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Abstract
Defect density is one of the most significant characteristics of perovskite single crystals (PSCs) that determines their
optical and electrical properties, but few strategies are available to tune this property. Here, we demonstrate that
voltage regulation is an efficient method to tune defect density, as well as the optical and electrical properties of PSCs.
A three-step carrier transport model of MAPbBr3 PSCs is proposed to explore the defect regulation mechanism and
carrier transport dynamics via an applied bias. Dynamic and steady-state photoluminescence measurements
subsequently show that the surface defect density, average carrier lifetime, and photoluminescence intensity can be
efficiently tuned by the applied bias. In particular, when the regulation voltage is 20 V (electrical poling intensity is
0.167 V μm−1), the surface defect density of MAPbBr3 PSCs is reduced by 24.27%, the carrier lifetime is prolonged by
32.04%, and the PL intensity is increased by 112.96%. Furthermore, a voltage-regulated MAPbBr3 PSC memristor device
shows an adjustable multiresistance, weak ion migration effect and greatly enhanced device stability. Voltage
regulation is a promising engineering technique for developing advanced perovskite optoelectronic devices.

Introduction
Perovskite materials have been used in a variety of

optoelectronic devices, such as solar cells1–3, photo-
detectors4,5, field effect transistors6–8, lasers9,10, and light
emitting diodes11,12, due to their excellent intrinsic
properties13–15. Continuously improving the performance
of these optoelectronic devices is needed to overcome the
bottleneck problem. The defect (including surface defects
and volume defects) density in perovskites is a key para-
meter that limits the performance of these materials16. To
control the surface defects, a widely studied method is to
passivate and cure the defects by a surface engineering
process, which can be achieved by adding a variety of

additives, including ammonium methyl bromide12, guani-
dinium bromide17, potassium iodide18, phenethyl iodide19,
poly(3-hexylthiophene-2,5-diyl)20, choline iodine21, and
1-butyl-3-methylimidazolium tetrafluoroborate22. How-
ever, this method requires precise control of the amount of
the additives, the order of addition, and the reaction time,
which makes this process complicated and results in a high
risk of loss. To tune the volume defects, a known strategy
is irradiating perovskite with high-energy ultraviolet
light23, sunlight24, near-infrared light25, etc. This strategy
requires a long repair time and sometimes results in
irreversible damage to the materials, which makes the
process complicated. Therefore, highly efficient and con-
venient pathways to regulate defects in perovskites are still
needed.
Applying bias to perovskites has been reported to affect

the fundamental properties of the perovskites under cer-
tain conditions. For example, the Huang group reported
that piezoelectric poling could achieve grain polarization
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and ion migration in perovskite polycrystalline films,
which introduced new defects when the electrical poling
intensity was above 1.0 V μm−1 26,27. Furthermore, at an
electrical poling intensity larger than 0.5 V μm−1, the
applied bias is thought to cause electroluminescence (EL)
in perovskites11,28. However, despite the possibility of
engineering perovskites, there are still bottlenecks in the
advancement of perovskite applications, particularly in
the case of perovskite single crystals (PSCs), which have
been reported by Shi14 and Dong15 to have an ultralow
trap density and a large carrier lifetime. For applications
such as solar cells, lasers, LEDs or transistors, how the
fundamental parameters can be tuned to maximize the
device efficiency is still unclear, although it is critical.
Studying defect regulation in PSCs under low electrical
poling will be conducive to exploring novel ways to
improve device performance based on PSCs. Aside from
being convenient and easy to control, voltage regulation
can be dynamically tracked by steady-state photo-
luminescence (PL) and time-resolved photoluminescence
(TRPL) measurements in situ29, which provides specific
insight into how the defect density in the MAPbBr3
single-crystal bulk (MPB SCBK) evolves.

Here, we first propose a three-step carrier transport
model of MPB SCBK for the carrier transport mechanism
under different applied biases. Then, both steady-state
and dynamic PL measurements are conducted to explore
the defect regulation and carrier transport dynamics
under single-photon excitation (532 nm laser) in both the
center region and regions around the cathode/anode. The
best regulation result is achieved at 20 V, corresponding
to an electrical poling intensity of 0.167 V μm−1. Finally,
the first MPB SCBK memristor is fabricated, which shows
tunable resistance and an ultrastable switching effect at
each applied bias. The memristor overcomes the effect of
ion migration and satisfies commercial application
requirements. This research indicates that voltage reg-
ulation is an efficient technique for regulating defect
density, carrier lifetime, PL intensity, and resistance.

Results
The mechanism of the three-step carrier transfer model of
MPB SCBK with applied bias
As shown in Fig. 1, we first propose a developed three-step

carrier transport model to clarify the dynamic carrier
transport mechanism of MPB SCBK based on previous
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Fig. 1 Schematic diagram of the three-step carrier transfer model for MPB SCBK with 532 nm excitation under different applied biases.
a no bias, b appropriate bias and c excessive bias is applied
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and ion migration in perovskite polycrystalline films,
which introduced new defects when the electrical poling
intensity was above 1.0 V μm−1 26,27. Furthermore, at an
electrical poling intensity larger than 0.5 V μm−1, the
applied bias is thought to cause electroluminescence (EL)
in perovskites11,28. However, despite the possibility of
engineering perovskites, there are still bottlenecks in the
advancement of perovskite applications, particularly in
the case of perovskite single crystals (PSCs), which have
been reported by Shi14 and Dong15 to have an ultralow
trap density and a large carrier lifetime. For applications
such as solar cells, lasers, LEDs or transistors, how the
fundamental parameters can be tuned to maximize the
device efficiency is still unclear, although it is critical.
Studying defect regulation in PSCs under low electrical
poling will be conducive to exploring novel ways to
improve device performance based on PSCs. Aside from
being convenient and easy to control, voltage regulation
can be dynamically tracked by steady-state photo-
luminescence (PL) and time-resolved photoluminescence
(TRPL) measurements in situ29, which provides specific
insight into how the defect density in the MAPbBr3
single-crystal bulk (MPB SCBK) evolves.

Here, we first propose a three-step carrier transport
model of MPB SCBK for the carrier transport mechanism
under different applied biases. Then, both steady-state
and dynamic PL measurements are conducted to explore
the defect regulation and carrier transport dynamics
under single-photon excitation (532 nm laser) in both the
center region and regions around the cathode/anode. The
best regulation result is achieved at 20 V, corresponding
to an electrical poling intensity of 0.167 V μm−1. Finally,
the first MPB SCBK memristor is fabricated, which shows
tunable resistance and an ultrastable switching effect at
each applied bias. The memristor overcomes the effect of
ion migration and satisfies commercial application
requirements. This research indicates that voltage reg-
ulation is an efficient technique for regulating defect
density, carrier lifetime, PL intensity, and resistance.

