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Abstract
Early identification of pathogenic bacteria in food, water, and bodily fluids is very important and yet challenging,
owing to sample complexities and large sample volumes that need to be rapidly screened. Existing screening
methods based on plate counting or molecular analysis present various tradeoffs with regard to the detection time,
accuracy/sensitivity, cost, and sample preparation complexity. Here, we present a computational live bacteria
detection system that periodically captures coherent microscopy images of bacterial growth inside a 60-mm-diameter
agar plate and analyses these time-lapsed holograms using deep neural networks for the rapid detection of bacterial
growth and the classification of the corresponding species. The performance of our system was demonstrated by the
rapid detection of Escherichia coli and total coliform bacteria (i.e., Klebsiella aerogenes and Klebsiella pneumoniae subsp.
pneumoniae) in water samples, shortening the detection time by >12 h compared to the Environmental Protection
Agency (EPA)-approved methods. Using the preincubation of samples in growth media, our system achieved a limit of
detection (LOD) of ~1 colony forming unit (CFU)/L in ≤9 h of total test time. This platform is highly cost-effective
(~$0.6/test) and has high-throughput with a scanning speed of 24 cm2/min over the entire plate surface, making it
highly suitable for integration with the existing methods currently used for bacteria detection on agar plates. Powered
by deep learning, this automated and cost-effective live bacteria detection platform can be transformative for a wide
range of applications in microbiology by significantly reducing the detection time and automating the identification
of colonies without labelling or the need for an expert.

Introduction
The rapid and accurate identification of live micro-

organisms is of great importance for a wide range of
applications1–8, including drug discovery screening
assays1–3, clinical diagnoses4, microbiome studies5,6, and
food and water safety7,8. Waterborne diseases affect more
than 2 billion people worldwide9, causing a substantial

economic burden; for example, the treatment of water-
borne diseases costs more than $2 billion annually in the
United States (US) alone, with 90 million cases recorded
per year10.
Among waterborne pathogen-related problems, one of

the most common public health concerns is the presence
of total coliform bacteria and Escherichia coli (E. coli) in
drinking water, which indicates fecal contamination.
Analytical methods used to detect E. coli and total coli-
forms are based on culturing the obtained samples on
solid agar plates (e.g., the US Environmental Protection
Agency (EPA) 1103.1 and EPA 1604 methods) or in liquid
media (e.g., Colilert test), followed by visual recognition
and counting by an expert, as described in the EPA
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guidelines11–13. While the use of liquid growth media for
the detection of fecal coliform bacteria provides high
sensitivity and specificity, it requires at least 18 h for the
final read-out. The use of solid agar plates is a relatively
more cost-effective method and provides flexibility for the
volume of the sample to be analysed, which can vary from
100mL to several litres to enhance the sensitivity. How-
ever, this traditional culture-based detection method
requires the colonies to grow to a certain macroscopic
size for visibility, which often takes 24–48 h in the case of
bacterial samples. Alternatively, molecular detection
methods14,15 based on, e.g., the amplification of nucleic
acids, can reduce the assay time to a few hours, but they
generally lack the sensitivity for detecting bacteria at very
low concentrations, e.g., 1 colony forming unit (CFU) per
100–1000 mL, and are not capable of differentiating
between live and dead microorganisms16. Furthermore,
there is no EPA-approved nucleic acid-based analytical
method17 for detecting coliforms in water samples.
Overall, there is a strong and urgent need for an auto-

mated method that can achieve rapid and high-
throughput colony detection with high sensitivity (routi-
nely achieving, e.g., 1 CFU per 100–1000 mL in less than
12 h) to provide a powerful alternative to the currently
available EPA-approved gold-standard analytical methods
that (1) are slow, take ~24–48 h and (2) require experts to
read and quantify samples. To address this important
need, various other approaches18–20 have been investi-
gated for the detection of total coliform bacteria and E.
coli in water samples, including solid phase cytometry21,
droplet-based micro-optical lens array measurements22,
fluorimetry23, luminometry24, and fluorescence micro-
scopy25. Despite the fact that these methods provide high
sensitivity and some time savings, they cannot handle
large sample sizes (e.g., ≥100mL) or cannot perform the
automated classification of bacterial colonies.
To provide a highly sensitive and high-throughput sys-

tem for the early detection and classification of live
microorganisms and colony growth, we present a time-
lapse coherent imaging platform that uses two different
deep neural networks (DNNs) for its operation. The first
DNN is used to detect bacterial growth as early as possible,
and the second DNN is used to classify the type of growing
bacteria based on the spatiotemporal features obtained
from the coherent images of an incubated agar plate (see
Fig. 1). In this live bacteria detection system, which is
integrated with an incubator, lens-free holographic images
of the agar plate sample are captured by a monochromatic
complementary metal–oxide–semiconductor (CMOS)
image sensor that is mounted on a translational stage. The
system rapidly scans the entire area of two separate agar
plates (~56.52 cm2) every 30min and utilizes these time-
resolved holographic images for the accurate detection,
classification, and counting of the growing colonies as

early as possible (see Fig. 2a). This unique system enables
high-throughput periodic monitoring of an incubated
sample by scanning a 60-mm-diameter agar plate in 87 s
with an image resolution of <4 μm; it continuously cal-
culates differential images of the sample of interest for
the early and accurate detection of bacterial growth. The
spatiotemporal features of each nonstatic object on the
plate are continuously analysed using deep learning to
yield the count of bacterial growth and to automatically
identify the type(s) of bacteria growing on the different
parts of the agar plate.
We demonstrated the efficacy of this platform by per-

forming the early detection and classification of three
types of bacteria, i.e., E. coli, Klebsiella aerogenes (K.
aerogenes), and Klebsiella pneumoniae (K. pneumoniae),
and achieved a limit of detection (LOD) of ~1 CFU/L in
≤9 h of the total test time. Moreover, we achieved detec-
tion time savings of more than 12 h compared to the gold-
standard EPA methods26, which usually require at least
24 h to obtain a result. We also quantified the growth
statistics of these three different species and provided a
detailed growth analysis of each type of bacteria over time.
Our detection and classification neural network models
were built, trained and validated with ~16,000 individual
colonies resulting from 71 independent experiments and
were blindly tested with 965 individual colonies collected
from 15 independent experiments that were never used in
the training phase. In our blind testing, the trained models
demonstrated an 80% detection sensitivity within 6–9 h, a
90% detection sensitivity within 7–10 h, and a >95%
detection sensitivity within 12 h, while maintaining
~99.2–100% precision at any time point after 7 h, also
achieving correct identification of 80% of all three the
species within 7.6–12 h. In terms of the species-specific
accuracy of our classification network, within 12 h of
incubation, we achieved ~97.2%, ~84.0%, and ~98.5%
classification accuracy for E. coli, K. aerogenes, and
K. pneumoniae, respectively. These results confirm the
transformative potential of our platform, which not only
enables the highly sensitive, rapid and cost-effective
detection of live bacteria (with a cost of $0.6 per test,
including a culture plate) but also provides a powerful and
versatile tool for microbiology research.

Results
We demonstrated our system by monitoring bacterial

colony growth within 60-mm-diameter agar plates and
quantitatively analysed the capabilities of the platform
for early detection of the bacterial growth and classifi-
cation of bacterial species. To demonstrate its proof-of-
concept, we aimed to automatically detect, classify, and
count E. coli and coliform bacteria in water samples
using our deep learning-based platform. Throughout our
training and blind testing experiments, we used water
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sensitivity and specificity, it requires at least 18 h for the
final read-out. The use of solid agar plates is a relatively
more cost-effective method and provides flexibility for the
volume of the sample to be analysed, which can vary from
100mL to several litres to enhance the sensitivity. How-
ever, this traditional culture-based detection method
requires the colonies to grow to a certain macroscopic
size for visibility, which often takes 24–48 h in the case of
bacterial samples. Alternatively, molecular detection
methods14,15 based on, e.g., the amplification of nucleic
acids, can reduce the assay time to a few hours, but they
generally lack the sensitivity for detecting bacteria at very
low concentrations, e.g., 1 colony forming unit (CFU) per
100–1000 mL, and are not capable of differentiating
between live and dead microorganisms16. Furthermore,
there is no EPA-approved nucleic acid-based analytical
method17 for detecting coliforms in water samples.
Overall, there is a strong and urgent need for an auto-

mated method that can achieve rapid and high-
throughput colony detection with high sensitivity (routi-
nely achieving, e.g., 1 CFU per 100–1000 mL in less than
12 h) to provide a powerful alternative to the currently
available EPA-approved gold-standard analytical methods
that (1) are slow, take ~24–48 h and (2) require experts to
read and quantify samples. To address this important
need, various other approaches18–20 have been investi-
gated for the detection of total coliform bacteria and E.
coli in water samples, including solid phase cytometry21,
droplet-based micro-optical lens array measurements22,
fluorimetry23, luminometry24, and fluorescence micro-
scopy25. Despite the fact that these methods provide high
sensitivity and some time savings, they cannot handle
large sample sizes (e.g., ≥100mL) or cannot perform the
automated classification of bacterial colonies.
To provide a highly sensitive and high-throughput sys-

tem for the early detection and classification of live
microorganisms and colony growth, we present a time-
lapse coherent imaging platform that uses two different
deep neural networks (DNNs) for its operation. The first
DNN is used to detect bacterial growth as early as possible,
and the second DNN is used to classify the type of growing
bacteria based on the spatiotemporal features obtained
from the coherent images of an incubated agar plate (see
Fig. 1). In this live bacteria detection system, which is
integrated with an incubator, lens-free holographic images
of the agar plate sample are captured by a monochromatic
complementary metal–oxide–semiconductor (CMOS)
image sensor that is mounted on a translational stage. The
system rapidly scans the entire area of two separate agar
plates (~56.52 cm2) every 30min and utilizes these time-
resolved holographic images for the accurate detection,
classification, and counting of the growing colonies as

early as possible (see Fig. 2a). This unique system enables
high-throughput periodic monitoring of an incubated
sample by scanning a 60-mm-diameter agar plate in 87 s
with an image resolution of <4 μm; it continuously cal-
culates differential images of the sample of interest for
the early and accurate detection of bacterial growth. The
spatiotemporal features of each nonstatic object on the
plate are continuously analysed using deep learning to
yield the count of bacterial growth and to automatically
identify the type(s) of bacteria growing on the different
parts of the agar plate.
We demonstrated the efficacy of this platform by per-

