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Abstract
Dynamically encircling an exceptional point (EP) in parity-time (PT) symmetric waveguide systems exhibits interesting
chiral dynamics that can be applied to asymmetric mode switching for symmetric and anti-symmetric modes. The
counterpart symmetry-broken modes (i.e., each eigenmode is localized in one waveguide only), which are more useful
for applications such as on-chip optical signal processing, exhibit only non-chiral dynamics and therefore cannot be
used for asymmetric mode switching. Here, we solve this problem by resorting to anti-parity-time (anti-PT) symmetric
systems and utilizing their unique topological structure, which is very different from that of PT-symmetric systems. We
find that the dynamical encircling of an EP in anti-PT-symmetric systems with the starting point in the PT-broken phase
results in chiral dynamics. As a result, symmetry-broken modes can be used for asymmetric mode switching, which is a
phenomenon and application unique to anti-PT-symmetric systems. We perform experiments to demonstrate the new
wave-manipulation scheme, which may pave the way towards designing on-chip optical systems with novel
functionalities.

Introduction
Non-Hermitian systems obeying parity-time (PT) sym-

metry, i.e., [PT,H]= 0, with H being the non-Hermitian
Hamiltonian, have attracted considerable attention in
recent years1–4. Most of the interesting properties of non-
Hermitian systems are found at the exceptional point
(EP)5,6, which has led to many novel phenomena and
plausible applications7–17. The topological structure of the
energy Riemann surface around the EP is of great interest,
and it is known that adiabatically encircling an EP can
result in an intriguing “flipping of the eigenstate” phe-
nomenon, in which an eigenstate does not come back to
itself after going around a loop in parameter space18. This

phenomenon was demonstrated experimentally19–21 by
measuring the spectra and eigenfields at different points
of a loop enclosing the EP. In contrast to these “static”
measurements, in which the results at different locations
are independently measured, dynamically encircling an EP
where the phase information at different points is closely
related is predicted to exhibit an intriguing chiral beha-
viour22–27 because of the non-Hermiticity induced non-
adiabatic transitions (NATs)28. The chiral behaviour was
recently observed experimentally in microwave wave-
guides29 and silicon photonic waveguides30. In the
experiment, the starting/end point of the loop lies in the
PT-symmetric phase, where the eigenmodes are sym-
metric and anti-symmetric modes30. The chiral behaviour
is of great importance since it can be used for asymmetric
mode switching, i.e., a robust direction-selective energy
transfer scheme that has practical applications for on-chip
optical devices such as optical isolators31. In fact, the
eigenmodes in non-Hermitian systems can be divided into
two classes: symmetry-unbroken modes (i.e., symmetric
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and anti-symmetric modes) and symmetry-broken modes
(i.e., each eigenmode is localized in one oscillator only).
For on-chip waveguide-based optical devices, symmetry-
broken modes are of more interest since they are typically
used as the input and output of the system32,33. However,
it is demonstrated that when the starting point of the loop
lies in the PT-broken phase where the eigenmodes are
symmetry-broken modes, dynamically encircling the EP
results in a non-chiral transmission behaviour34. There-
fore, the symmetry-broken modes cannot be used for
asymmetric mode switching in PT-symmetric systems.
Anti-PT-symmetric systems, the Hamiltonians of which

obey {PT,H}= 0, have also attracted much attention
recently35–40. Mathematically, the anti-PT-symmetric
Hamiltonian can be obtained by multiplying the PT-
symmetric Hamiltonian by a constant “i”, but it is chal-
lenging to construct a realistic anti-PT-symmetric system,
as it requires the coupling between the two bare states to
be a purely imaginary value. As such, there are very lim-
ited experimental works on anti-PT-symmetric sys-
tems37,40. Anti-PT-symmetric systems also possess EPs,
but the different Hamiltonian may lead to different phy-
sics. Therefore, it is important to experimentally explore
the unique characteristics of anti-PT-symmetric systems
and employ the physics for novel applications, especially
those that cannot be realized in conventional PT-sym-
metric systems.
In this work, we report the first experiment on the