Results
The mechanism of the three-step carrier transfer model of
MPB SCBK with applied bias
As shown in Fig. 1, we first propose a developed three-step

carrier transport model to clarify the dynamic carrier
transport mechanism of MPB SCBK based on previous
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Fig. 1 Schematic diagram of the three-step carrier transfer model for MPB SCBK with 532 nm excitation under different applied biases.
a no bias, b appropriate bias and c excessive bias is applied
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reports30–32. The three steps, which occur at the surface
layer, the surface–bulk transition layer and the bulk region,
are the exciton recombination (short lifetime τ1),
electron–hole pair recombination (middle lifetime τ2) and
free-carrier recombination (long lifetime τ3) processes in
TRPL measurements32,33. Upon excitation at 532 nm, elec-
trons and holes are formed in the conduction band (Ec) and
valence band (Ev), respectively, with a maximum con-
centration at the surface31. When no bias is applied, as
shown in Fig. 1a, evaporation of the organic component
leads to excessive lead halide at the MPB SCBK surface,
which introduces more electron or hole defects at the sur-
face34–36. Surface defects, mainly lead defects showing the
ability to accept electrons such as a Lewis acid36, trap elec-
trons via a non-radiative recombination mechanism at the
surface. The electron–hole pairs, i.e., excitons, bounded by a
Coulomb force produce fluorescence through exciton
recombination in the surface layer32. The remaining carriers
(electrons and holes) diffuse inside37. MPB SCBK under
moderate growth conditions (the stoichiometric ratio of Br/
Pb is 3:1) shows unavoidable volume defects, which are
mainly deep-level donor-like point defects inside the
MPB SCBK38. Some carriers become trapped under
Shockley–Read–Hall (SRH) recombination during the dif-
fusion process, whereas bounded electron–hole pairs in Ec
and Ev emit fluorescence in the surface–bulk transition layer
via electron–hole pair recombination32. Finally, after diffu-
sion over a long distance, the unbounded free carriers with
freely diffusive motion enter the bulk region and emit
fluorescence with a long lifetime through free-carrier
recombination32,39.
When the appropriate bias is applied, as shown in Fig. 1b,

the injected charges can be trapped by lead defects in the
surface layer40,41. The deep-level donor-like defects inside
the bulk are much more sensitive to the applied bias because
the bulk-charge recombination is sensitive to the total
injected-charge density36,42. Furthermore, the deep-level
donor-like defects are expected to reach the MPB SCBK
surface under an electrical field36,42. The injected charges act
as a Lewis base to passivate the deep-level donor-like defects
inside the MPB SCBK36. These “cured” defects no longer
trap carriers, and the probability of radiation recombination
in the surface and surface–bulk transition layers is
enhanced43. Furthermore, diffusion of the free carriers into
the bulk region is induced, resulting in emission of more
fluorescence through free-carrier recombination. Therefore,
the passivation of surface defects through voltage regulation
engineering could avoid trapped carriers and ultimately
passivate the bulk defects of MPB SCBK as well36. The
fractional contribution of the bulk region (f3) increases,
while f1 (surface layer) and f2 (surface–bulk transition layer)
are greatly reduced. This indicates that the surface layer and
the surface–bulk transition layer attenuate their contribu-
tion to τave

44. However, when excessive bias is applied, as

shown in Fig. 1c, the excessive charges not only passivate the
extended lead defects in the surface and deep-level point
defects in the bulk but also trap holes through electric-
charge recombination36,45. This means that the excessive
injected charges act as new additive defects and reduce
the probability of radiative recombination occurring. Thus,
the carrier lifetimes and fractional contribution f3 decrease,
while f1 and f2 increase. This indicates that the range of the
surface layer and surface–bulk transition layer expands,
leading to a decrease in τave

44.
To prove the influence of applied bias on carrier

transport, current-time characteristic curves of MPB
SCBK under white light (36.4 mW cm−2) and in the dark
are shown in Supplementary Figs. S1 and S2, respectively.
Regardless of whether light or dark conditions are applied,
the current output at different biases remains nearly
constant for 60 s. The current–voltage (J–V) characteristic
curves in Supplementary Figs. S1b and S2b are drawn
from current-time characteristic curves. The J–V curves
both show the same three-stage trend: the trap-filled
region at a low voltage (<2 V), the charge injection region
(the defects are passivated and cured in this region) at a
medium voltage (2–20 V), and the charge-injected
saturation region at a high voltage (>20 V)14,15,46. This
indicates that injected charges influence carrier transport
through voltage regulation. Detailed results and discus-
sion are provided in the following sections.

Experimental details and characterization
To verify our hypothesis, the experimental device is

fabricated, and its schematic diagram is shown in Fig. 2a.
The MPB SCBK with 100 nm gold electrodes is in contact
with two probes connected to a DC power supply. The
laser excites three regions between two electrodes of the
MPB SCBK; the steady-state PL and TRPL that occur after
applied bias regulation are then detected. The three
regions include the region around the cathode (5 μm
apart), the center region and the region around the anode
(5 μm apart). A scanning electron microscopy (SEM)
image and an energy dispersive spectrometry (EDS) map
of MPB SCBK with a gold electrode are shown in Sup-
plementary Fig. S3. The SEM image shows a clear
boundary between the uniform MPB SCBK and the
continuous gold electrode. The gold, bromine, lead, car-
bon, and nitrogen in the EDS map show even distribu-
tions and characteristic peaks in Supplementary Fig. 3g.
Supplementary Figure S4 shows the optical image, three-
dimensional (3D) pseudocolour plots and thickness
information of the experimental device. The gold elec-
trodes are 100 nm thick, continuous and arranged in
parallel with an electrode spacing of 120 μm.
In Fig. 2b, the absorption spectrum and transmission

spectrum of MPB SCBK show an absorption cut-off
wavelength of ~560 nm. The absorption spectrum was
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measured in “Abs” mode without using the integration
sphere. A thicker MPB SCBK (~3mm) shows absorption
supersaturation in the high-energy region. The X-ray
diffraction (XRD) results of MPB SCBK powder, MPB
SCBK, PbBr2 and MABr are shown in Fig. 2c. From the
XRD results, it can be concluded that the two original
materials (PbBr2 and MABr) have been completely
transformed into MPB SCBK. The characteristic peaks in
the MPB SCBK and MPB SCBK powder are consistent
with cubic lattice structures (as shown in the inset of
Fig. 2b). Figure 2d shows an optical image of the
centimeter-sized MPB SCBK with a gold electrode. The
MPB SCBK is grown from a 1.5M mixed DMF solution of
PbBr2 and MABr (molar ratio of 1:1) using the ITC
method47,48 described in our previous report49. The
Raman spectrum of MPB SCBK exhibits molecular
vibrational peaks (60, 320, 917, 970, 1250, 1477, 1592, and
2966 cm−1) consistent with those in previous reports50, as
shown in Fig. 2e. The characterizations demonstrate the
high quality of the experimental device, which is further
utilized for voltage-dependent experiments.