forming the early detection and classification of three
types of bacteria, i.e., E. coli, Klebsiella aerogenes (K.
aerogenes), and Klebsiella pneumoniae (K. pneumoniae),
and achieved a limit of detection (LOD) of ~1 CFU/L in
≤9 h of the total test time. Moreover, we achieved detec-
tion time savings of more than 12 h compared to the gold-
standard EPA methods26, which usually require at least
24 h to obtain a result. We also quantified the growth
statistics of these three different species and provided a
detailed growth analysis of each type of bacteria over time.
Our detection and classification neural network models
were built, trained and validated with ~16,000 individual
colonies resulting from 71 independent experiments and
were blindly tested with 965 individual colonies collected
from 15 independent experiments that were never used in
the training phase. In our blind testing, the trained models
demonstrated an 80% detection sensitivity within 6–9 h, a
90% detection sensitivity within 7–10 h, and a >95%
detection sensitivity within 12 h, while maintaining
~99.2–100% precision at any time point after 7 h, also
achieving correct identification of 80% of all three the
species within 7.6–12 h. In terms of the species-specific
accuracy of our classification network, within 12 h of
incubation, we achieved ~97.2%, ~84.0%, and ~98.5%
classification accuracy for E. coli, K. aerogenes, and
K. pneumoniae, respectively. These results confirm the
transformative potential of our platform, which not only
enables the highly sensitive, rapid and cost-effective
detection of live bacteria (with a cost of $0.6 per test,
including a culture plate) but also provides a powerful and
versatile tool for microbiology research.

Results
We demonstrated our system by monitoring bacterial

colony growth within 60-mm-diameter agar plates and
quantitatively analysed the capabilities of the platform
for early detection of the bacterial growth and classifi-
cation of bacterial species. To demonstrate its proof-of-
concept, we aimed to automatically detect, classify, and
count E. coli and coliform bacteria in water samples
using our deep learning-based platform. Throughout our
training and blind testing experiments, we used water
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suspensions spiked with coliform bacteria, including
E. coli, K. aerogenes, and K. pneumoniae, and chlorine-
stressed E. coli. A chromogenic agar medium designed
for the specific detection and counting of E. coli and
other coliform bacteria in food and water samples was
used as a culture medium for specificity (see the
“Methods” section for details). This chromogenic med-
ium results in a blue colour for E. coli colonies and a
mauve colour for the colonies of other coliform bacteria
(e.g., K. aerogenes and K. pneumoniae). In addition, the
medium inhibits the growth of different bacteria (e.g.,
Bacillus subtilis) or yields colourless colonies in the
presence of other bacteria in the sample27.
Following the sample preparation method illustrated in

Fig. 2a, the sample is placed inside the lens-free imaging
system with the agar surface facing the image sensor. After
an initialization step, the platform automatically captures
time-lapsed holographic images of two separate Petri dishes

(covering a total sample area of 28.26 × 2= 56.52 cm2)
every 30min over a duration of 24 h starting from the
incubation time; these individual holograms are digitally
stitched together and rapidly reconstructed to reveal the
bacterial growth patterns on the agar surface (see the
“Methods” section). The reconstructed images of the sam-
ple captured at different time points are computationally
processed using a differential image analysis method to
automatically detect and classify bacterial growth and
colonies using two different trained DNNs (see Fig. 3),
which will be detailed next.

Design and training of neural networks for bacterial
growth detection and classification
We designed a two-step framework for bacterial

growth detection and classification. The first step selects
colony candidates with differential image analysis and
refines the results with a detection DNN. We designed a

CMOS image sensor
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Incubator

Sample

Partially coherent 
illumination light

a c

b

Fig. 1 High-throughput bacterial colony growth detection and classification system. a Schematic of the device. b Photograph of the lens-free
imaging system. c Detailed illustration of various components of the system
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pseudo-3D (P3D) DenseNet28 architecture to process
our complex-valued (i.e., phase and amplitude) time-
lapse image stacks (see the “Methods” section). In each
time-lapse imaging experiment, we used 4 time-

consecutive frames (4 × 0.5= 2 h) as a running window
for the differential image analysis to extract individual
regions of interest (ROIs) containing objects that chan-
ged their amplitude and/or phase signatures as a
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Fig. 2 Schematics demonstrating the workflow of the microorganism monitoring system. a Bacterial sample preparation workflow. b Steps of
the image and data processing algorithms for the automated detection of the growing colonies and classification of their species. The scale bars for
the holographic images of the growing colonies (E. coli and K. aerogenes) and a static particle (dust) are 100 µm
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function of time. These initially detected objects that
were extracted by the differential analysis algorithm were
either growing colonies or surface impurities, e.g., from
spreading the sample on the agar surface, evaporation of
air bubbles in the agar plate, or coherent light speckles.
We then used a DNN-based detection model to elim-
inate the nonbacterial objects and only kept the growing
colonies (i.e., the true positives), as illustrated in Fig. 2b.
We used sensitivity (or true positive rate, TPR) and
precision (or positive predictive value, PPV) measure-
ments to quantify our results. Sensitivity is defined as

TPR ¼ TP=P

where TP refers to the number of true positive predictions
from our system, and P refers to the total number of
colonies resulting from manual plate counting after 24 h
(i.e., the ground truth). Precision is defined as

PPV ¼ TP= TPþ FPð Þ

where FP refers to the number of false positive predictions
from our system.
In total, 13,712 growing colonies (E. coli, K. aerogenes,

and K. pneumoniae) and 30,000 non-colony objects cap-
tured from 66 separate agar plates were used in the
training phase. Another 2597 colonies and 13,078 non-
colony objects from 5 independent plates were used as

validation dataset to finalize our network models and
achieved a TPR of ~95% and a PPV of ~95% once the
network converged, which took ~4 h of training time.
Examples of the training loss and detection accuracy
curves are shown in Supplementary Fig. S1.
The second step further classifies the species of the

detected colonies with a classification DNN model fol-
lowing a similar network architecture. To accommodate
the different growth rates of bacterial colonies, we used
a longer time window in this classification neural net-
work, containing 8 consecutive frames (8 × 0.5= 4 h) for
each sub-ROI. Since the bacterial growth detection
network uses a shorter running time window of 2 h,
there is a natural 2-h time delay between the successful
detection of a growing colony and the classification of its
species. The network was trained with 7919 growing
colonies, which contained 3362 E. coli, 1880 K. aero-
genes, and 2677 K. pneumoniae colonies, and it was
validated with 340 E. coli, 205 K. aerogenes, and 988 K.
pneumoniae colonies from 6 independent plates and
reached a validation classification accuracy of ~89% for
E. coli, ~95% for K. aerogenes, and ~98% for K. pneu-
moniae when the network model converged (Supple-
mentary Fig. S2).
After these network models were finalized through the

training and validation data, we tested their generalization
capabilities with an additional set of experiments that
were never seen by the networks before; the results of
these blind tests are detailed next.
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Blind testing results for the early detection of bacterial
growth
First, we blindly tested the performance of our system in

the early detection of bacterial colonies with 965 colonies
from 15 plates that were not presented during the net-
work training or validation stages. We compared the
predicted number of growing colonies on the sample
within the first 14 h of incubation against a ground truth
colony count obtained from plate counting after 24 h
of incubation time. Each of the 3 sensitivity curves
(Fig. 4a–c) were averaged across repeated experiments for
the same species, e.g., 4 experiments for K. pneumoniae, 7
experiments for E. coli, and 4 experiments for K. aero-
genes, so that each data point was calculated from ~300
colonies. The results demonstrated that our system was
able to detect 80% of the true positive colonies within
~6.0 h of incubation for K. pneumoniae, ~6.8 h of
incubation for E. coli, and ~8.8 h of incubation for K.
aerogenes. In addition, our platform further detected
90% of the true positives after ~1 additional hour of
incubation and >95% of the true positive colonies of all
3 species within 12 h. The results also reveal that the

early detection sensitivities in Fig. 4a–c are dependent
on the length of the lag phase of each tested bacteria
species, which demonstrates interspecies variations. For
example, K. pneumoniae started to grow earlier and
faster than E. coli and K. aerogenes, whereas K. aerogenes
did not reach a detectable growth size until 5 h of incu-
bation. Furthermore, when the tails of the sensitivity
curves were examined, some of the E. coli colonies showed
late “wake-up” behaviour, as highlighted by the purple
arrow in Fig. 4b. Although most of the E. coli colonies
were detected within ~10 h of incubation time, some of
them did not emerge until ~11 h after the start of the
incubation phase.
We also quantified the false positive rate of our platform

with the PPV curve shown in Fig. 4d, which was averaged
across all the experiments covering all the species, i.e., 965
colonies from 15 agar plates. The precision can be low at
the beginning of the experiments (the first 4 h of incu-
bation) because the number of detected true positive
colonies is very small, especially for K. aerogenes. This
result means that even a single false positive-detected
colony can dramatically affect the precision calculation.
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function of time. These initially detected objects that
were extracted by the differential analysis algorithm were
either growing colonies or surface impurities, e.g., from
spreading the sample on the agar surface, evaporation of
air bubbles in the agar plate, or coherent light speckles.
We then used a DNN-based detection model to elim-
inate the nonbacterial objects and only kept the growing
colonies (i.e., the true positives), as illustrated in Fig. 2b.
We used sensitivity (or true positive rate, TPR) and
precision (or positive predictive value, PPV) measure-
ments to quantify our results. Sensitivity is defined as

TPR ¼ TP=P

where TP refers to the number of true positive predictions
from our system, and P refers to the total number of
colonies resulting from manual plate counting after 24 h
(i.e., the ground truth). Precision is defined as