dynamical encircling of an EP in an anti-PT-symmetric
system, which consists of three waveguides, with an
absorber attached to the middle one. The two gap dis-
tances are designed to vary continuously along the
waveguide direction so that the transmission of electro-
magnetic waves through the system is equivalent to a loop
enclosing an EP in the parameter space. We discover a
chiral transmission behaviour when the starting/end point
of the loop lies in the PT-broken phase, where the
eigenmodes are symmetry-broken modes. This is in
contrast to PT-symmetric systems, where the chiral
behaviour applies only to symmetric and anti-symmetric
modes. The new physics found in anti-PT-symmetric
systems can lead to new applications, i.e., symmetry-
broken modes can be used for asymmetric mode
switching, whereas these applications cannot be achieved
using PT-symmetric systems. We propose a theoretical
model to prove the chiral dynamics. We also perform
microwave experiments to demonstrate the asymmetric
mode switching for symmetry-broken modes.

Results
Theory of chiral dynamics in anti-PT-symmetric systems
We start by investigating the dynamical encircling of an

EP in a two-state system governed by i∂t ψ tð Þj i ¼
H tð Þ ψ tð Þj i, where ψ tð Þj i ¼ a tð Þ; b tð Þ½ �T is the state vector

at a certain time t. The model Hamiltonian takes the form

H tð Þ ¼ �g tð Þ þ iδ tð Þ iκ

iκ g tð Þ � iδ tð Þ
� �

ð1Þ

where g and iκ denote the amount of detuning and
coupling, respectively. The system is anti-PT-symmetric
when δ= 0. Without loss of generality, we set κ=−1 in
the following analysis. We first calculate the eigenvalues λ
of the non-Hermitian system as a function of g and δ and
show the real parts in Fig. 1a. The blue sheet and red sheet
correspond to the eigenstate with gain and loss,
respectively. An EP can be found at g= 1 and δ= 0.
We consider a loop enclosing the EP parameterized by
g tð Þ ¼ 1� ρ cos γtð Þ and δ tð Þ ¼ ρ sin γtð Þ, where the loop
radius ρ ≤ 1 and γ measures the adiabaticity. When
t= π/γ (i.e., g= 1+ ρ, δ= 0), the two eigenvectors

are solved to be ψAj i ¼ 1; i ρþ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ 2ρ
p

� �� �T
and

ψBj i ¼ 1; i ρþ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ 2ρ
p

� �� �T
, indicating that the

eigenstates are in the PT-broken phase. However, the real
parts of the eigenvalues are found to bifurcate (see Fig. 1a),
which is completely opposite to that in PT-symmetric
systems, where the real parts coalesce in the PT-broken
phase7. This is the key difference between PT-symmetric
systems and anti-PT-symmetric systems37,38 and will result
in different dynamics when the EP is dynamically encircled.

We consider a loop with the starting point and end
point at t0 ¼ �π= γj j and tend ¼ π= γj j, respectively, cor-
responding to the PT-broken phase. The loop is anti-
clockwise when γ < 0 and clockwise when γ > 0. We first
investigate anti-clockwise loops with ρ= 0.5 and γ=−0.5.
We solve the time-dependent equation numerically and
extract the amplitudes of the instantaneous eigenstates at
each time step, i.e., ψ tð Þj i ¼ CG tð Þ ψG tð Þ	

	


þ CL tð Þ ψL tð Þj i,
where the subscripts G and L are associated with the
eigenstate on the gain sheet (Im(λ) > 0) and loss sheet (Im
(λ) < 0), respectively. The obtained amplitude coefficients
CG and CL for the process, with state A or state B being
the initial state, are shown in Fig. 1c, d, respectively, and
can be used to draw the trajectory of the state evolution
on the energy Riemann sheets, as shown by the white
and yellow curves in Fig. 1a. The trajectory is marked on
the gain (loss) sheet coloured blue (red) when
|CG| > |CL| (|CG| < |CL|). The yellow trajectory shows a
process in which the state evolves entirely on the gain
sheet (blue). The initial state B gradually transforms to
state A in this stable process (see also Fig. 1d). The
situation is quite different when the initial state is state A
(see the white trajectory in Fig. 1a). The state at first
propagates on the loss sheet (red sheet), where the state is
not stable. A NAT occurs after some time, and the state
jumps to the gain sheet, on which it stays for the rest of
the loop. As a result, the final state is still state A, the same
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as the initial state because of the NAT (see also Fig. 1c).
These two processes indicate that the final state for anti-
clockwise loops is always state A, regardless of the initial
state. We apply the same analysis to study clockwise
loops. The results with ρ= 0.5 and γ= 0.5 are plotted in
Fig. 1b, e, f, showing that the final state for clockwise loops
is always state B, in contrast to that of anti-clockwise
loops. This dynamical behaviour is called chiral dynamics,
i.e., encircling the EP in different directions results in
different final states that are independent of the
initial state.
We give an analytical proof of the chiral dynamics using