TRPL measurement of MPB SCBK with an applied bias
The electrical poling intensity under various applied

biases (0–50 V) is shown in Supplementary Fig. S5. Before
measuring the TRPL, steady-state PL and J–V

characteristics, the MPB SCBK is first polarized for 1 min
under different biases. TRPL measurements are per-
formed under 532 nm laser excitation, and the lifetime
decay in three regions (around the cathode, in the center
region and around the anode) is shown in Supplementary
Figs. S6–S8, respectively. Through tri-exponential decay
function fitting these lifetime decay curves, that is, short
lifetime (τ1), middle lifetime (τ2), and long lifetime (τ3),
and the corresponding fractional contributions (f1, f2, f3)
can be obtained, as shown in each TRPL result. τave can be
calculated from τave ¼ τ1f1 þ τ2f2 þ τ3f3

51. Detailed
information is shown in Supplementary Tables S1–S3.
The dependence of the carrier lifetime and fractional

contribution on bias is shown in Fig. 3. In Fig. 3a, d, g,
regardless of whether measured in the center region or
around the cathode or anode, plots of τave vs. applied bias
exhibit Gaussian distributions. As the applied bias
increases from 0 to 20 V, τave shows an increasing trend
and reaches a maximum at 20 V (the electrical poling
intensity is 0.167 V μm−1). Then, it begins to decrease as
the bias continues to increase. The champion τave reg-
ulation results at 20 V (the electrical poling intensity is
0.167 V μm−1) increase by 32.04% around the cathode, by
11.47% in the center region and by 15.00% around the
anode compared with the values with no bias regulation.
After the bias is removed for 12min, τave is restored and
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reports30–32. The three steps, which occur at the surface
layer, the surface–bulk transition layer and the bulk region,
are the exciton recombination (short lifetime τ1),
electron–hole pair recombination (middle lifetime τ2) and
free-carrier recombination (long lifetime τ3) processes in
TRPL measurements32,33. Upon excitation at 532 nm, elec-
trons and holes are formed in the conduction band (Ec) and
valence band (Ev), respectively, with a maximum con-
centration at the surface31. When no bias is applied, as
shown in Fig. 1a, evaporation of the organic component
leads to excessive lead halide at the MPB SCBK surface,
which introduces more electron or hole defects at the sur-
face34–36. Surface defects, mainly lead defects showing the
ability to accept electrons such as a Lewis acid36, trap elec-
trons via a non-radiative recombination mechanism at the
surface. The electron–hole pairs, i.e., excitons, bounded by a
Coulomb force produce fluorescence through exciton
recombination in the surface layer32. The remaining carriers
(electrons and holes) diffuse inside37. MPB SCBK under
moderate growth conditions (the stoichiometric ratio of Br/
Pb is 3:1) shows unavoidable volume defects, which are
mainly deep-level donor-like point defects inside the
MPB SCBK38. Some carriers become trapped under
Shockley–Read–Hall (SRH) recombination during the dif-
fusion process, whereas bounded electron–hole pairs in Ec
and Ev emit fluorescence in the surface–bulk transition layer
via electron–hole pair recombination32. Finally, after diffu-
sion over a long distance, the unbounded free carriers with
freely diffusive motion enter the bulk region and emit
fluorescence with a long lifetime through free-carrier
recombination32,39.
When the appropriate bias is applied, as shown in Fig. 1b,

the injected charges can be trapped by lead defects in the
surface layer40,41. The deep-level donor-like defects inside
the bulk are much more sensitive to the applied bias because
the bulk-charge recombination is sensitive to the total
injected-charge density36,42. Furthermore, the deep-level
donor-like defects are expected to reach the MPB SCBK
surface under an electrical field36,42. The injected charges act
as a Lewis base to passivate the deep-level donor-like defects
inside the MPB SCBK36. These “cured” defects no longer
trap carriers, and the probability of radiation recombination
in the surface and surface–bulk transition layers is
enhanced43. Furthermore, diffusion of the free carriers into
the bulk region is induced, resulting in emission of more
fluorescence through free-carrier recombination. Therefore,
the passivation of surface defects through voltage regulation
engineering could avoid trapped carriers and ultimately
passivate the bulk defects of MPB SCBK as well36. The
fractional contribution of the bulk region (f3) increases,
while f1 (surface layer) and f2 (surface–bulk transition layer)
are greatly reduced. This indicates that the surface layer and
the surface–bulk transition layer attenuate their contribu-
tion to τave

44. However, when excessive bias is applied, as

shown in Fig. 1c, the excessive charges not only passivate the
extended lead defects in the surface and deep-level point
defects in the bulk but also trap holes through electric-
charge recombination36,45. This means that the excessive
injected charges act as new additive defects and reduce
the probability of radiative recombination occurring. Thus,
the carrier lifetimes and fractional contribution f3 decrease,
while f1 and f2 increase. This indicates that the range of the
surface layer and surface–bulk transition layer expands,
leading to a decrease in τave

44.
To prove the influence of applied bias on carrier

transport, current-time characteristic curves of MPB
SCBK under white light (36.4 mW cm−2) and in the dark
are shown in Supplementary Figs. S1 and S2, respectively.
Regardless of whether light or dark conditions are applied,
the current output at different biases remains nearly
constant for 60 s. The current–voltage (J–V) characteristic
curves in Supplementary Figs. S1b and S2b are drawn
from current-time characteristic curves. The J–V curves
both show the same three-stage trend: the trap-filled
region at a low voltage (<2 V), the charge injection region
(the defects are passivated and cured in this region) at a
medium voltage (2–20 V), and the charge-injected
saturation region at a high voltage (>20 V)14,15,46. This
indicates that injected charges influence carrier transport
through voltage regulation. Detailed results and discus-
sion are provided in the following sections.

Experimental details and characterization
To verify our hypothesis, the experimental device is

fabricated, and its schematic diagram is shown in Fig. 2a.
The MPB SCBK with 100 nm gold electrodes is in contact
with two probes connected to a DC power supply. The
laser excites three regions between two electrodes of the
MPB SCBK; the steady-state PL and TRPL that occur after
applied bias regulation are then detected. The three
regions include the region around the cathode (5 μm
apart), the center region and the region around the anode
(5 μm apart). A scanning electron microscopy (SEM)
image and an energy dispersive spectrometry (EDS) map
of MPB SCBK with a gold electrode are shown in Sup-
plementary Fig. S3. The SEM image shows a clear
boundary between the uniform MPB SCBK and the
continuous gold electrode. The gold, bromine, lead, car-
bon, and nitrogen in the EDS map show even distribu-
tions and characteristic peaks in Supplementary Fig. 3g.
Supplementary Figure S4 shows the optical image, three-
dimensional (3D) pseudocolour plots and thickness
information of the experimental device. The gold elec-
trodes are 100 nm thick, continuous and arranged in
parallel with an electrode spacing of 120 μm.
In Fig. 2b, the absorption spectrum and transmission

spectrum of MPB SCBK show an absorption cut-off
wavelength of ~560 nm. The absorption spectrum was
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measured in “Abs” mode without using the integration
sphere. A thicker MPB SCBK (~3mm) shows absorption
supersaturation in the high-energy region. The X-ray
diffraction (XRD) results of MPB SCBK powder, MPB
SCBK, PbBr2 and MABr are shown in Fig. 2c. From the
XRD results, it can be concluded that the two original
materials (PbBr2 and MABr) have been completely
transformed into MPB SCBK. The characteristic peaks in
the MPB SCBK and MPB SCBK powder are consistent
with cubic lattice structures (as shown in the inset of
Fig. 2b). Figure 2d shows an optical image of the
centimeter-sized MPB SCBK with a gold electrode. The
MPB SCBK is grown from a 1.5M mixed DMF solution of
PbBr2 and MABr (molar ratio of 1:1) using the ITC
method47,48 described in our previous report49. The
Raman spectrum of MPB SCBK exhibits molecular
vibrational peaks (60, 320, 917, 970, 1250, 1477, 1592, and
2966 cm−1) consistent with those in previous reports50, as
shown in Fig. 2e. The characterizations demonstrate the
high quality of the experimental device, which is further
utilized for voltage-dependent experiments.