PPV ¼ TP= TPþ FPð Þ

where FP refers to the number of false positive predictions
from our system.
In total, 13,712 growing colonies (E. coli, K. aerogenes,

and K. pneumoniae) and 30,000 non-colony objects cap-
tured from 66 separate agar plates were used in the
training phase. Another 2597 colonies and 13,078 non-
colony objects from 5 independent plates were used as

validation dataset to finalize our network models and
achieved a TPR of ~95% and a PPV of ~95% once the
network converged, which took ~4 h of training time.
Examples of the training loss and detection accuracy
curves are shown in Supplementary Fig. S1.
The second step further classifies the species of the

detected colonies with a classification DNN model fol-
lowing a similar network architecture. To accommodate
the different growth rates of bacterial colonies, we used
a longer time window in this classification neural net-
work, containing 8 consecutive frames (8 × 0.5= 4 h) for
each sub-ROI. Since the bacterial growth detection
network uses a shorter running time window of 2 h,
there is a natural 2-h time delay between the successful
detection of a growing colony and the classification of its
species. The network was trained with 7919 growing
colonies, which contained 3362 E. coli, 1880 K. aero-
genes, and 2677 K. pneumoniae colonies, and it was
validated with 340 E. coli, 205 K. aerogenes, and 988 K.
pneumoniae colonies from 6 independent plates and
reached a validation classification accuracy of ~89% for
E. coli, ~95% for K. aerogenes, and ~98% for K. pneu-
moniae when the network model converged (Supple-
mentary Fig. S2).
After these network models were finalized through the

training and validation data, we tested their generalization
capabilities with an additional set of experiments that
were never seen by the networks before; the results of
these blind tests are detailed next.
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Blind testing results for the early detection of bacterial
growth
First, we blindly tested the performance of our system in

the early detection of bacterial colonies with 965 colonies
from 15 plates that were not presented during the net-
work training or validation stages. We compared the
predicted number of growing colonies on the sample
within the first 14 h of incubation against a ground truth
colony count obtained from plate counting after 24 h
of incubation time. Each of the 3 sensitivity curves
(Fig. 4a–c) were averaged across repeated experiments for
the same species, e.g., 4 experiments for K. pneumoniae, 7
experiments for E. coli, and 4 experiments for K. aero-
genes, so that each data point was calculated from ~300
colonies. The results demonstrated that our system was
able to detect 80% of the true positive colonies within
~6.0 h of incubation for K. pneumoniae, ~6.8 h of
incubation for E. coli, and ~8.8 h of incubation for K.
aerogenes. In addition, our platform further detected
90% of the true positives after ~1 additional hour of
incubation and >95% of the true positive colonies of all
3 species within 12 h. The results also reveal that the

early detection sensitivities in Fig. 4a–c are dependent
on the length of the lag phase of each tested bacteria
species, which demonstrates interspecies variations. For
example, K. pneumoniae started to grow earlier and
faster than E. coli and K. aerogenes, whereas K. aerogenes
did not reach a detectable growth size until 5 h of incu-
bation. Furthermore, when the tails of the sensitivity
curves were examined, some of the E. coli colonies showed
late “wake-up” behaviour, as highlighted by the purple
arrow in Fig. 4b. Although most of the E. coli colonies
were detected within ~10 h of incubation time, some of
them did not emerge until ~11 h after the start of the
incubation phase.
We also quantified the false positive rate of our platform

with the PPV curve shown in Fig. 4d, which was averaged
across all the experiments covering all the species, i.e., 965
colonies from 15 agar plates. The precision can be low at
the beginning of the experiments (the first 4 h of incu-
bation) because the number of detected true positive
colonies is very small, especially for K. aerogenes. This
result means that even a single false positive-detected
colony can dramatically affect the precision calculation.
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show the standard deviation values across multiple plates
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Nevertheless, the precision quickly rises up to ~100%
within 6 h of incubation and is maintained at 99.2–100%
for all the tested species after 7 h of incubation.
We should emphasize here that the results presented in

Fig. 4 represent the lower limits of the detection cap-
abilities of our system since we calculated these sensitiv-
ities with regard to the number of true positive colonies
after 24 h of incubation, whereas some of these colonies
actually did not exist at the early stages due to delayed
growth; stated differently in some cases, there were no
colonies present at the early stages of the incubation
period. We also note that the rising sensitivity curves in
our results stand for the emergence of new bacterial
colonies, in addition to the growth of colonies. Even
though the sensitivity curves converge to flat lines after
12 h, the colonies continue to grow exponentially until
much later. Therefore, our system detects emerging
colonies at an early stage, when they first appear, forming
microscale features invisible to the naked eye.
These observations also indicate that our system can be

very effective and used for high-throughput quantitative
studies to better understand microorganism behaviour
under different conditions, such as the evaluation of the
differences in growth rates between stressed bacteria (e.g.,
under nutrient deprivation or chlorine treatment) and
normal bacteria29–33. There are several reasons to detect
and enumerate chlorine-stressed or injured coliform
bacteria. First, the detection of injured E. coli or total
coliform bacteria is directly related to the sensitivity of the
detection platform33. For an effective and sensitive
detection platform, false-negative results should be avoi-
ded for public health safety. Another important reason is
that the detection of injured E. coli or low numbers of E.
coli in water samples is correlated with Salmonella out-
breaks, a foodborne pathogen causing 1.2 million illnesses
and ~500 deaths per year in the United States34, which
forms an indirect indicator of contamination in irrigation
water35. To evaluate the capabilities of our system to
detect injured bacteria, we prepared and imaged 3 agar
plates containing chlorine-stressed E. coli (see the
“Methods” section) and characterized their growth using
our detection workflow, as summarized in Fig. 4e. Our
results indicate that we can detect colony formation for
chlorine-stressed E. coli on average with an ~2 h delay
compared to the regular E. coli strain.

Blind testing results on the classification of growing
bacteria
In addition to providing significant detection time sav-

ings while also achieving very good sensitivity and preci-
sion for the early detection of bacterial growth, our
method also provides the automated classification of the
corresponding species of the detected bacteria using a
trained neural network. Therefore, an additional

advantage of our system is its capability to further classify
the total coliform subspecies, which is not possible with
traditional agar plate counting methods. For example,
both K. pneumoniae and K. aerogenes colonies appear
mauve in our agar plates. However, since our classifica-
tion neural network not only relies on the byproducts of
colorimetric reactions, it can successfully distinguish
between different species based on their unique spatio-
temporal growth signatures acquired by our platform at
the microscale.
Figure 5 shows our blind testing results on species

classification using the same experiments reported in the
blinded early detection tests, containing 965 colonies of 3
different species from 15 agar plates. In these results, if a
colony was not detected in the previous step (i.e., a false
negative event compared to the 24 h reading), then it was
naturally not sent to the classification neural network. We
defined the recovery rate as the number of colonies cor-
rectly classified into their corresponding species using our
system divided by the total number of colonies counted
after 24 h. As the classification of each individual colony is
an independent event, we calculated the recovery rate for
each bacterial species (reported in Fig. 5a–c) using all of
the colonies detected in the previous step, i.e., 336, 280,
and 339 colonies of E. coli, K. aerogenes, and K. pneu-
moniae, respectively. The shaded area in each curve
represents the highest and lowest recovery rates found in
all the corresponding experiments at each time point. The
classification neural network correctly classified ~80% of
all of the colonies within ~7.6, ~8, and ~12 h for K.
pneumoniae, E. coli, and K. aerogenes, respectively. We
once again emphasize that the results presented in
Fig. 5a–c represent the lower limits of the classification
capabilities of our system since ground truth is acquired
after 24 h of incubation. In reality, at various earlier time
points within the incubation period, there was no growth for
certain regions of the plates, which exhibited significantly
delayed growth. To further demonstrate the classification
performance of our trained neural network in a manner that
is decoupled from the sensitivity of the previous detection
network, we report the classification confusion matrix in
Fig. 5d for all the colonies that were sent to the classification
network for blind testing at 12 h after the start of the
incubation. The trained network achieved classification
accuracies of ~97.2%, ~84.0%, and ~98.5% for E. coli, K.
aerogenes, and K. pneumoniae, respectively.

Limit of detection as a function of the total test time
We further quantified the detection limit of our system

and compared its performance against both Colilert®-18,
which is an EPA-approved method, and traditional plate
counting (Supplementary Table S1, Supplementary Fig.
S3). To compensate for the CFU loss during the sample
transfer from the water suspension to the filter
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membrane, we introduced a signal amplification step by
preincubating the water sample under test, mixing it with
a growth medium for 5 h at 35 °C before the filtration step
(see the “Methods” section for details). For each mea-
surement, two agar plates were prepared and monitored
at the same time for comparison, one of which was for the
sample amplified with a 5-h preincubation step before
filtering, while the other was for the sample directly fil-
tered and transferred to the agar plate (see Supplementary
Fig. S3). Both plates were incubated for the same amount
of time at each imaging time point to provide a fair
comparison between the two. The measurements were
repeated using different concentrations of E. coli sus-
pensions; these concentrations were compared to the
average of three replicates of the same samples prepared
using the Colilert®-18 method (Supplementary Fig. S3).

As shown in Fig. 6a, our system is able to surpass the
sensitivity of Colilert®-18 within ~8 h in total (including
the time for signal amplification, sample concentration,
and time-lapse imaging, altogether) and reach >2 times
the sensitivity of Colilert®-18 in ~9 h. We also quantified
the LOD of our system by preparing and imaging 3 agar
plates without bacteria, which show on average <1 CFU
count from our setup throughout the test period from 5 to
14.5 h (Fig. 6c), revealing a detection limit of µ+ 3σ= ~2
CFU per test, where µ and σ refer to the mean and
standard deviation of the detected CFU count, respec-
tively. Due to the effective signal amplification enabled by
the preincubation step, even with the lowest bacterial
concentration of ~1 CFU/L, our system was able to detect
2 CFU at 8.5 h and 12 CFU at 9 h; in comparison, for the
same contaminated water sample, Colilert® -18 achieved
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Nevertheless, the precision quickly rises up to ~100%
within 6 h of incubation and is maintained at 99.2–100%
for all the tested species after 7 h of incubation.
We should emphasize here that the results presented in

Fig. 4 represent the lower limits of the detection cap-
abilities of our system since we calculated these sensitiv-
ities with regard to the number of true positive colonies
after 24 h of incubation, whereas some of these colonies
actually did not exist at the early stages due to delayed
growth; stated differently in some cases, there were no
colonies present at the early stages of the incubation
period. We also note that the rising sensitivity curves in
our results stand for the emergence of new bacterial
colonies, in addition to the growth of colonies. Even
though the sensitivity curves converge to flat lines after
12 h, the colonies continue to grow exponentially until
much later. Therefore, our system detects emerging
colonies at an early stage, when they first appear, forming
microscale features invisible to the naked eye.
These observations also indicate that our system can be

very effective and used for high-throughput quantitative
studies to better understand microorganism behaviour
under different conditions, such as the evaluation of the
differences in growth rates between stressed bacteria (e.g.,
under nutrient deprivation or chlorine treatment) and
normal bacteria29–33. There are several reasons to detect
and enumerate chlorine-stressed or injured coliform
bacteria. First, the detection of injured E. coli or total
coliform bacteria is directly related to the sensitivity of the
detection platform33. For an effective and sensitive
detection platform, false-negative results should be avoi-
ded for public health safety. Another important reason is
that the detection of injured E. coli or low numbers of E.
coli in water samples is correlated with Salmonella out-
breaks, a foodborne pathogen causing 1.2 million illnesses
and ~500 deaths per year in the United States34, which
forms an indirect indicator of contamination in irrigation
water35. To evaluate the capabilities of our system to
detect injured bacteria, we prepared and imaged 3 agar
plates containing chlorine-stressed E. coli (see the
“Methods” section) and characterized their growth using
our detection workflow, as summarized in Fig. 4e. Our
results indicate that we can detect colony formation for
chlorine-stressed E. coli on average with an ~2 h delay
compared to the regular E. coli strain.