the method introduced in ref. 26. Inserting the expressions
of g(t) and δ(t), the time-dependent Hamiltonian descri-
bed by Eq. (1) can be rewritten as second-order differ-
ential equations for a(t) and b(t), e.g.,
∂2a tð Þ
∂t2 þ ρ2e2iγt � ρ 2þ γð Þeiγt½ �a tð Þ ¼ 0, which can then be
transformed into degenerate hypergeometric differential
equations, and the solutions are confluent hypergeometric
functions41. The solutions at time step t can be related to

the initial condition by a transfer matrix, via which the
final state can be proved to satisfy

b tendð Þ=a tendð ÞjACW¼ i ρþ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ 2ρ
p

� �

ð2aÞ

b tendð Þ=a tendð ÞjCW¼ i ρþ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ 2ρ
p

� �

ð2bÞ

where the subscripts “ACW” and “CW” denote anti-
clockwise and clockwise loops, respectively. Details of the
derivation can be found in Supplementary Notes 1 and 2.
The solutions indicate that regardless of the initial state,
the final state is always state A for anti-clockwise loops,
whereas it is state B for clockwise loops, which is exactly
the chiral dynamics in anti-PT-symmetric systems with
the starting point in the PT-broken phase, where the
eigenstates are symmetry-broken states. This is in sharp
contrast to PT-symmetric systems, in which the dynamics
is non-chiral with a starting point in the PT-broken
phase34, and only a starting point in the PT-symmetric
phase with eigenstates being symmetric and anti-
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Fig. 1 Chiral behaviour by dynamically encircling an EP in a system governed by anti-PT-symmetric Hamiltonian. a Real part of the
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directions and initial states (indicated in the inset). The grey arrows mark the starting points of the loops
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symmetric states can result in chiral dynamics30. The
difference originates from the very different topological
structures of energy Riemann surfaces of PT-symmetric
and anti-PT-symmetric systems. For chiral dynamics to
occur, the trajectory in the parameter space must start
from a point where the two eigenstates carry the same
imaginary part of the eigenvalues (see Supplementary
Note 3 and Supplementary Fig. 1 for details). This is
characteristic of the PT-symmetric phase in PT-sym-
metric systems. In contrast, it is the PT-broken phase that
has these properties in anti-PT-symmetric systems.
Table 1 summarizes the different dynamics in the two
systems. The chiral behaviour was employed for asym-
metric mode switching using the symmetric and anti-
symmetric modes in PT-symmetric systems30. Based on
the same principle, the symmetry-broken states can also
be employed for asymmetric mode switching in anti-PT-
symmetric systems.

Numerical demonstration of asymmetric mode switching
We now demonstrate the asymmetric mode switching

in a realistic system consisting of three waveguides, with
the cross section illustrated in Fig. 2a. The dimensions of
waveguide-1 and waveguide-3 have a slight detuning (i.e.,
W1≠W3), and they are coupled via a waveguide-2 that has
an absorber attached (see the yellow region). For com-
pleteness, we first demonstrate using a simple model
Hamiltonian that coupling the two waveguides (i.e.,
waveguide-1 and waveguide-3) through a lossy
waveguide-2 can effectively produce a purely imaginary
value of coupling and hence anti-PT symmetry38. Con-
sider a model Hamiltonian satisfying the equation

β1 κ′ 0

κ′ β2 þ iγ′ κ′
0 κ′ β3

2

6
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Table 1 Comparison of the dynamical encircling of an EP in PT-symmetric systems and anti-PT-symmetric systems

System Starting point in the PT-symmetric phase Starting point in the PT-broken phase

PT-symmetric systems Chiral dynamics30 Non-chiral dynamics34

Anti-PT-symmetric systems Non-chiral dynamics [this work] Chiral dynamics [this work]