TRPL measurement of MPB SCBK with an applied bias
The electrical poling intensity under various applied

biases (0–50 V) is shown in Supplementary Fig. S5. Before
measuring the TRPL, steady-state PL and J–V

characteristics, the MPB SCBK is first polarized for 1 min
under different biases. TRPL measurements are per-
formed under 532 nm laser excitation, and the lifetime
decay in three regions (around the cathode, in the center
region and around the anode) is shown in Supplementary
Figs. S6–S8, respectively. Through tri-exponential decay
function fitting these lifetime decay curves, that is, short
lifetime (τ1), middle lifetime (τ2), and long lifetime (τ3),
and the corresponding fractional contributions (f1, f2, f3)
can be obtained, as shown in each TRPL result. τave can be
calculated from τave ¼ τ1f1 þ τ2f2 þ τ3f3

51. Detailed
information is shown in Supplementary Tables S1–S3.
The dependence of the carrier lifetime and fractional

contribution on bias is shown in Fig. 3. In Fig. 3a, d, g,
regardless of whether measured in the center region or
around the cathode or anode, plots of τave vs. applied bias
exhibit Gaussian distributions. As the applied bias
increases from 0 to 20 V, τave shows an increasing trend
and reaches a maximum at 20 V (the electrical poling
intensity is 0.167 V μm−1). Then, it begins to decrease as
the bias continues to increase. The champion τave reg-
ulation results at 20 V (the electrical poling intensity is
0.167 V μm−1) increase by 32.04% around the cathode, by
11.47% in the center region and by 15.00% around the
anode compared with the values with no bias regulation.
After the bias is removed for 12min, τave is restored and
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becomes even larger than its initial value, as shown in
Supplementary Tables S1–S3. This illustrates that apply-
ing bias is an effective technique to achieve the light
emitting property, and the champion regulated bias is
20 V (the electrical poling intensity is 0.167 V μm−1). In
addition, once the bias is removed, the MPB SCBK
exhibits a certain degree of defect passivation, implying
that voltage regulation can cure some defects and is thus a
recoverable method.
The dependence of carrier lifetime components (τ1, τ2,

and τ3) on applied voltage is summarized in Fig. 3b, e, h.
τ3 shows an obvious voltage regulation effect, which fol-
lows the same trend as τave in the three regions. This
indicates that as the applied bias increases from 0 to 20 V,
the injected charges passivate and cure the defects,
thereby facilitating carrier transport and prolonging the
free-carrier lifetime (τ3). When the applied bias is larger
than 20 V, the injected charges are oversaturated and act

as new defects to trap carriers. The fractional contribu-
tions (f1, f2, f3) in different regions also show a dependency
on bias, as shown in Fig. 3c, f, i. f1 and f2 decrease first and
then increase with increasing bias and exhibit a minimum
value at ~20 V (the electrical poling intensity is 0.167 V
μm−1). In contrast, f3 shows a Gaussian distribution that
is consistent with the carrier lifetime (τ3 and τave). This
further implies that charge injection has a regulatory
effect on radiative recombination in each step to some
extent. It is manifested as follows: under the same optical
penetration depth31, as the applied bias increases to 20 V,
appropriate charge injection not only plays a role in
curing defects but also causes the surface and
surface–bulk transition layers to shrink, while the bulk
region range slowly increases. When the applied bias is
>20 V, the excessive injected charges show the opposite
effect on the three-layer region. The trend of carrier
lifetime and fractional contributions further proves the
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three-step carrier transfer model with voltage regulation,
as shown in Fig. 1.
Furthermore, according to the following equations41,52:

1=τS ¼ αS=
ffiffiffi
2

p ð1Þ
S ¼ σνthNt ð2Þ

where τS is the lifetime under single-photon absorption
(corresponding to τave)

41, α is the absorption coefficient of
~70,862 cm−1 53, S is the surface recombination velocity, σ
is a typical recombination surface cross section in
semiconductors (≈10−15 cm−2), νth is the carrier thermal
velocity (≈3.7 × 107 cm s−1), and Nt is the surface defect
density. The simplified derivation process of Eq. 1 is
detailed in the Supplementary Information. Whether in the
center region or around the cathode and anode, as shown in
Fig. 4, the calculated S and Nt values show the same trace as
the surface layer fractional contribution (f1) and reach a
minimum value at 20 V (the electrical poling intensity is
0.167 V μm−1), which further confirms the variation in the
surface layer region and the defect-tuning effect. It is worth
mentioning that the center region has lower S and Nt values
than the regions near the electrodes. The champion defect
regulation results at 20 V (the electrical poling intensity is
0.167 V μm−1) show a 24.27% reduction around the
cathode, a 13.28% reduction in the center region and a
13.05% reduction around the anode compared with the
values at no bias. These results imply the universality of the
defect-tunable effect by voltage regulation engineering.

Steady-state PL measurement of MPB SCBK with an
applied bias
The steady-state PL intensity and carrier lifetime show a

positive correlation as follows51:

ISS ¼
Z 1

0
I0e

�t=τdt ¼ I0τ ð3Þ

where ISS is the steady-state PL intensity, I0 is a parameter
that depends on the fluorophore concentration and
instrumental parameters, and τ is the average lifetime of

the materials. Since the experimental conditions are fixed,
the influence of I0 is ignorable, so ISS is positively
correlated with τave.
The steady-state PL measurement is performed upon

excitation with a 473 nm laser at room temperature, and
the results are shown in Fig. 5. From a waterfall mapping
of the steady-state PL spectrum in Fig. 5a, e, i, it can be
concluded that there is no obvious peak shift, and the PL
intensity shows a trend of increasing first and then
decreasing as the applied bias increases. Figure 5b, f, j
shows the variation in PL maximum intensity with
increasing bias. The PL intensity shows the same trend as
τave and reaches a maximum value at 20 V (the electrical
poling intensity is 0.167 V μm−1). The best PL intensity
regulation results at 20 V (the electrical poling intensity is
0.167 V μm−1) show a 54.04% increase around the cath-
ode, a 112.96% increase in the center region and a 51.83%
increase around the anode compared with the values
obtained with no bias regulation. Figure 5c, g, k shows the
steady-state PL spectrum in different regions with time
delay after removing bias. All PL intensities remain con-
stant within 6 min, show a recovery process with a gradual
increase between 6 and 10min, and then stabilize after
12 min. Figure 5d, h, l shows the variation in PL max-
imum intensity with time delay. It is worth mentioning
that the stable PL maximum intensity after 12 min is
higher than the initial value, indicating that an appro-
priate charge injection can cure some defects and achieve
more radiative recombination. To eliminate the effect of
laser accumulation on PL intensity, the PL vs. time curve
obtained at 0 V bias is shown in Supplementary Fig. S9.
The results show a stable distribution of PL intensity over
time, indicating that the above PL tunable results are
affected by voltage regulation.
A more intuitive fluorescence confocal photo-

micrograph of MPB SCBK with different biases is shown
in Fig. 5m. The fluorescence intensity in the center region
is significantly higher than that around the electrodes at a
bias of 20 V. The center region is chosen for detailed
characterization. When 0 V bias is applied, uneven green
fluorescence can be seen, and there is a certain region of
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becomes even larger than its initial value, as shown in
Supplementary Tables S1–S3. This illustrates that apply-
ing bias is an effective technique to achieve the light
emitting property, and the champion regulated bias is
20 V (the electrical poling intensity is 0.167 V μm−1). In
addition, once the bias is removed, the MPB SCBK
exhibits a certain degree of defect passivation, implying
that voltage regulation can cure some defects and is thus a
recoverable method.
The dependence of carrier lifetime components (τ1, τ2,