Blind testing results on the classification of growing
bacteria
In addition to providing significant detection time sav-

ings while also achieving very good sensitivity and preci-
sion for the early detection of bacterial growth, our
method also provides the automated classification of the
corresponding species of the detected bacteria using a
trained neural network. Therefore, an additional

advantage of our system is its capability to further classify
the total coliform subspecies, which is not possible with
traditional agar plate counting methods. For example,
both K. pneumoniae and K. aerogenes colonies appear
mauve in our agar plates. However, since our classifica-
tion neural network not only relies on the byproducts of
colorimetric reactions, it can successfully distinguish
between different species based on their unique spatio-
temporal growth signatures acquired by our platform at
the microscale.
Figure 5 shows our blind testing results on species

classification using the same experiments reported in the
blinded early detection tests, containing 965 colonies of 3
different species from 15 agar plates. In these results, if a
colony was not detected in the previous step (i.e., a false
negative event compared to the 24 h reading), then it was
naturally not sent to the classification neural network. We
defined the recovery rate as the number of colonies cor-
rectly classified into their corresponding species using our
system divided by the total number of colonies counted
after 24 h. As the classification of each individual colony is
an independent event, we calculated the recovery rate for
each bacterial species (reported in Fig. 5a–c) using all of
the colonies detected in the previous step, i.e., 336, 280,
and 339 colonies of E. coli, K. aerogenes, and K. pneu-
moniae, respectively. The shaded area in each curve
represents the highest and lowest recovery rates found in
all the corresponding experiments at each time point. The
classification neural network correctly classified ~80% of
all of the colonies within ~7.6, ~8, and ~12 h for K.
pneumoniae, E. coli, and K. aerogenes, respectively. We
once again emphasize that the results presented in
Fig. 5a–c represent the lower limits of the classification
capabilities of our system since ground truth is acquired
after 24 h of incubation. In reality, at various earlier time
points within the incubation period, there was no growth for
certain regions of the plates, which exhibited significantly
delayed growth. To further demonstrate the classification
performance of our trained neural network in a manner that
is decoupled from the sensitivity of the previous detection
network, we report the classification confusion matrix in
Fig. 5d for all the colonies that were sent to the classification
network for blind testing at 12 h after the start of the
incubation. The trained network achieved classification
accuracies of ~97.2%, ~84.0%, and ~98.5% for E. coli, K.
aerogenes, and K. pneumoniae, respectively.

Limit of detection as a function of the total test time
We further quantified the detection limit of our system

and compared its performance against both Colilert®-18,
which is an EPA-approved method, and traditional plate
counting (Supplementary Table S1, Supplementary Fig.
S3). To compensate for the CFU loss during the sample
transfer from the water suspension to the filter
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membrane, we introduced a signal amplification step by
preincubating the water sample under test, mixing it with
a growth medium for 5 h at 35 °C before the filtration step
(see the “Methods” section for details). For each mea-
surement, two agar plates were prepared and monitored
at the same time for comparison, one of which was for the
sample amplified with a 5-h preincubation step before
filtering, while the other was for the sample directly fil-
tered and transferred to the agar plate (see Supplementary
Fig. S3). Both plates were incubated for the same amount
of time at each imaging time point to provide a fair
comparison between the two. The measurements were
repeated using different concentrations of E. coli sus-
pensions; these concentrations were compared to the
average of three replicates of the same samples prepared
using the Colilert®-18 method (Supplementary Fig. S3).

As shown in Fig. 6a, our system is able to surpass the
sensitivity of Colilert®-18 within ~8 h in total (including
the time for signal amplification, sample concentration,
and time-lapse imaging, altogether) and reach >2 times
the sensitivity of Colilert®-18 in ~9 h. We also quantified
the LOD of our system by preparing and imaging 3 agar
plates without bacteria, which show on average <1 CFU
count from our setup throughout the test period from 5 to
14.5 h (Fig. 6c), revealing a detection limit of µ+ 3σ= ~2
CFU per test, where µ and σ refer to the mean and
standard deviation of the detected CFU count, respec-
tively. Due to the effective signal amplification enabled by
the preincubation step, even with the lowest bacterial
concentration of ~1 CFU/L, our system was able to detect
2 CFU at 8.5 h and 12 CFU at 9 h; in comparison, for the
same contaminated water sample, Colilert® -18 achieved
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green shaded area in each curve represents the highest and lowest recovery rates found in all the corresponding experiments at each time point.
d The blind testing confusion matrix of classifying all the colonies that were sent to our trained neural network after 12h of incubation. A diagonal
entry of 1.0 means a 100% classification accuracy for that species. The numbers of colonies that were tested by the classification network in d are 325
(E. coli), 334 (K. pneumoniae), and 256 (K. aerogenes)
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Fig. 6 Quantification of the LOD of our system. a The CFU count from our system is plotted against the CFU/L counts of the spiked samples,
calculated independently using the Colilert®-18 method after 18 h of incubation. CFU counts acquired with our platform at different time points are
coloured from blue to yellow, which corresponds to 5–14.5 h of total test time, including the signal amplification step that involves liquid culture
media (5 h). b Without signal amplification, the LOD is decreased due to the low transfer rate from the filter membrane to the agar surface (see
Supplementary Figs. S3 and S4). c As a control experiment, we prepared and imaged 3 agar plates that showed <1 CFU count from our setup
throughout the test period from 5 to 14.5 h. d The LOD of our system is ~11 CFU/L at 8.5 h and ~1 CFU/L at ≤9 h
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1.4 ± 1.6 CFU/L after 18 h of incubation. Furthermore, for
all the concentrations we have experimented with
(~1–160 CFU/L), our system successfully detected more
than 2 CFU per test in ≤9 h of test time, including all the
necessary steps, i.e., the time for signal amplification,
sample concentration, and time-lapse imaging; these
results reveal that our system with a preincubation step
achieves a detection limit of ~1 CFU/L within ≤9 h of total
test time.
We also observe in Fig. 6b that without the signal

amplification enabled by preincubation, the detection
performance is negatively affected due to the low transfer
rate of bacteria from the container to the agar plate (also
see Supplementary Fig. S4). In general, the sensitivity and
LOD of our method might be further improved by
increasing the preincubation time of the water-broth
mixture at the cost of an increase in the total time to
achieve automated detection and classification.

Discussion
We demonstrated a new platform for the early detection

and classification of bacterial colonies, which is fully
compatible with the existing EPA-approved methods and
can be integrated with them to considerably improve the
analysis of agar plates36. The presented approach can
automatically detect bacterial growth as early as 3 h and
can detect 90% of bacterial colonies within 7–10 h (and
>95% within 12 h), with a precision of 99.2–100%. The
system also correctly classifies ~80% of all of the tested
bacterial colonies within 7.6, 8.8, and 12 h for K. pneu-
moniae, E. coli, and K. aerogenes, respectively. These
results present a total time savings of more than 12 h
compared to the gold-standard methods (e.g., Colilert test
and Standard Method 9222B), which require 18–24 h.
The presented learning-based bacteria detection and
classification framework can potentially be further
advanced by training it with a larger number of sample
types20, and it can also be applied to other bacteria sen-
sing applications beyond water quality monitoring. In
addition to the automated detection of live bacteria and
species classification, the rich spatiotemporal information
embedded in the holographic images can be used for
more advanced analysis of water samples and micro-
biology research in general.
Another advantage of this system is its high-throughput

imaging capability of agar plates. Our prototype performs
a 242-tile scan within 87 s per agar plate, corresponding to
a raw image scanning throughput of ~49 cm2/min. To
leave sufficient data redundancy for image postprocessing,
we set a relatively large overlap of 30% on each side of the
acquired holographic image, which reduces the effective
imaging throughput of our platform to ~24 cm2/min. As
our system is based on lens-free holographic microscopy,
it does not require mechanical axial focusing at each

position and instead autofocuses onto the object plane
computationally. We characterized the spatial resolution
of our system by imaging a resolution test target, as shown
in Supplementary Fig. S5, achieving a linewidth resolution
of ~3.5 µm, roughly equivalent to the performance of a 4×
objective lens with a numerical aperture (NA) of ~0.1.
Compared to our system, which takes 87 s to scan an agar
plate, a traditional lens-based bright-field microscope
using a 4× objective lens would take approximately
128min to scan a plate with the same diameter (60 mm),
owing to the requirement for mechanical axial focusing
(see Supplementary Table S2). In addition, the holo-
graphic imaging that is at the heart of this system provides
better performance for early colony detection over bright-
field imaging. Since bacteria can be considered phase
objects, growth-related changes in a holographic image
are enhanced compared to the bright-field images,
enabling the earlier detection of bacterial growth and
more sensitive measurements (see Fig. 3b).
Another important advantage of our system is the