The non-chiral dynamics in anti-PT-symmetric systems is discussed in Supplementary Note 5 and Supplementary Fig. 4
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where β1, β2 þ iγ′, and β3 denote the original eigenvalues
of the three waveguides and κ′ is a real value representing
the coupling between adjacent waveguides. Eliminating
ϕ2, we obtain

β1ϕ1 þ κ′2ϕ1þκ′2ϕ3
E�β2�iγ′ ¼ Eϕ1

β3ϕ3 þ κ′2ϕ1þκ′2ϕ3
E�β2�iγ′ ¼ Eϕ3

8

<

:

ð4Þ

For eigenvalues close to β2, Eq. (4) can be simplified as

β1 þ i κ′
2

γ′ i κ′
2

γ′

i κ′
2

γ′ β3 þ i κ′
2

γ′

2

4

3

5

ϕ1

ϕ3


 �

¼ E
ϕ1

ϕ3


 �

ð5Þ

We note that β1≠β3 since there is a detuning between
waveguide-1 and waveguide-3. We define β ¼
β1 þ β3
� �

=2 and Δ ¼ β1 � β3
� �

=2. Then, the effective
Hamiltonian describing the coupling between waveguide-
1 and waveguide-3 becomes

Heff ¼
Δ i κ′

2

γ′

i κ′
2

γ′ �Δ

2

4

3

5 ð6Þ

after shifting the eigenvalues by a constant βþ iκ′2=γ′.
We note that the eigenfields decay exponentially outside
the waveguides, and as such, the coupling coefficients
between neighbouring waveguides (i.e., between
waveguide-1 and waveguide-2 and between waveguide-2
and waveguide-3) are real numbers (i.e., κ′). However, the
effective coupling between waveguide-1 and waveguide-3
in the reduced two-waveguide system [going from Eq. (3)
to Eq. (6)] is purely imaginary (i.e., iκ′2=γ′) and hence
results in the above effective 2 × 2 Hamiltonian being anti-
PT-symmetric. In the case of Δ> κ′2=γ′, the eigenvalues of
the effective Hamiltonian take the form

E1;3 ¼ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ2 � κ′4=γ ′2
p

, which are real numbers and the
imaginary parts coalesce. The corresponding eigenvectors

are ϕ1;3

	

	


 ¼ 1; i Δ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ2 � κ′4=γ′2
p

� �

γ′=κ′2
h iT

, indicat-

ing that the phase difference between the two waveguides
in the eigenmode is π/2 and therefore the system is in the
PT-broken phase. When Δ<κ′2=γ′, the system is in the

PT-symmetric phase, with the eigenvectors being ϕ1;3

	

	


 ¼

1; ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ′4=γ′2 � Δ2
p

þ iΔ
� �

γ′=κ′2
h iT

(eigenstates will be

purely symmetric and anti-symmetric states with a phase
difference of 0 and π when Δ= 0), and the eigenvalues

E1;3 ¼ ± i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ′4=γ′2 � Δ2
p

are purely imaginary values.

To demonstrate the above analysis numerically, we used
COMSOL42 to calculate the effective mode index neff, i.e.,
the eigenvalue of the waveguide system, as a function of

two gap distances (i.e., g12 and g23) using structural
parameters: W1=W2= 8mm, W3= 8.1 mm, H= 4mm,
w= 5mm and h= 1mm. The permittivity of the wave-
guides and absorber are set to 15.2 and 4+ 15i, respec-
tively. The background and substrate are assumed to be
air, and the frequency is 10 GHz. Although the parameter
space introduced in this realistic system is different from
that in the model Hamiltonian in Eq. (1), the dynamical
consequence of encircling the EP is the same because the
energy surfaces have the same topology. The real parts
and imaginary parts of the eigenvalues are plotted in
Fig. 2c, d, respectively, where we define α= g23/g12. The
system supports three eigenmodes, which are represented
by three Riemann sheets with different colours depending
on the amount of loss. The grey eigenmode exhibits the
highest loss, and it hardly interacts with the other two
modes. We therefore focus on the red and blue Riemann
sheets and find an EP located at g12= 0.82 mm and α=
0.84. Figure 2b shows the parameter space. The solid and
dashed curves mark, respectively, the set of points in the
2D parameter space where the real and imaginary parts of
the eigenvalues coalesce. The inset shows the Ex field
distributions of the two eigenmodes residing on the blue
and red sheets. On the solid curve, the two eigenmodes
are found to be symmetric and anti-symmetric (i.e., the
phase difference between waveguide-1 and waveguide-3 is
nearly 0 and π, respectively). In contrast, they are
symmetry-broken (i.e., one mode is localized in wave-
guide-1, while the other one is localized in waveguide-3
with the phase difference being π/2) on the dashed curve.
This indicates that the solid and dashed curves are in fact
the symmetric and broken phase, respectively. It is then
evident that the system is anti-PT-symmetric since the
real/imaginary parts of the eigenvalues coalesce in the
symmetric/broken phase, which is consistent with the
above analysis on the effective Hamiltonian [Eq. (6)].
Figure 3b redraws the parameter space as a function of