and τ3) on applied voltage is summarized in Fig. 3b, e, h.
τ3 shows an obvious voltage regulation effect, which fol-
lows the same trend as τave in the three regions. This
indicates that as the applied bias increases from 0 to 20 V,
the injected charges passivate and cure the defects,
thereby facilitating carrier transport and prolonging the
free-carrier lifetime (τ3). When the applied bias is larger
than 20 V, the injected charges are oversaturated and act

as new defects to trap carriers. The fractional contribu-
tions (f1, f2, f3) in different regions also show a dependency
on bias, as shown in Fig. 3c, f, i. f1 and f2 decrease first and
then increase with increasing bias and exhibit a minimum
value at ~20 V (the electrical poling intensity is 0.167 V
μm−1). In contrast, f3 shows a Gaussian distribution that
is consistent with the carrier lifetime (τ3 and τave). This
further implies that charge injection has a regulatory
effect on radiative recombination in each step to some
extent. It is manifested as follows: under the same optical
penetration depth31, as the applied bias increases to 20 V,
appropriate charge injection not only plays a role in
curing defects but also causes the surface and
surface–bulk transition layers to shrink, while the bulk
region range slowly increases. When the applied bias is
>20 V, the excessive injected charges show the opposite
effect on the three-layer region. The trend of carrier
lifetime and fractional contributions further proves the
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three-step carrier transfer model with voltage regulation,
as shown in Fig. 1.
Furthermore, according to the following equations41,52:

1=τS ¼ αS=
ffiffiffi
2

p ð1Þ
S ¼ σνthNt ð2Þ

where τS is the lifetime under single-photon absorption
(corresponding to τave)

41, α is the absorption coefficient of
~70,862 cm−1 53, S is the surface recombination velocity, σ
is a typical recombination surface cross section in
semiconductors (≈10−15 cm−2), νth is the carrier thermal
velocity (≈3.7 × 107 cm s−1), and Nt is the surface defect
density. The simplified derivation process of Eq. 1 is
detailed in the Supplementary Information. Whether in the
center region or around the cathode and anode, as shown in
Fig. 4, the calculated S and Nt values show the same trace as
the surface layer fractional contribution (f1) and reach a
minimum value at 20 V (the electrical poling intensity is
0.167 V μm−1), which further confirms the variation in the
surface layer region and the defect-tuning effect. It is worth
mentioning that the center region has lower S and Nt values
than the regions near the electrodes. The champion defect
regulation results at 20 V (the electrical poling intensity is
0.167 V μm−1) show a 24.27% reduction around the
cathode, a 13.28% reduction in the center region and a
13.05% reduction around the anode compared with the
values at no bias. These results imply the universality of the
defect-tunable effect by voltage regulation engineering.

Steady-state PL measurement of MPB SCBK with an
applied bias
The steady-state PL intensity and carrier lifetime show a

positive correlation as follows51:

ISS ¼
Z 1

0
I0e

�t=τdt ¼ I0τ ð3Þ

where ISS is the steady-state PL intensity, I0 is a parameter
that depends on the fluorophore concentration and
instrumental parameters, and τ is the average lifetime of

the materials. Since the experimental conditions are fixed,
the influence of I0 is ignorable, so ISS is positively
correlated with τave.
The steady-state PL measurement is performed upon

excitation with a 473 nm laser at room temperature, and
the results are shown in Fig. 5. From a waterfall mapping
of the steady-state PL spectrum in Fig. 5a, e, i, it can be
concluded that there is no obvious peak shift, and the PL
intensity shows a trend of increasing first and then
decreasing as the applied bias increases. Figure 5b, f, j
shows the variation in PL maximum intensity with
increasing bias. The PL intensity shows the same trend as
τave and reaches a maximum value at 20 V (the electrical
poling intensity is 0.167 V μm−1). The best PL intensity
regulation results at 20 V (the electrical poling intensity is
0.167 V μm−1) show a 54.04% increase around the cath-
ode, a 112.96% increase in the center region and a 51.83%
increase around the anode compared with the values
obtained with no bias regulation. Figure 5c, g, k shows the
steady-state PL spectrum in different regions with time
delay after removing bias. All PL intensities remain con-
stant within 6 min, show a recovery process with a gradual
increase between 6 and 10min, and then stabilize after
12 min. Figure 5d, h, l shows the variation in PL max-
imum intensity with time delay. It is worth mentioning
that the stable PL maximum intensity after 12 min is
higher than the initial value, indicating that an appro-
priate charge injection can cure some defects and achieve
more radiative recombination. To eliminate the effect of
laser accumulation on PL intensity, the PL vs. time curve
obtained at 0 V bias is shown in Supplementary Fig. S9.
The results show a stable distribution of PL intensity over
time, indicating that the above PL tunable results are
affected by voltage regulation.
A more intuitive fluorescence confocal photo-

micrograph of MPB SCBK with different biases is shown
in Fig. 5m. The fluorescence intensity in the center region
is significantly higher than that around the electrodes at a
bias of 20 V. The center region is chosen for detailed
characterization. When 0 V bias is applied, uneven green
fluorescence can be seen, and there is a certain region of
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weak fluorescence (black region). As the applied bias
increases from 5 to 20 V, the weakly fluorescent region
gradually disappears, and the overall fluorescence shows
an increase, reaching its maximum at 20 V (the electrical

poling intensity is 0.167 V μm−1). When the applied bias
continues to increase, the fluorescence exhibits a
decreasing trend. After bias is removed for 12min,
fluorescence in the last image is restored and is superior
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to the initial fluorescence, which is consistent with the PL
intensity evolution shown above. The related parameters
of the MPB SCBK in different positions before and after
voltage regulation are summarized in Supplementary
Table S4. The results show that after bias is removed, the
PL intensity is enhanced, indicating that voltage regulation
is a novel strategy to effectively regulate and cure defects.
Therefore, the steady-state PL measurement results show
the same voltage regulation effect as the TRPL measure-
ments, again proving the universality of the three-step
carrier transfer model for MPB SCBK and the defect-
tunable effect by voltage regulation engineering.

Memristor characteristics of MPB SCBK with an applied
bias
We further expand the application of voltage regula-

tion in the first MPB SCBK memristor. In many

perovskite polycrystalline thin-film memristors, ionic
migration has been proposed as one of the mechanisms
explaining the J–V hysteresis loops54. However, in our
experiment, due to the small electrical poling intensity
(<0.42 V μm−1) and the large ion migration energy in
single-crystal materials, it is very difficult to induce ionic
migration in MPB SCBK55,56. Thus, the MPB SCBK
memristor (Au/MPB SCBK/Au structure device) is
mainly attributed to charge trapping/detrapping
mechanisms. Figure 6a shows the J–V characteristic
curves of the device in the dark after polarization for
1 min under different applied biases. The turn-on voltage
is always maintained at ~0.4 V without significant shift-
ing, which rules out the effects of ionic migration56.
Figure 6b shows the typical J–V hysteresis loops of the
device under a voltage sweep sequence of 0 V→ 25 V→
0 V→−25 V→ 0 V. It can be concluded that different
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weak fluorescence (black region). As the applied bias
increases from 5 to 20 V, the weakly fluorescent region
gradually disappears, and the overall fluorescence shows
an increase, reaching its maximum at 20 V (the electrical

poling intensity is 0.167 V μm−1). When the applied bias
continues to increase, the fluorescence exhibits a
decreasing trend. After bias is removed for 12min,
fluorescence in the last image is restored and is superior
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to the initial fluorescence, which is consistent with the PL
intensity evolution shown above. The related parameters
of the MPB SCBK in different positions before and after
voltage regulation are summarized in Supplementary
Table S4. The results show that after bias is removed, the
PL intensity is enhanced, indicating that voltage regulation
is a novel strategy to effectively regulate and cure defects.
Therefore, the steady-state PL measurement results show
the same voltage regulation effect as the TRPL measure-
ments, again proving the universality of the three-step
carrier transfer model for MPB SCBK and the defect-
tunable effect by voltage regulation engineering.