minimum requirement for optical alignment; the pre-
sented platform is tolerant towards structural changes,
such as variations in the sample-to-sensor distance or the
illumination angle. Our computational refocusing cap-
ability also enables the screening of thick samples, e.g.,
melted agar plates37. An example of a 3D sample is illu-
strated in Supplementary Fig. S6, where E. coli colonies
are formed at different depths inside the solid culture
medium with a thickness of ~5mm. For example, the
colony marked with “A” grew at ~2170 µm measured
from the surface of the agar, whereas the colony marked
with “B” was on the agar surface. Our system localizes
colonies growing at different depths within a 3D culture
medium using a single hologram measurement at each
scanning position. However, it is a nontrivial task to image
a 3D sample using a conventional lens-based microscope
because of the time required for mechanical focusing and
the refractive index mismatch between the culture med-
ium and the air, which degrades the image resolution as a
result of aberrations. Therefore, the corresponding bright-
field microscopy images of the whole plates could only be
acquired after 24 h of incubation.
Our platform also employs a modular design that is

scalable to a larger sample size and a smaller tile-scan
time interval. The monitoring field of view (FOV) of this
platform is fundamentally limited by the image acquisi-
tion time and the stage moving speed. With further
optimization of the hardware and control algorithms, an
imaging throughput of >50 cm2/min can be reached.
Alternatively, several image sensors can be installed and
connected to a single computer for high-throughput
parallel imaging38. In our proof-of-concept imple-
mentation, our image processing for each time interval
takes ~20 min and fits well into our 30 min measurement
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Fig. 6 Quantification of the LOD of our system. a The CFU count from our system is plotted against the CFU/L counts of the spiked samples,
calculated independently using the Colilert®-18 method after 18 h of incubation. CFU counts acquired with our platform at different time points are
coloured from blue to yellow, which corresponds to 5–14.5 h of total test time, including the signal amplification step that involves liquid culture
media (5 h). b Without signal amplification, the LOD is decreased due to the low transfer rate from the filter membrane to the agar surface (see
Supplementary Figs. S3 and S4). c As a control experiment, we prepared and imaged 3 agar plates that showed <1 CFU count from our setup
throughout the test period from 5 to 14.5 h. d The LOD of our system is ~11 CFU/L at 8.5 h and ~1 CFU/L at ≤9 h
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1.4 ± 1.6 CFU/L after 18 h of incubation. Furthermore, for
all the concentrations we have experimented with
(~1–160 CFU/L), our system successfully detected more
than 2 CFU per test in ≤9 h of test time, including all the
necessary steps, i.e., the time for signal amplification,
sample concentration, and time-lapse imaging; these
results reveal that our system with a preincubation step
achieves a detection limit of ~1 CFU/L within ≤9 h of total
test time.
We also observe in Fig. 6b that without the signal

amplification enabled by preincubation, the detection
performance is negatively affected due to the low transfer
rate of bacteria from the container to the agar plate (also
see Supplementary Fig. S4). In general, the sensitivity and
LOD of our method might be further improved by
increasing the preincubation time of the water-broth
mixture at the cost of an increase in the total time to
achieve automated detection and classification.

Discussion
We demonstrated a new platform for the early detection

and classification of bacterial colonies, which is fully
compatible with the existing EPA-approved methods and
can be integrated with them to considerably improve the
analysis of agar plates36. The presented approach can
automatically detect bacterial growth as early as 3 h and
can detect 90% of bacterial colonies within 7–10 h (and
>95% within 12 h), with a precision of 99.2–100%. The
system also correctly classifies ~80% of all of the tested
bacterial colonies within 7.6, 8.8, and 12 h for K. pneu-
moniae, E. coli, and K. aerogenes, respectively. These
results present a total time savings of more than 12 h
compared to the gold-standard methods (e.g., Colilert test
and Standard Method 9222B), which require 18–24 h.
The presented learning-based bacteria detection and
classification framework can potentially be further
advanced by training it with a larger number of sample
types20, and it can also be applied to other bacteria sen-
sing applications beyond water quality monitoring. In
addition to the automated detection of live bacteria and
species classification, the rich spatiotemporal information
embedded in the holographic images can be used for
more advanced analysis of water samples and micro-
biology research in general.
Another advantage of this system is its high-throughput

imaging capability of agar plates. Our prototype performs
a 242-tile scan within 87 s per agar plate, corresponding to
a raw image scanning throughput of ~49 cm2/min. To
leave sufficient data redundancy for image postprocessing,
we set a relatively large overlap of 30% on each side of the
acquired holographic image, which reduces the effective
imaging throughput of our platform to ~24 cm2/min. As
our system is based on lens-free holographic microscopy,
it does not require mechanical axial focusing at each

position and instead autofocuses onto the object plane
computationally. We characterized the spatial resolution
of our system by imaging a resolution test target, as shown
in Supplementary Fig. S5, achieving a linewidth resolution
of ~3.5 µm, roughly equivalent to the performance of a 4×
objective lens with a numerical aperture (NA) of ~0.1.
Compared to our system, which takes 87 s to scan an agar
plate, a traditional lens-based bright-field microscope
using a 4× objective lens would take approximately
128min to scan a plate with the same diameter (60 mm),
owing to the requirement for mechanical axial focusing
(see Supplementary Table S2). In addition, the holo-
graphic imaging that is at the heart of this system provides
better performance for early colony detection over bright-
field imaging. Since bacteria can be considered phase
objects, growth-related changes in a holographic image
are enhanced compared to the bright-field images,
enabling the earlier detection of bacterial growth and
more sensitive measurements (see Fig. 3b).
Another important advantage of our system is the

minimum requirement for optical alignment; the pre-
sented platform is tolerant towards structural changes,
such as variations in the sample-to-sensor distance or the
illumination angle. Our computational refocusing cap-
ability also enables the screening of thick samples, e.g.,
melted agar plates37. An example of a 3D sample is illu-
strated in Supplementary Fig. S6, where E. coli colonies
are formed at different depths inside the solid culture
medium with a thickness of ~5mm. For example, the
colony marked with “A” grew at ~2170 µm measured
from the surface of the agar, whereas the colony marked
with “B” was on the agar surface. Our system localizes
colonies growing at different depths within a 3D culture
medium using a single hologram measurement at each
scanning position. However, it is a nontrivial task to image
a 3D sample using a conventional lens-based microscope
because of the time required for mechanical focusing and
the refractive index mismatch between the culture med-
ium and the air, which degrades the image resolution as a
result of aberrations. Therefore, the corresponding bright-
field microscopy images of the whole plates could only be
acquired after 24 h of incubation.
Our platform also employs a modular design that is

scalable to a larger sample size and a smaller tile-scan
time interval. The monitoring field of view (FOV) of this
platform is fundamentally limited by the image acquisi-
tion time and the stage moving speed. With further
optimization of the hardware and control algorithms, an
imaging throughput of >50 cm2/min can be reached.
Alternatively, several image sensors can be installed and
connected to a single computer for high-throughput
parallel imaging38. In our proof-of-concept imple-
mentation, our image processing for each time interval
takes ~20 min and fits well into our 30 min measurement
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period between each scan. In case a shorter time interval
is desired, an image processing procedure implemented
using MATLAB and Python/PyTorch programming
environments can be further accelerated by program-
ming in C/C++. With the help of graphic processing
units (GPUs), one can expect >10-fold time savings in
computation39.
This unique platform is integrated with an incubator to

keep the agar plates at a desired temperature. The incu-
bator is a thermal glass plate that contains uniform lines
of optically clear indium tin oxide electrode for heating
the sample placed on top. This system is controlled with a
controller, which is lightweight. Throughout the experi-
ments, we set the temperature at the agar surface where
bacteria grew at ~38 °C so that all of the tested bacterial
species could grow and develop colonies. This tempera-
ture was not optimized to promote the growth of a spe-
cific species. Therefore, the adjustment of the incubation
environment, temperature and humidity can potentially
be used to further accelerate colony growth and help us
achieve earlier detection and identification of specific
bacterial colonies. Another important parameter for the
growth of microorganisms is the humidity. Our system
can also be integrated with a controlled humidity chamber
for better control and analysis of the growth dynamics of
various microorganisms40.
In summary, we presented a deep learning-based live

bacteria monitoring system for the early detection of
growing colonies and the classification of colony species
using deep learning. We demonstrated a proof-of-concept
device using 3 types of bacteria, i.e., E. coli, K. aerogenes,
and K. pneumoniae, and achieved >12 h time savings for
both the early detection and the classification of growing
species compared to the gold-standard EPA-approved
methods. Achieving an LOD of ~1 CFU/L in ≤ 9 h, we
believe that this versatile system will not only benefit
water and food quality monitoring but also provide a
powerful tool for microbiology research.

Materials and methods
Sample preparation
Safety practices
We handled all the bacterial cultures and performed all

the experiments at our Biosafety Level 2 laboratory in
accordance with the environmental, health, and safety
rules of the University of California, Los Angeles.

Studied organisms
We used E. coli (Migula) Castellani and Chalmers

(ATCC® 25922™) (risk level 1), K. aerogenes Tindall et al.
(ATCC® 49701™) (risk level 1), and K. pneumoniae subsp.
pneumoniae (Schroeter) Trevisan (ATCC®13883™) (risk
level 2) as our culture organisms.

Preparation of the poured agar plates
We used CHROMagar™ ECC (product no. EF322, DRG

International, Inc., Springfield, NJ, USA) chromogenic
substrate mixture as the solid growth medium for the
detection of E. coli and total coliform colonies. CHRO-
Magar™ ECC (8.2 g) was mixed with 250mL of reagent
grade water (product no. 23-249-581, Fisher Scientific,
Hampton, NH, USA) using a magnetic stirrer bar. The
mixture was then heated to 100 °C on a hot plate while
being stirred regularly. After cooling the mixture to
~50 °C, 10 mL of the mixture was dispensed into Petri
dishes (60 mm× 15mm) (product no. FB0875713A,
Fisher Scientific, Hampton, NH, USA). The agar plates
were allowed to solidify, were sealed using parafilm
(product no. 13-374-16, Fisher Scientific, Hampton, NH,
USA), and were covered with aluminium foil to keep them
in the dark before use. The plates were stored at 4 °C and
were used within two weeks of preparation.