the two gap distances. We consider a black solid loop that
encloses the EP, with the starting/end point at g12= g23=
2.5 mm, which corresponds to a point in the broken phase
with eigenmodes being symmetry-broken states. A sche-
matic diagram of a waveguide system that can mimic the
designed loop is illustrated in Fig. 3a, where the two gap
distances change continuously along the waveguide
direction (i.e., z-axis). The system length L is set to
600mm, and other structural parameters are kept the
same as those in Fig. 2. Excitation of the initial states on
the left-hand side of the system leads to state evolutions
following an anti-clockwise loop, while incidence from the
right-hand side leads to a clockwise loop. We calculated
the wave transmission in the system, and the desired
initial state at the boundary was excited by a pre-
calculation of the eigenmodes using the boundary mode
analysis module of COMSOL42. The distributions of the
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z-component power flow for anti-clockwise loops are
shown in Fig. 3c, d, with the initial symmetry-broken state
localized in waveguide-1 and waveguide-3, respectively.
We find that regardless of the waveguide via which the
power is injected, the wave always exits the system via
waveguide-1. The results for clockwise loops are shown in
Fig. 3e, f. In contrast, the final state is found to localize in
waveguide-3 regardless of the initial state. This is a direct
demonstration of the asymmetric mode switching for
symmetric-broken states, which is different from that in
PT-symmetric systems, where the asymmetric mode
switching applies to the symmetric and anti-symmetric
modes30.
We further investigate the dynamics by expanding the

field profiles at each z position as a sum of the instanta-
neous eigenfields, i.e., Et zð Þ ¼ cB zð ÞEB zð Þ þ cR zð ÞER zð Þþ
cG zð ÞEG zð Þ, where Et is the transverse electric field and
the subscripts B, R, and G denote the instantaneous
eigenmodes on the blue, red and grey Riemann sheets,
respectively. The amplitude coefficients cB, cR and cG were
determined by first constructing left eigenvectors and
then performing projections of the instantaneous fields

onto the left eigenfields (see Supplementary Note 4). The
calculated coefficients are plotted in Fig. 4a–d, corre-
sponding to the dynamics in Fig. 3c–f, respectively. The
coefficients for the non-excited eigenmodes are not zero
at the starting point, which is mainly due to reflections of
a finite-length sample and numerical errors in the simu-
lation, but they will not affect the salient features of the
studied phenomenon. We find that for each encircling
direction, the two processes with different initial states
exhibit different dynamics. Specifically, one process is
adiabatic, as the blue curve dominates the entire trajectory
(see Fig. 4b, c), which enables the wave to transform from
one waveguide to the other, corresponding to a state flip
(see Fig. 3d, e). The other process has a NAT (at the
crossing of the blue and red curves in Fig. 4a, d), and the
final state is the same as the input (see Fig. 3c, f). These
results well reproduce the dynamics obtained from the
model Hamiltonian in Fig. 1. We also note from Fig. 4 that
when the state approaches the end point, it always stays
on the lower-loss blue sheet, where it is more stable. The
blue sheet is not continuous in the PT-broken phase of
anti-PT-symmetric systems (see Figs. 1a or 2c) such that
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encircling the EP in different directions leads to different
final states. This is the key reason for the chiral dynamics.