Memristor characteristics of MPB SCBK with an applied
bias
We further expand the application of voltage regula-

tion in the first MPB SCBK memristor. In many

perovskite polycrystalline thin-film memristors, ionic
migration has been proposed as one of the mechanisms
explaining the J–V hysteresis loops54. However, in our
experiment, due to the small electrical poling intensity
(<0.42 V μm−1) and the large ion migration energy in
single-crystal materials, it is very difficult to induce ionic
migration in MPB SCBK55,56. Thus, the MPB SCBK
memristor (Au/MPB SCBK/Au structure device) is
mainly attributed to charge trapping/detrapping
mechanisms. Figure 6a shows the J–V characteristic
curves of the device in the dark after polarization for
1 min under different applied biases. The turn-on voltage
is always maintained at ~0.4 V without significant shift-
ing, which rules out the effects of ionic migration56.
Figure 6b shows the typical J–V hysteresis loops of the
device under a voltage sweep sequence of 0 V→ 25 V→
0 V→−25 V→ 0 V. It can be concluded that different
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applied biases affect and regulate the J–V hysteresis loop
curve of the memristor. As shown in Supplementary Fig.
S10, voltage regulation yields a stable regulation result of
the J–V hysteresis loop curve with more than 320 cycles.
At a reading voltage of 1 V, as shown in Fig. 6c, it is
worth noting that the regulation of different biases
makes the Au/MPB SCBK/Au device exhibit multi-
resistance states with almost stable low resistance (LRS)
and tunable high resistance (HRS). As the polarizing bias
increases from 0 to 20 V, the HRS value shows a
decreasing trend, which is mainly due to the defect
passivation effect caused by injected charges. Conversely,
when the polarizing bias continues to increase to 50 V,
the HRS value exhibits an increasing tendency, which is
mainly due to excess injected charges serving as new
defects. The above changes are consistent with the
charge trapping/detrapping mechanism54.
Detailed information on the device’s multiresistance

under different poling biases is shown in Supplementary
Fig. S11. Furthermore, the HRS/LRS ratios of the device
under different polarizing biases at Vreadout= 1 V are
shown in Fig. 6d. The HRS/LRS ratio shows a change in
the range from 1.44 to 8.1 under voltage regulation, which
basically meets commercial application conditions.
Although the HRS/LRS ratio of this device is lower than
reported perovskite polycrystalline thin-film memris-
tor54,57, which may be attributed to the low trap density of
MPB SCBK and the negligible ionic migration effect, it
still proves a high stability as a potential application in
memristors. In addition, after removing the poling voltage
for 12min, the device shows an improvement in the HRS
value, as shown in Supplementary Table S5, which further
confirms that the curing effect of injected charges on
defects is consistent with the measurement results in
TRPL and steady-state PL.
For the memristor device, the operation speed, showing

how fast the device can be switched between different
states, is also an important criterion54,58. Figure 6e shows
the applied poling pulse at +2.0 and −2.0 V with a 0.1 s
poling pulse duration and a read pulse at +1.0 V, with a
0.1 s read pulse duration. As shown in Fig. 6f, g, the
readout currents of the device under multiple voltage
pulses after polarizing biases of 0 and 20 V show the same
response speed of approximately a five-pulse switching
time (0.5 s) between the LRS and HRS states. The fast
switching time (0.5 s) in our MPB SCBK memristor
compared with that of a perovskite polycrystalline thin
film57,59 is mainly due to the charge trapping/detrapping
mechanism54. In addition, the conductivity of the MPB
SCBK memristor can be repeatedly tuned for more than
320 cycles with small fluctuations. Thus, voltage regula-
tion engineering does not significantly change the
response speed of the MPB SCBK memristor but only
regulates the readout current value and affects the

resistance of the device, which is consistent with the J–V
hysteresis loops in Fig. 6b.

Discussion
In summary, we demonstrate a three-step carrier

transport model of MPB SCBK and voltage regulation
engineering as an efficient strategy to regulate defects and
influence dynamic carrier transport. The best voltage for
regulation is achieved at 20 V (the electrical poling
intensity is 0.167 V μm−1), wherein the average carrier
lifetime is increased by 32.04%, the surface defect density
is reduced by 24.27% and the PL intensity is increased by
112.96% compared with the values obtained with no bias.
After removing the applied bias for 12min, τave and PL
intensity are higher than their initial values, which indi-
cates that a suitable voltage regulation (electrical poling
intensity less than 0.42 V μm−1) will cure some defects in
the MPB SCBK. Furthermore, voltage regulation shows a
potential application on the first multiresistance adjus-
table (HRS/LRS ratio changing in range from 1.44 to 8.1)
and ultrastable (more than 320 cycles) MPB SCBK
memristor, which overcomes the effect of ion migration.
This work provides novel insight into the flexibility of the
defect density of perovskite SCBKs, and voltage regulation
is an effective engineering method to tune not only the
defect density but also the carrier lifetime, PL intensity,
and resistance. This work will improve the optimization of
optoelectronic devices based on PSCs.

Materials and methods
Materials
Methylamine solution (40% aqueous solution, Aladdin),

lead bromide (PbBr2) (99%, Aladdin), and N,N-dimethyl-
formamide (DMF) (99.5%, Aladdin) were purchased from
Aladdin. Hydrobromic acid (HBr) (40% aqueous solution),
absolute ethanol, and diethyl ether were purchased from
Sinopharm Chemical Reagent Co., Ltd. All materials were
used without further purification.

Synthesis of methylammonium bromide (MABr)
MABr was synthesized according to our previous

report. First, the two raw materials (44mL HBr acid
solution and 30 mL methylamine solution) were mixed in
an ice bath for 2 h with stirring. Then, the white powder
was recovered by rotary evaporation at 60 °C to remove
the solvent. Next, the recovered white powder (MABr)
was recrystallized by absolute ethanol and diethyl ether in
turn three times. Finally, the recrystallized MABr was
dried at 60 °C in a vacuum for one night.

Synthesis of MAPbBr3 single-crystal bulk (MPB SCBK)
MPB SCBK was grown through an inverse temperature

crystallization (ITC) method according to our previous
report. First, 1.5M MAPbBr3 precursor solution was
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prepared by mixing PbBr2 (1.5 mmol) and MABr
(1.5 mmol) in DMF (10 mL) completely at room tem-
perature. Then, a clear MAPbBr3 precursor solution
(using a PTFE filter with 0.22 μm) was undisturbed and
kept in an oil bath. Next, the oil temperature was gra-
dually raised from room temperature to 75 °C. Finally,
MPB SCBK with centimeter size was obtained after 3 h.