Preparation of the melted agar plates
CHROMagar™ ECC (3.28 g) was mixed with 100 mL of

reagent grade water using a magnetic stirrer bar, and the
mixture was heated to 100 °C. After the mixture cooled to
~40 °C, 1 mL of the bacterial suspension was mixed with
the agar and dispensed into Petri dishes. The plates were
either incubated in a benchtop incubator (product no.
51030400, ThermoFisher Scientific, Waltham, MA, USA)
or in our imaging platform (for monitoring the bacterial
growth digitally).
We used tryptic soy agar to culture E. coli at 37 °C and

K. aerogenes at 35 °C and nutrient agar to culture K.
pneumoniae at 37 °C. Twenty grams of tryptic soy agar
(product no. DF0369-17-6, Fisher Scientific, Hampton,
NH, USA) or 11.5 g of nutrient agar (product no. DF0001-
17-0, Fisher Scientific, Hampton, NH, USA) were sus-
pended in 500mL of reagent grade water using a mag-
netic stirrer bar. The mixture was boiled on a hot plate
and then autoclaved at 121 °C for 15min. After the mix-
ture cooled to ~50 °C, 15 mL of the mixture was dispensed
into Petri dishes (100 mm× 15mm) (product no.
FB0875713, Fisher Scientific, Hampton, NH, USA), which
were then sealed with parafilm and covered with alumi-
nium foil to keep them in the dark before use. The Petri
dishes were stored at 4 °C until use.

Preparation of the chlorine-stressed E. coli samples
We used E. coli grown on tryptic soy agar plates and

incubated for 48 h at 37 °C. Disposable centrifuge tubes
(50 mL) were used as a sample container, and the sample
size was 50mL. Five hundred millilitres of reagent grade
water was filtered for sterilization using a disposable
vacuum filtration unit (product no. FB12566504, Fisher
Scientific, Hampton, NH, USA). A fresh chlorine
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suspension was prepared in a 50 mL disposable centrifuge
tube to a final concentration of 0.2 mg/mL using sodium
hypochlorite (product no. 425044, Sigma Aldrich,
St. Louis, MO, USA), mixed vigorously, and covered with
aluminium foil41. Sodium thiosulfate (10% [w/v]) (product
no. 217263, Sigma Aldrich, St. Louis, MO, USA) in
reagent grade water was prepared, and 1mL of the solu-
tion was filtered using a sterile disposable syringe and a
syringe filter membrane (product no. SLGV004SL, Fisher
Scientific, Hampton, NH, USA) for sterilization. Water
suspensions were prepared by spiking E. coli into filtered
water samples. Fifty microlitres of the chlorine suspension
(i.e., 0.2 ppm) was added to the test water sample, and a
timer counted the chlorine exposure time. The reaction
was stopped at 10 min of chlorine exposure by adding
50 µL sodium thiosulfate into the test water sample and
vigorously mixing the solution to immediately stop the
chlorination reaction. CHROMagar™ ECC plates were
inoculated with 200 µL of the chlorine-stressed suspen-
sion, were dried in the biosafety cabinet for at most
30 min and then were placed on the setup for lens-free
imaging. In addition, three TSA plates and one ECC
ChromoSelect Selective Agar plate (product no. 85927,
Sigma Aldrich, St. Louis, MO, USA) were inoculated with
1 mL of the control sample (not exposed to chlorine) and
0.2 ppm of the chlorine-stressed E. coli water sample and
dried under a biosafety cabinet for approximately 1–2 h
with the gentle mixing of Petri dishes at some time
intervals. After drying, the plates were sealed with paraf-
ilm and incubated at 37 °C for 24 h. After incubation, the
bacterial colonies grown on the agar plates were counted,
and the E. coli concentrations of the control samples and
chlorine-stressed E. coli samples were compared. If the
achieved reduction in colony count was between 2.0 and
4.0 log, then the images of CHROMagar™ ECC plates
captured using the lens-free imaging platform were used
for further analysis.

Preparation of the culture plates for lens-free imaging
A bacterial suspension in a phosphate-buffered solution

(PBS) (product no. 20-012-027, Fisher Scientific, Hamp-
ton, NH, USA) was prepared every day from a solid agar
plate incubated for 24 h. The concentration of the sus-
pension was measured using a spectrophotometer (model
no. ND-ONE-W, Thermo Fisher), and the suspension was
then diluted in PBS to a final concentration of 1–200 CFU
per 0.1 mL. One hundred microlitres of the diluted sus-
pension was spread on a CHROMagar™ ECC plate using
an L-shaped spreader (product no. 14-665-230, Fisher
Scientific, Hampton, NH, USA). The plate was covered
with its lid, inverted, and incubated at 37 °C in our optical
platform (Fig. 2).

Preparation of a concentrated broth
A total of 180 g of tryptic soy broth (product no.

R455054, Fisher Scientific, Hampton, NH, USA) was
added to 1 L reagent grade water and heated to 100 °C by
continuously mixing using a stirrer bar. The suspension
was then cooled to 50 °C and filter sterilized using a dis-
posable filtration unit. The broth concentrate was stored
at 4 °C and used within 1 week after preparation.

Preparation of samples for comparison measurements
We evaluated the performance of our method in compar-

ison to Colilert®-18, which is an EPA-approved enzyme-based
analytical method for several types of regulated water samples
(e.g., drinking water, surface water, and ground water) to
detect E. coli42 and for plate counting using TSA plates and
ECC ChromoSelect Selective Agar plates (Supplementary Fig.
S3). Two bottles of 1 L reagent grade water were filtered using
disposable vacuum filtration units and 0.2 L of the con-
centrated broth was added into one of the 1 L sample bottles.
The bottles were covered with aluminium foil and stored in a
biosafety cabinet overnight. A glass vacuum filtration unit was
used for the filtration of the 1 L water samples. The compo-
nents of the unit were covered with aluminium foil and
sterilized using an autoclave. The disposable nitrocellulose
filter membranes (product no. HAWG04705, EMD Millipore,
Danvers, MA, USA) used in the glass filtration unit were also
sterilized using the autoclave. A bacterial suspension was
prepared by spiking bacteria into 50mL reagent grade water
using a disposable inoculation loop from a TSA plate con-
taining E. coli colonies. The suspension was mixed gently to
obtain a uniform distribution of bacteria. Three TSA plates, 3
ECC ChromoSelect Selective Agar plates, and 4 CHROMa-
gar™ ECC plates were removed from the refrigerator and were
kept at room temperature for 30min.
Three bottles of 120 mL disposable vessels with sodium

thiosulfate (product no. WV120SBST-200, IDEXX
Laboratories Inc., Westbrook, ME, USA) were filled with
100mL filter sterilized reagent grade water. First, 0.1 mL
of bacterial suspension was spiked into a 1 L water sam-
ple, a 1.2 L water sample (1 L water+ 0.2 L concentrated
broth), 3 bottles of 100 mL water samples, 3 TSA plates
and 3 ECC ChromoSelect Selective Agar plates, sequen-
tially. The timer was started immediately after adding the
spike into the suspensions.
First, the suspensions on TSA plates and ECC ChromoSe-

lect Selective Agar were spread using L-shaped disposable
spreaders. Then, the water sample with broth was mixed for
approximately one minute and then stored at 35 °C for 5 h.
One Colilert®-18 reagent (product no. 98-27164-00, IDEXX
Laboratories Inc., Westbrook, ME, USA) was added into each
100mL bacterial suspension, and the mixture was shaken. The
content of the bottle was poured into a Quanti-Tray 2000
bag (product no. 98-21675-00, IDEXX Laboratories Inc.,
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period between each scan. In case a shorter time interval
is desired, an image processing procedure implemented
using MATLAB and Python/PyTorch programming
environments can be further accelerated by program-
ming in C/C++. With the help of graphic processing
units (GPUs), one can expect >10-fold time savings in
computation39.
This unique platform is integrated with an incubator to

keep the agar plates at a desired temperature. The incu-
bator is a thermal glass plate that contains uniform lines
of optically clear indium tin oxide electrode for heating
the sample placed on top. This system is controlled with a
controller, which is lightweight. Throughout the experi-
ments, we set the temperature at the agar surface where
bacteria grew at ~38 °C so that all of the tested bacterial
species could grow and develop colonies. This tempera-
ture was not optimized to promote the growth of a spe-
cific species. Therefore, the adjustment of the incubation
environment, temperature and humidity can potentially
be used to further accelerate colony growth and help us
achieve earlier detection and identification of specific
bacterial colonies. Another important parameter for the
growth of microorganisms is the humidity. Our system
can also be integrated with a controlled humidity chamber
for better control and analysis of the growth dynamics of
various microorganisms40.
In summary, we presented a deep learning-based live

bacteria monitoring system for the early detection of
growing colonies and the classification of colony species
using deep learning. We demonstrated a proof-of-concept
device using 3 types of bacteria, i.e., E. coli, K. aerogenes,
and K. pneumoniae, and achieved >12 h time savings for
both the early detection and the classification of growing
species compared to the gold-standard EPA-approved
methods. Achieving an LOD of ~1 CFU/L in ≤ 9 h, we
believe that this versatile system will not only benefit
water and food quality monitoring but also provide a
powerful tool for microbiology research.

Materials and methods
Sample preparation
Safety practices
We handled all the bacterial cultures and performed all

the experiments at our Biosafety Level 2 laboratory in
accordance with the environmental, health, and safety
rules of the University of California, Los Angeles.

Studied organisms
We used E. coli (Migula) Castellani and Chalmers

(ATCC® 25922™) (risk level 1), K. aerogenes Tindall et al.
(ATCC® 49701™) (risk level 1), and K. pneumoniae subsp.
pneumoniae (Schroeter) Trevisan (ATCC®13883™) (risk
level 2) as our culture organisms.

Preparation of the poured agar plates
We used CHROMagar™ ECC (product no. EF322, DRG

International, Inc., Springfield, NJ, USA) chromogenic
substrate mixture as the solid growth medium for the
detection of E. coli and total coliform colonies. CHRO-
Magar™ ECC (8.2 g) was mixed with 250mL of reagent
grade water (product no. 23-249-581, Fisher Scientific,
Hampton, NH, USA) using a magnetic stirrer bar. The
mixture was then heated to 100 °C on a hot plate while
being stirred regularly. After cooling the mixture to
~50 °C, 10 mL of the mixture was dispensed into Petri
dishes (60 mm× 15mm) (product no. FB0875713A,
Fisher Scientific, Hampton, NH, USA). The agar plates
were allowed to solidify, were sealed using parafilm
(product no. 13-374-16, Fisher Scientific, Hampton, NH,
USA), and were covered with aluminium foil to keep them
in the dark before use. The plates were stored at 4 °C and
were used within two weeks of preparation.