Experimental demonstration of asymmetric mode
switching
Microwave experiments were performed to demon-

strate the asymmetric mode switching. The waveguides
are made of yttrium iron garnet (YIG) with a relative
permittivity of ~15.2. The trajectory of the experimental
system is shown by the red dashed curve in Fig. 3b. It is
slightly different from that in the numerical simulations
since the system is composed of several straight YIG strips
(see Supplementary Figs. 2, 3). We measured the trans-
mission spectra for different encircling directions and
initial states using an Agilent Technologies 8720ES Net-
work Analyser. The results are shown in Fig. 5a–d, where
Tij (T ′

ij) represents the measured transmission intensity
from waveguide-j to waveguide-i in an anti-clockwise
(clockwise) loop. Since the system is designed to operate
at 10 GHz and the location of the EP varies with the
frequency, the expected phenomenon should be obser-
vable in a specific range of frequencies. These frequencies
are shaded in grey in Fig. 5a–d, where we find that the
transmission corresponding to anti-clockwise loops is
mainly dominated by T11 (Fig. 5a) and T13 (Fig. 5b), while
that of clockwise loops, by T ′

31 (Fig. 5c) and T ′
33 (Fig. 5d).

This is an experimental observation of the asymmetric
mode switching for symmetry-broken modes, i.e., the
power always exits the system mainly via waveguide-1 in
anti-clockwise loops but via waveguide-3 in clockwise
loops. The oscillations of the experimental spectra are due

to Fabry-Pérot resonances, as the system has a finite
length of 600mm. We note that Tij � T ′

ji since the system
is reciprocal. The electric field intensity distributions were
measured on top of the waveguide system (~1mm above
the surface) with the help of a stepper motor. The results
at ~9.6 GHz are shown in Fig. 5e–h, corresponding to the
four cases in Fig. 3c–f. We find that the experimental
measurements can well reproduce the salient features of
asymmetric mode switching, although the experimentally
measured field distributions are not as ideal as the
numerical ones, which is mainly due to their different
looping trajectories (see Fig. 3b) as well as experimental
imperfections. In particular, the desired eigenmodes were
excited by putting an antenna close to one waveguide. In
this process, the microwave radiations may also couple
slightly to the undesired eigenmodes, but this will not
affect the final state since it is independent of the input
state. In addition, backward propagating modes and
standing waves can be excited in the experiment due to
the reflections at the two boundaries of the system. The
chiral transmission behaviour also applies to these back-
ward modes, which then result in some backward power
flows in waveguide-3 on the left-hand side of the system
(see Fig. 5e, f) and those in waveguide-1 on the right-hand
side of the system (see Fig. 5g, h). This phenomenon is not
observed in Fig. 3c–f due to the matched boundary con-
ditions used in the numerical simulations.

Conclusions
In summary, we have demonstrated new physics

in anti-PT-symmetric systems. We showed that
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dynamically encircling an EP with the starting point in
the PT-broken phase exhibits chiral dynamics due to the
unique topological structure of the energy surfaces of
anti-PT-symmetric systems. This phenomenon, unique
to anti-PT-symmetric systems, allowed us to perform the
first experiment of asymmetric mode switching for
symmetry-broken modes, a functionality that is highly
desirable in on-chip optical systems but cannot be rea-
lized using conventional PT-symmetric systems. In fact,
the asymmetric mode switching of symmetric and anti-
symmetric modes has recently been realized in PT-
symmetric optical systems30, and the new wave-
manipulation scheme proposed in this work will inspire
further experiments on manipulating symmetry-broken
modes in on-chip optical systems towards novel
functionalities.

Materials and methods
Loops in the parameter space
The loop for numerical simulations (see the solid loop

in Fig. 3b) takes the form

g12 ¼ 1:5� cos 2πz=Lþ π=4ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 cos2 2πz=Lð Þ þ 1:69 sin2 2πz=Lð Þ
p

g23 ¼ 1:5� sin 2πz=Lþ π=4ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 cos2 2πz=Lð Þ þ 1:69 sin2 2πz=Lð Þ
p

(

;

where L= 600 mm and z=−300 ~ 300mm. The loop for
the experiments (see the dashed loop in Fig. 3b) is a
polygon with vertices located at (g12, g23)= (2.5, 2.5), (1.4,
2.5), (0.3, 1.4), (0.3, 0.3), (1.4, 0.3), and (2.5, 1.4).
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