Experimental device
The 100 nm gold electrode was evaporated on the sur-

face of the MPB SCBK-covered template by a high
vacuum metal evaporation coating system (ZHD-400,
Beijing Technol Science Co., Ltd.). The electrode spacing
was 120 μm. Different biases on the gold electrode were
applied through two probes connected with a DC power
supply (MCH-K605DN) to measure the steady-state PL
and dynamic PL of the MPB SCBK.

Time-resolved photoluminescence (TRPL)
The TRPLs of MPB SCBKs with different applied biases

were measured by means of a home-built confocal
microscope. A pulsed supercontinuum laser (OYSL
Photonics, SC-Pro, 150 ps pulse lengths) at a 2MHz
repetition rate was used as the laser source. The focused
pump laser (the wavelength was 532 nm after laser lines
filter) power through an objective lens N.A.= 0.4 was
0.132 μW. A long-pass filter with a 532 nm edge (Sem-
rock) was used to filter out the pump scattered light from
the pump laser to the detector. The photoluminescence
from MPB SCBK was detected by a SPCM-AQRH single-
photon counting module (SPCM-AQRH-15, Excelitas
Technologies), and the lifetime module was TimeHarp
260P (PicoQuant).

Characterization of MAPbBr3 single-crystal bulk (MPB
SCBK)
Current-time characteristic measurements of MPB

SCBK were performed by using a Keithley 4200A semi-
conductor parametric analyser (Tektronix) and a C-100
probe station from TPSi Company in the dark at room
temperature. The SEM image and energy dispersive
spectrometry (EDS) mapping results of the gold electrode
and MPB SCBK were measured by means of a Phenom
Pro-X. A three-dimensional (3D) pseudocolour plot of the
gold electrode deposited on the MPB SCBK was obtained
by using a KEYENCE VK-X200 3D laser scanning
microscope. The absorption spectrum and transmission
spectrum were recorded on an Agilent Cary 5000. The
XRD measurement was performed by using a BRUKER
D8 FOCUS. Raman spectra were recorded on a HORIBA
Scientific Raman spectrometer with 785 nm laser excita-
tion in air at room temperature. Steady-state PL spectra of
MPB SCBK with different applied voltages were obtained
by means of a HORIBA Scientific Raman Spectrometer at

473 nm laser with 2.55 mW cm−2 laser intensity in air at
room temperature. The PL confocal micrographs of MPB
SCBK were obtained by Nikon ECLIPSE Ti with 486 nm
laser excitation in air at room temperature. The J–V
characteristic curves of MPB SCBK were obtained by
using a Keithley 4200A semiconductor parametric ana-
lyser (Tektronix) and a C-100 probe station from TPSi
Company in air at room temperature.
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applied biases affect and regulate the J–V hysteresis loop
curve of the memristor. As shown in Supplementary Fig.
S10, voltage regulation yields a stable regulation result of
the J–V hysteresis loop curve with more than 320 cycles.
At a reading voltage of 1 V, as shown in Fig. 6c, it is
worth noting that the regulation of different biases
makes the Au/MPB SCBK/Au device exhibit multi-
resistance states with almost stable low resistance (LRS)
and tunable high resistance (HRS). As the polarizing bias
increases from 0 to 20 V, the HRS value shows a
decreasing trend, which is mainly due to the defect
passivation effect caused by injected charges. Conversely,
when the polarizing bias continues to increase to 50 V,
the HRS value exhibits an increasing tendency, which is
mainly due to excess injected charges serving as new
defects. The above changes are consistent with the
charge trapping/detrapping mechanism54.
Detailed information on the device’s multiresistance

under different poling biases is shown in Supplementary
Fig. S11. Furthermore, the HRS/LRS ratios of the device
under different polarizing biases at Vreadout= 1 V are
shown in Fig. 6d. The HRS/LRS ratio shows a change in
the range from 1.44 to 8.1 under voltage regulation, which
basically meets commercial application conditions.
Although the HRS/LRS ratio of this device is lower than
reported perovskite polycrystalline thin-film memris-
tor54,57, which may be attributed to the low trap density of
MPB SCBK and the negligible ionic migration effect, it
still proves a high stability as a potential application in
memristors. In addition, after removing the poling voltage
for 12min, the device shows an improvement in the HRS
value, as shown in Supplementary Table S5, which further
confirms that the curing effect of injected charges on
defects is consistent with the measurement results in
TRPL and steady-state PL.
For the memristor device, the operation speed, showing

how fast the device can be switched between different
states, is also an important criterion54,58. Figure 6e shows
the applied poling pulse at +2.0 and −2.0 V with a 0.1 s
poling pulse duration and a read pulse at +1.0 V, with a
0.1 s read pulse duration. As shown in Fig. 6f, g, the
readout currents of the device under multiple voltage
pulses after polarizing biases of 0 and 20 V show the same
response speed of approximately a five-pulse switching
time (0.5 s) between the LRS and HRS states. The fast
switching time (0.5 s) in our MPB SCBK memristor
compared with that of a perovskite polycrystalline thin
film57,59 is mainly due to the charge trapping/detrapping
mechanism54. In addition, the conductivity of the MPB
SCBK memristor can be repeatedly tuned for more than
320 cycles with small fluctuations. Thus, voltage regula-
tion engineering does not significantly change the
response speed of the MPB SCBK memristor but only
regulates the readout current value and affects the

resistance of the device, which is consistent with the J–V
hysteresis loops in Fig. 6b.

Discussion
In summary, we demonstrate a three-step carrier

transport model of MPB SCBK and voltage regulation
engineering as an efficient strategy to regulate defects and
influence dynamic carrier transport. The best voltage for
regulation is achieved at 20 V (the electrical poling
intensity is 0.167 V μm−1), wherein the average carrier
lifetime is increased by 32.04%, the surface defect density
is reduced by 24.27% and the PL intensity is increased by
112.96% compared with the values obtained with no bias.
After removing the applied bias for 12min, τave and PL
intensity are higher than their initial values, which indi-
cates that a suitable voltage regulation (electrical poling
intensity less than 0.42 V μm−1) will cure some defects in
the MPB SCBK. Furthermore, voltage regulation shows a
potential application on the first multiresistance adjus-
table (HRS/LRS ratio changing in range from 1.44 to 8.1)
and ultrastable (more than 320 cycles) MPB SCBK
memristor, which overcomes the effect of ion migration.
This work provides novel insight into the flexibility of the
defect density of perovskite SCBKs, and voltage regulation
is an effective engineering method to tune not only the
defect density but also the carrier lifetime, PL intensity,
and resistance. This work will improve the optimization of
optoelectronic devices based on PSCs.

Materials and methods
Materials
Methylamine solution (40% aqueous solution, Aladdin),

lead bromide (PbBr2) (99%, Aladdin), and N,N-dimethyl-
formamide (DMF) (99.5%, Aladdin) were purchased from
Aladdin. Hydrobromic acid (HBr) (40% aqueous solution),
absolute ethanol, and diethyl ether were purchased from
Sinopharm Chemical Reagent Co., Ltd. All materials were
used without further purification.