Preparation of the melted agar plates
CHROMagar™ ECC (3.28 g) was mixed with 100 mL of

reagent grade water using a magnetic stirrer bar, and the
mixture was heated to 100 °C. After the mixture cooled to
~40 °C, 1 mL of the bacterial suspension was mixed with
the agar and dispensed into Petri dishes. The plates were
either incubated in a benchtop incubator (product no.
51030400, ThermoFisher Scientific, Waltham, MA, USA)
or in our imaging platform (for monitoring the bacterial
growth digitally).
We used tryptic soy agar to culture E. coli at 37 °C and

K. aerogenes at 35 °C and nutrient agar to culture K.
pneumoniae at 37 °C. Twenty grams of tryptic soy agar
(product no. DF0369-17-6, Fisher Scientific, Hampton,
NH, USA) or 11.5 g of nutrient agar (product no. DF0001-
17-0, Fisher Scientific, Hampton, NH, USA) were sus-
pended in 500mL of reagent grade water using a mag-
netic stirrer bar. The mixture was boiled on a hot plate
and then autoclaved at 121 °C for 15min. After the mix-
ture cooled to ~50 °C, 15 mL of the mixture was dispensed
into Petri dishes (100 mm× 15mm) (product no.
FB0875713, Fisher Scientific, Hampton, NH, USA), which
were then sealed with parafilm and covered with alumi-
nium foil to keep them in the dark before use. The Petri
dishes were stored at 4 °C until use.

Preparation of the chlorine-stressed E. coli samples
We used E. coli grown on tryptic soy agar plates and

incubated for 48 h at 37 °C. Disposable centrifuge tubes
(50 mL) were used as a sample container, and the sample
size was 50mL. Five hundred millilitres of reagent grade
water was filtered for sterilization using a disposable
vacuum filtration unit (product no. FB12566504, Fisher
Scientific, Hampton, NH, USA). A fresh chlorine
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suspension was prepared in a 50 mL disposable centrifuge
tube to a final concentration of 0.2 mg/mL using sodium
hypochlorite (product no. 425044, Sigma Aldrich,
St. Louis, MO, USA), mixed vigorously, and covered with
aluminium foil41. Sodium thiosulfate (10% [w/v]) (product
no. 217263, Sigma Aldrich, St. Louis, MO, USA) in
reagent grade water was prepared, and 1mL of the solu-
tion was filtered using a sterile disposable syringe and a
syringe filter membrane (product no. SLGV004SL, Fisher
Scientific, Hampton, NH, USA) for sterilization. Water
suspensions were prepared by spiking E. coli into filtered
water samples. Fifty microlitres of the chlorine suspension
(i.e., 0.2 ppm) was added to the test water sample, and a
timer counted the chlorine exposure time. The reaction
was stopped at 10 min of chlorine exposure by adding
50 µL sodium thiosulfate into the test water sample and
vigorously mixing the solution to immediately stop the
chlorination reaction. CHROMagar™ ECC plates were
inoculated with 200 µL of the chlorine-stressed suspen-
sion, were dried in the biosafety cabinet for at most
30 min and then were placed on the setup for lens-free
imaging. In addition, three TSA plates and one ECC
ChromoSelect Selective Agar plate (product no. 85927,
Sigma Aldrich, St. Louis, MO, USA) were inoculated with
1 mL of the control sample (not exposed to chlorine) and
0.2 ppm of the chlorine-stressed E. coli water sample and
dried under a biosafety cabinet for approximately 1–2 h
with the gentle mixing of Petri dishes at some time
intervals. After drying, the plates were sealed with paraf-
ilm and incubated at 37 °C for 24 h. After incubation, the
bacterial colonies grown on the agar plates were counted,
and the E. coli concentrations of the control samples and
chlorine-stressed E. coli samples were compared. If the
achieved reduction in colony count was between 2.0 and
4.0 log, then the images of CHROMagar™ ECC plates
captured using the lens-free imaging platform were used
for further analysis.

Preparation of the culture plates for lens-free imaging
A bacterial suspension in a phosphate-buffered solution

(PBS) (product no. 20-012-027, Fisher Scientific, Hamp-
ton, NH, USA) was prepared every day from a solid agar
plate incubated for 24 h. The concentration of the sus-
pension was measured using a spectrophotometer (model
no. ND-ONE-W, Thermo Fisher), and the suspension was
then diluted in PBS to a final concentration of 1–200 CFU
per 0.1 mL. One hundred microlitres of the diluted sus-
pension was spread on a CHROMagar™ ECC plate using
an L-shaped spreader (product no. 14-665-230, Fisher
Scientific, Hampton, NH, USA). The plate was covered
with its lid, inverted, and incubated at 37 °C in our optical
platform (Fig. 2).

Preparation of a concentrated broth
A total of 180 g of tryptic soy broth (product no.

R455054, Fisher Scientific, Hampton, NH, USA) was
added to 1 L reagent grade water and heated to 100 °C by
continuously mixing using a stirrer bar. The suspension
was then cooled to 50 °C and filter sterilized using a dis-
posable filtration unit. The broth concentrate was stored
at 4 °C and used within 1 week after preparation.

Preparation of samples for comparison measurements
We evaluated the performance of our method in compar-

ison to Colilert®-18, which is an EPA-approved enzyme-based
analytical method for several types of regulated water samples
(e.g., drinking water, surface water, and ground water) to
detect E. coli42 and for plate counting using TSA plates and
ECC ChromoSelect Selective Agar plates (Supplementary Fig.
S3). Two bottles of 1 L reagent grade water were filtered using
disposable vacuum filtration units and 0.2 L of the con-
centrated broth was added into one of the 1 L sample bottles.
The bottles were covered with aluminium foil and stored in a
biosafety cabinet overnight. A glass vacuum filtration unit was
used for the filtration of the 1 L water samples. The compo-
nents of the unit were covered with aluminium foil and
sterilized using an autoclave. The disposable nitrocellulose
filter membranes (product no. HAWG04705, EMD Millipore,
Danvers, MA, USA) used in the glass filtration unit were also
sterilized using the autoclave. A bacterial suspension was
prepared by spiking bacteria into 50mL reagent grade water
using a disposable inoculation loop from a TSA plate con-
taining E. coli colonies. The suspension was mixed gently to
obtain a uniform distribution of bacteria. Three TSA plates, 3
ECC ChromoSelect Selective Agar plates, and 4 CHROMa-
gar™ ECC plates were removed from the refrigerator and were
kept at room temperature for 30min.
Three bottles of 120 mL disposable vessels with sodium

thiosulfate (product no. WV120SBST-200, IDEXX
Laboratories Inc., Westbrook, ME, USA) were filled with
100mL filter sterilized reagent grade water. First, 0.1 mL
of bacterial suspension was spiked into a 1 L water sam-
ple, a 1.2 L water sample (1 L water+ 0.2 L concentrated
broth), 3 bottles of 100 mL water samples, 3 TSA plates
and 3 ECC ChromoSelect Selective Agar plates, sequen-
tially. The timer was started immediately after adding the
spike into the suspensions.
First, the suspensions on TSA plates and ECC ChromoSe-

lect Selective Agar were spread using L-shaped disposable
spreaders. Then, the water sample with broth was mixed for
approximately one minute and then stored at 35 °C for 5 h.
One Colilert®-18 reagent (product no. 98-27164-00, IDEXX
Laboratories Inc., Westbrook, ME, USA) was added into each
100mL bacterial suspension, and the mixture was shaken. The
content of the bottle was poured into a Quanti-Tray 2000
bag (product no. 98-21675-00, IDEXX Laboratories Inc.,
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Westbrook, ME, USA), and after removing bubbles in each
well, the bag was sealed using Quanti-Tray Sealer (product no.
98-09462-01, IDEXX Laboratories Inc., Westbrook, ME,
USA). Three bags sealed and labelled with the experimental
details were incubated at 35 °C for 18 h. Next, 30mL filtered
reagent grade water was used to moisturize the membrane in
the glass filtration unit, and then an E. coli-contaminated 1 L
water sample was filtered at a pressure of 50 kPa. The bottle
was rinsed using 150mL of sterilized reagent grade water, and
the solution was filtered on the unit (Supplementary Fig. S7).
The funnel was rinsed twice using 50mL of sterilized reagent
grade water. After the filtration was complete, the membrane
was removed and placed onto a CHROMagar™ ECC plate
face down. Gentle pressure was applied on the membrane
using a tweezer to remove any air bubbles between the agar
and the membrane. Then, 30 g of weight was placed on the
membrane to provide continuous pressure during the transfer
of bacteria from the membrane to the agar plate (Supple-
mentary Fig. S8). After 5min of incubation, the membrane
was gently peeled off from the agar surface and placed into
another agar facing up. The agar containing the membrane
was incubated at the benchtop incubator at 35 °C, and the agar
containing the transferred bacteria was incubated at the lens-
free imaging platform for time-lapse imaging. After 5 h of
incubation, the bottle containing 1.2 L suspension was filtered
using the same procedure as described before for filtration of a
1 L sample. The agar plate containing the transferred bacteria
was incubated at the second sample tray of the lens-free
imaging setup for time-lapse imaging, while the agar con-
taining the membrane was incubated at the benchtop
incubator.

