¼
1ffiffi
2

p ðtHH � itVHÞ from the measured tHH and tVH and
couple the incident light to the eigenvector of tyRHtRH with
the largest eigenvalue. The output polarization states of
the individual LP modes are measured and plotted on a
Poincaré sphere, as shown in Fig. 6a. Each arrow repre-
sents one mode, and its length stands for the intensity of
that mode. All arrows point along the S3 axis, indicating
that all modes are circularly polarized, despite varying
intensities. In Fig. 6b, we obtain linear +45° polarization
by exciting a low transmission eigenchannel of ty�45Ht�45H ,
where t�45H ¼ 1ffiffi

2
p tHH � tVHð Þ. Figure 6c shows different

polarization states that are experimentally generated with
a fixed input polarization (H).
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To demonstrate complete polarization control, we create
different polarization states for the individual output
channels. In addition to the fiber mode basis, the spatial
channels can be represented in real space (near-field zone
of the fiber distal end) or momentum space (far-field
zone). In the following example, we describe the fiber
output channels in real space. The output polarization
state (C) is designed to have horizontal polarization for the
spatial channels within the left half of the fiber cross-
section and vertical polarization in the right half. The
transmission matrix tCH is constructed by concatenating
one half of tHH and the other half of tVH. The conversion
of polarization from H to C is realized by exciting the
highest transmission eigenchannel of tyCHtCH . Figure 6d is
an image of intensity pattern at the fiber output facet taken
by a camera without a polarizer. After the linear polarizer
is placed in front of the camera and oriented in the hor-
izontal direction, the right half becomes dark whereas the
left half remains bright in Fig. 6e. Once the polarizer
rotates in the vertical direction, the right half lights up
whereas the left half turns dark in Fig. 6f. Hence, the
transmitted field is horizontally polarized in the left half of
the fiber facet and vertically polarized in the right half. An
additional example is given in Supplementary Materials,
which shows that the output field is the left-hand circular
polarization (L) in the top half of the fiber facet and right-
hand circular polarization (R) in the bottom half.

Discussion
Random mode mixing has been regarded as an obstacle

for MMF applications, and there have been intensive efforts
to reduce or eliminate mode coupling. Instead of battling it,
we take advantage of mode mixing for polarization control
in a fiber. We demonstrate that strong coupling between
the spatial and polarization degrees of freedom in an MMF
enable complete control of the output polarization states by
manipulating only the spatial input wavefront. A general
procedure of finding the spatial wavefront to create an
arbitrary polarization state is outlined and experimentally
confirmed. The procedure involves the measurement of the
polarization-resolved transmission matrix and a selective
excitation of the transmission eigenchannels corresponding
to the extremal eigenvalues. With the random mixing of all
the modes of the different polarizations in the fiber, the
probability of having extremal eigenvalues is enhanced by
eigenvalue repulsion, which is analogous to a chaotic cavity.
We apply the existing theory of chaotic cavities to MMFs,
uncovering the connection between the two fields of wave
chaos and fiber optics.
The global control of polarization states for MMFs is not

only useful for overcoming depolarization in an MMF but
also valuable for employing polarization-sensitive imaging
techniques of fiber endoscopy and nonlinear microscopy.
In this work, we demonstrate polarization control for
monochromatic light, which is relevant, for example, to
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fiber-based fluorescence microscopy with laser excitation.
Our scheme of MMF polarization control is applicable at
any wavelength, but the input wavefront for a specific
output polarization state is wavelength-dependent. The
polarization-shaping channels have a finite bandwidth,
which corresponds to the spectral correlation width of the
MMF (see Supplementary Materials). Nonlinear optics
applications often use broad-band short pulses and require
a large spectral bandwidth for polarization-shaping chan-
nels, which can be achieved with MMFs that have small
differential group delay.

Materials and methods
We experimentally test different types of MMFs and

obtain similar results. The fiber whose data are pre-
sented in Figs. 4–6 has the graded refractive index
profile designed to reduce mode-dependent loss
(see Supplementary Materials), leading to the highest
degree of polarization control. The core diameter of the
fiber is 50 μm, and the numerical aperture (NA) is
approximately 0.22. The fiber is 2 m long. To enhance
mode and polarization mixing in the MMF, the bare
fiber is coiled to 5 loops (without a spool) and pressed by
12 clamps that are arranged in a circle. The clamps not
only introduce mode and polarization coupling at
multiple points in the fiber but also stabilize the fiber
(see Supplementary Materials). We characterize the
polarization-resolved transmission matrix with an
interferometric setup shown in Fig. 4a. A horizontally
polarized laser beam at wavelength λ= 1550 nm is split
into a fiber arm and a reference arm. The SLM in the
fiber arm prepares the spatial wavefront of light before it
is launched into the MMF. To measure the field trans-
mission matrix, plane waves with different wavevectors,
covering the range of the fiber NA, are projected onto
the input facet of the fiber. The output facet of the fiber
is directly imaged by a lens onto a camera. A linear
polarizer in front of the camera filters out the polar-
ization component of light transmitted through the
fiber. By rotating the linear polarizer, we measure dif-
ferent polarization components of the fiber output. A
half-waveplate in the reference arm rotates the polar-
ization direction of the reference beam to match the
direction of the linear polarizer. The reference beam
then combines with the fiber output beam at a beam
splitter, and their interference fringes are recorded by a
camera. Using off-axis holography, we extract the
amplitude and phase of the field exiting the fiber with
the same polarization as the reference40. The transmis-
sion matrix is measured with the input in the momen-
tum (wavevector) basis and the output in real space.
Then, we perform a basis transformation to represent
the matrix in the fiber LP mode basis, as shown
in Fig. 4c. By rotating the linear polarizer and the

half-waveplate, the transmission matrices for both the
horizontal and vertical polarizations are measured. After
computing the eigenvalues and eigenvectors of the
transmission matrix, we generate the input wavefronts
of the individual eigenvectors with the SLM. To mod-
ulate both the amplitude and phase of the input field
with a phase-only SLM, a computer-generated phase
hologram is employed, and a pinhole on the back focal
plane of the lens in the fiber arm filters out the first
order diffraction pattern of the SLM39.
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