Synthesis of methylammonium bromide (MABr)
MABr was synthesized according to our previous

report. First, the two raw materials (44mL HBr acid
solution and 30 mL methylamine solution) were mixed in
an ice bath for 2 h with stirring. Then, the white powder
was recovered by rotary evaporation at 60 °C to remove
the solvent. Next, the recovered white powder (MABr)
was recrystallized by absolute ethanol and diethyl ether in
turn three times. Finally, the recrystallized MABr was
dried at 60 °C in a vacuum for one night.

Synthesis of MAPbBr3 single-crystal bulk (MPB SCBK)
MPB SCBK was grown through an inverse temperature

crystallization (ITC) method according to our previous
report. First, 1.5M MAPbBr3 precursor solution was
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prepared by mixing PbBr2 (1.5 mmol) and MABr
(1.5 mmol) in DMF (10 mL) completely at room tem-
perature. Then, a clear MAPbBr3 precursor solution
(using a PTFE filter with 0.22 μm) was undisturbed and
kept in an oil bath. Next, the oil temperature was gra-
dually raised from room temperature to 75 °C. Finally,
MPB SCBK with centimeter size was obtained after 3 h.

Experimental device
The 100 nm gold electrode was evaporated on the sur-

face of the MPB SCBK-covered template by a high
vacuum metal evaporation coating system (ZHD-400,
Beijing Technol Science Co., Ltd.). The electrode spacing
was 120 μm. Different biases on the gold electrode were
applied through two probes connected with a DC power
supply (MCH-K605DN) to measure the steady-state PL
and dynamic PL of the MPB SCBK.

Time-resolved photoluminescence (TRPL)
The TRPLs of MPB SCBKs with different applied biases

were measured by means of a home-built confocal
microscope. A pulsed supercontinuum laser (OYSL
Photonics, SC-Pro, 150 ps pulse lengths) at a 2MHz
repetition rate was used as the laser source. The focused
pump laser (the wavelength was 532 nm after laser lines
filter) power through an objective lens N.A.= 0.4 was
0.132 μW. A long-pass filter with a 532 nm edge (Sem-
rock) was used to filter out the pump scattered light from
the pump laser to the detector. The photoluminescence
from MPB SCBK was detected by a SPCM-AQRH single-
photon counting module (SPCM-AQRH-15, Excelitas
Technologies), and the lifetime module was TimeHarp
260P (PicoQuant).

Characterization of MAPbBr3 single-crystal bulk (MPB
SCBK)
Current-time characteristic measurements of MPB

SCBK were performed by using a Keithley 4200A semi-
conductor parametric analyser (Tektronix) and a C-100
probe station from TPSi Company in the dark at room
temperature. The SEM image and energy dispersive
spectrometry (EDS) mapping results of the gold electrode
and MPB SCBK were measured by means of a Phenom
Pro-X. A three-dimensional (3D) pseudocolour plot of the
gold electrode deposited on the MPB SCBK was obtained
by using a KEYENCE VK-X200 3D laser scanning
microscope. The absorption spectrum and transmission
spectrum were recorded on an Agilent Cary 5000. The
XRD measurement was performed by using a BRUKER
D8 FOCUS. Raman spectra were recorded on a HORIBA
Scientific Raman spectrometer with 785 nm laser excita-
tion in air at room temperature. Steady-state PL spectra of
MPB SCBK with different applied voltages were obtained
by means of a HORIBA Scientific Raman Spectrometer at

473 nm laser with 2.55 mW cm−2 laser intensity in air at
room temperature. The PL confocal micrographs of MPB
SCBK were obtained by Nikon ECLIPSE Ti with 486 nm
laser excitation in air at room temperature. The J–V
characteristic curves of MPB SCBK were obtained by
using a Keithley 4200A semiconductor parametric ana-
lyser (Tektronix) and a C-100 probe station from TPSi
Company in air at room temperature.
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Low-dose real-time X-ray imaging with nontoxic
double perovskite scintillators
Wenjuan Zhu1, Wenbo Ma 1, Yirong Su1, Zeng Chen2, Xinya Chen1, Yaoguang Ma1, Lizhong Bai1, Wenge Xiao 1,
Tianyu Liu1, Haiming Zhu 2, Xiaofeng Liu1, Huafeng Liu1, Xu Liu 1 and Yang (Michael) Yang 1

Abstract
X-rays are widely used in probing inside information nondestructively, enabling broad applications in the medical
radiography and electronic industries. X-ray imaging based on emerging lead halide perovskite scintillators has
received extensive attention recently. However, the strong self-absorption, relatively low light yield and lead toxicity of
these perovskites restrict their practical applications. Here, we report a series of nontoxic double-perovskite scintillators
of Cs2Ag0.6Na0.4In1-yBiyCl6. By controlling the content of the heavy atom Bi3+, the X-ray absorption coefficient, radiative
emission efficiency, light yield and light decay were manipulated to maximise the scintillator performance. A light yield
of up to 39,000 ± 7000 photons/MeV for Cs2Ag0.6Na0.4In0.85Bi0.15Cl6 was obtained, which is much higher than that for
the previously reported lead halide perovskite colloidal CsPbBr3 (21,000 photons/MeV). The large Stokes shift between
the radioluminescence (RL) and absorption spectra benefiting from self-trapped excitons (STEs) led to a negligible self-
absorption effect. Given the high light output and fast light decay of this scintillator, static X-ray imaging was attained
under an extremely low dose of ∼1 μGyair, and dynamic X-ray imaging of finger bending without a ghosting effect
was demonstrated under a low-dose rate of 47.2 μGyair s

−1. After thermal treatment at 85 °C for 50 h followed by X-ray
irradiation for 50 h in ambient air, the scintillator performance in terms of the RL intensity and X-ray image quality
remained almost unchanged. Our results shed light on exploring highly competitive scintillators beyond the scope of
lead halide perovskites, not only for avoiding toxicity but also for better performance.

Introduction
X-ray imaging has been actively utilised in the fields of

industrial material inspection, medical diagnosis and scien-
tific research1–10. Low-dose irradiation, high stability and
high spatial resolution are generally regarded as the most
important characteristics for X-ray imaging11,12. Current X-
ray imaging systems mostly rely on scintillators that are
capable of converting X-ray photons into visible photons
that are then detected by a photodiode array13–15. Conven-
tional scintillators, such as thallium-doped caesium iodide
(CsI:Tl)16,17 and cerium-doped lutetium−aluminium garnet

(LuAG:Ce)18, usually require expensive and time-consuming
synthesis, which poses a major challenge for device pro-
cessability. Unlike conventional scintillator materials, the
emerging lead halide perovskites for X-ray detectors are
starting to show attractive merits of facile fabrication, fast
response and good spatial resolution19–26. However, the
relatively low X-ray light yield, lead toxicity27–29 and
instability greatly limit their applications in high-end X-ray
imaging featuring low-dose exposure, hazard-free manu-
facturing, real-time monitoring and robustness.
Fortunately, previous efforts have discovered many

efficient lead-free emitters, e.g., double-perovskite30–32,
copper33–35 and bismuth (Bi)36–38-based metal halides,
which hold potential for X-ray scintillators. Very recently,
Rb2CuBr3

33 and Cs2NaTbCl6
39 were shown to be scintil-

lators with high light yield. However, the long decay time
and strong afterglow impede their use in realising high
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