Design of the high-throughput time-resolved
microorganism monitoring platform
Our platform consists of five modules: (1) a holographic

imaging system, (2) a mechanical translational system, (3)
an incubation unit, (4) a control circuit, and (5) a con-
trolling program. Each module is explained in detail below.

i. We used fibre-coupled partially coherent laser
illumination (SC400-4, Fianium Ltd., Southampton,
UK), with the wavelength and intensity controlled
through an acousto-optic tunable filter (AOTF)
device (Fianium Ltd., Southampton, UK). The device
was remotely controlled with a customized program
written in the C++ programming language and ran
on a controlling laptop computer (product no.
EON17-SLX, Origin PC). The laser light was
transmitted through the sample, i.e., the agar plate
that contains the bacterial colonies, and forms an
inline hologram on a CMOS image sensor (product
no. acA3800-14 µm, Basler AG, Ahrensburg,
Germany) with a pixel size of 1.67 μm and an
active area of 6.4mm× 4.6mm. The CMOS image
sensor was connected to the same controlling laptop

computer through a universal serial bus (USB) 3.0
interface and was software-triggered within the same
C++ program. The exposure time at each scanning
position was precalibrated according to the intensity
distribution of the illumination light and ranged
from 4 to 167ms. The images were saved as 8-bit
bitmap files for further processing.

ii. The mechanical stage was customized with a
pair of linear translation rails (Accumini
2AD10AAAHL, Thomson, Radford, VA, USA), a
pair of linear bearing rods (8mm-diameter, generic),
and linear bearings (LM8UU, generic), and it was
aided by parts printed by a 3D printer for the joints
and housing (Objet30 Pro, Stratasys, Minnesota,
USA). The 2D horizontal movement was powered
by two stepper motors (product no. 1124090, Kysan
Electronics, San Jose, CA, USA)—one for each
direction, and these motors were individually
controlled using stepper motor controller chips
(DRV8834, Pololu Las Vegas, NV, US). To
minimize the backslash effect, the whole Petri dish
was scanned following a raster scan pattern.

iii. The incubation unit was built with the top heating
plate of a microscope incubator (INUBTFP-WSKM-
F1, Tokai Hit, Shizuoka, Japan), and it was housed by
a 3D frame printed by a 3D printer. The Petri dish
containing the sample was placed on the heating
plate with the surface having bacteria facing
downwards. The temperature was controlled by a
paired controller that maintained a temperature of
47 °C on the heating plate, resulting in a temperature
of 38 °C inside the Petri dish.

iv. The control circuit consisted of three components: a
microcontroller (Arduino Micro, Arduino LLC)
communicating with the computer through a USB
2.0 interface, two stepper motor driver chips
(DRV8834, Pololu Las Vegas, NV, US) externally
powered by a 4.2 V constant voltage power supply
(GPS-3303, GW Instek, Montclair, CA, US), and a
metal–oxide–semiconductor field-effect transistor-
based digital switch (SUP75P03-07, Vishay Siliconix,
Shelton, CT, United States) for controlling the
CMOS sensor connection.

v. The controlling program included a graphical user
interface and was developed using the C++
programming language. External libraries including
Qt (v5.9.3), AOTF (Gooch & Housego), and Pylon
(v5.0.11) were integrated.

Data acquisition
We prepared inoculated agar plates of pure bacterial colo-

nies (see the Sample Preparation subsection under the
“Methods” for details) and captured images of an entire agar
plate at 30-min intervals. The illumination light was set to a
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wavelength of 532 nm and an intensity of ~400μW. To
maximize the image acquisition speed, the captured images
were first saved into a computer memory buffer and then were
written to a hard disk by another independent thread. At the
end of each experiment (i.e., after 24 h of incubation), the
sample plate was imaged using a benchtop scanning micro-
scope (Olympus IX83) in reflection mode, and the resulting
images were automatically stitched to a full-FOV image, used
for comparison. Subsequently, the plate was disposed of as
solid biohazardous waste. We populated the data (i.e., time-
lapse lens-free images) corresponding to ~6969 E. coli, ~2613
K. aerogenes, and ~6727 K. pneumoniae individual bacterial
colonies to train and validate our models. Another 965 colo-
nies of 3 different species from 15 independent agar plates
were used to blindly test our machine learning models.

Image processing and analysis
The acquired lens-free images were processed using

custom-developed image processing and deep learning
algorithms. Five major image processing steps were used for
the early detection and automated classification and counting
of colonies. These steps are described in detail below.

Image stitching to obtain the image of the entire plate area
Following the acquisition of holographic images using

the multi-threading approach, all the images within a tile-
scan of the whole Petri dish per wavelength were merged
into a single full-FOV image. During a tile scan, the
images were acquired with ~30% overlap on each side of
the image to calculate the relative image shifts against
each other. For each image, the relative shifts against all
four of the neighbouring images were calculated using a
phase correlation43 method, followed by an optimization
step that minimized an object function, as defined by

argmin
TVF
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A2VnfFg

X
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�� ��2

0
@

1
A ð1Þ

where V is the set of all tile images, F 2 V is a fixed image,
e.g., the image captured at the centre of the sample Petri
dish,~tAB stands for the relative position of image A with
respect to image B, and ~pAB is the local shift between
images A and B, calculated by the phase correlation
method using the overlapping regions of the two
neighbouring images, which can be formulated as

~pAB ¼ Δx;Δyð Þ ¼ argmax
ðx;yÞ

F�1 FfAg � FfBg�
FfAg � FfBg�j j
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ð2Þ

where F is the Fourier transform operator and F�1 is the
inverse Fourier transform operator. The optimal

configuration TVF ¼ ~tAF : A; F 2 V
� �

represents the rela-
tive positions of all the images with respect to the fixed
image F, and it was used as the global position of each tile
image for full-FOV image stitching. To eliminate tiles with
a low signal-to-noise ratio that lead to incorrect local shift
estimation values, a correlation threshold of 0.3 was applied
during the optimization, meaning that if the cross-
correlation coefficient of the overlapped parts of two
images was below 0.3, the shift calculation was discarded.
Once the positions of all of the tiles were obtained, they
were merged into a full-FOV image of the whole Petri dish
using linear blending. We defined a full-FOV image of the
whole Petri dish as a “frame”. All the frames were
normalized so that the mean value was 50, and they were
saved as unsigned 8-bit integer (0–255) arrays.

Colony candidate selection by differential analysis
When a new frame was acquired at time t, it was cross-

registered to the previous frame at time t− 1 and then
digitally back-propagated to the sample plane44,45 to
obtain the complex light field

eBt ¼ PðFt ; zÞ ð3Þ

where Ft is the frame at time t, z is a surface normal vector of
the sample plane obtained by digital autofocusing46 at 50
randomly spaced positions, and P denotes the angular
spectrum-based back-propagation operation44,45, which can
be calculated by multiplying the spatial Fourier transform of
the input signal and the following transfer function

Hkðνx; νyÞ ¼ exp �j � 2π n�z
λ
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:

where n is the refractive index of the medium, λ is the
illumination wavelength, and vx and vy are the spatial
frequencies. This operation was followed by an inverse 2D
Fourier transform. The resulting complex-valued recon-
struction provides both the amplitude and phase images
of the illuminated objects. To accommodate the large
FOV of a stitched frame (36,000 × 36,000 pixels), digital
back-propagation was performed with 2048 × 2048-pixel
blocks, which were then merged together.
Four consecutive frames were taken, i.e., from t− 3 to t,

and a differential image was calculated defined by

Dt ¼ HP LP
1
3

Xt
τ¼t�2

~Bτ � ~Bτ�1

�� ��
 !" #

ð4Þ

where Dt is the differential image at time t, ~Bt represents
the complex light field obtained by back-propagating
frame t, and LP and HP represent low-pass and
high-pass image filtering, respectively. The HP filter
removes the differential signal from a slowly varying
background (unwanted term), and the LP filter removes
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Westbrook, ME, USA), and after removing bubbles in each
well, the bag was sealed using Quanti-Tray Sealer (product no.
98-09462-01, IDEXX Laboratories Inc., Westbrook, ME,
USA). Three bags sealed and labelled with the experimental
details were incubated at 35 °C for 18 h. Next, 30mL filtered
reagent grade water was used to moisturize the membrane in
the glass filtration unit, and then an E. coli-contaminated 1 L
water sample was filtered at a pressure of 50 kPa. The bottle
was rinsed using 150mL of sterilized reagent grade water, and
the solution was filtered on the unit (Supplementary Fig. S7).
The funnel was rinsed twice using 50mL of sterilized reagent
grade water. After the filtration was complete, the membrane
was removed and placed onto a CHROMagar™ ECC plate
face down. Gentle pressure was applied on the membrane
using a tweezer to remove any air bubbles between the agar
and the membrane. Then, 30 g of weight was placed on the
membrane to provide continuous pressure during the transfer
of bacteria from the membrane to the agar plate (Supple-
mentary Fig. S8). After 5min of incubation, the membrane
was gently peeled off from the agar surface and placed into
another agar facing up. The agar containing the membrane
was incubated at the benchtop incubator at 35 °C, and the agar
containing the transferred bacteria was incubated at the lens-
free imaging platform for time-lapse imaging. After 5 h of
incubation, the bottle containing 1.2 L suspension was filtered
using the same procedure as described before for filtration of a
1 L sample. The agar plate containing the transferred bacteria
was incubated at the second sample tray of the lens-free
imaging setup for time-lapse imaging, while the agar con-
taining the membrane was incubated at the benchtop
incubator.

Design of the high-throughput time-resolved
microorganism monitoring platform
Our platform consists of five modules: (1) a holographic

imaging system, (2) a mechanical translational system, (3)
an incubation unit, (4) a control circuit, and (5) a con-
trolling program. Each module is explained in detail below.

i. We used fibre-coupled partially coherent laser
illumination (SC400-4, Fianium Ltd., Southampton,
UK), with the wavelength and intensity controlled
through an acousto-optic tunable filter (AOTF)
device (Fianium Ltd., Southampton, UK). The device
was remotely controlled with a customized program
written in the C++ programming language and ran
on a controlling laptop computer (product no.
EON17-SLX, Origin PC). The laser light was
transmitted through the sample, i.e., the agar plate
that contains the bacterial colonies, and forms an
inline hologram on a CMOS image sensor (product
no. acA3800-14 µm, Basler AG, Ahrensburg,
Germany) with a pixel size of 1.67 μm and an
active area of 6.4mm× 4.6mm. The CMOS image
sensor was connected to the same controlling laptop

computer through a universal serial bus (USB) 3.0
interface and was software-triggered within the same
C++ program. The exposure time at each scanning
position was precalibrated according to the intensity
distribution of the illumination light and ranged
from 4 to 167ms. The images were saved as 8-bit
bitmap files for further processing.

ii. The mechanical stage was customized with a
pair of linear translation rails (Accumini
2AD10AAAHL, Thomson, Radford, VA, USA), a
pair of linear bearing rods (8mm-diameter, generic),
and linear bearings (LM8UU, generic), and it was
aided by parts printed by a 3D printer for the joints
and housing (Objet30 Pro, Stratasys, Minnesota,
USA). The 2D horizontal movement was powered
by two stepper motors (product no. 1124090, Kysan
Electronics, San Jose, CA, USA)—one for each
direction, and these motors were individually
controlled using stepper motor controller chips
(DRV8834, Pololu Las Vegas, NV, US). To
minimize the backslash effect, the whole Petri dish
was scanned following a raster scan pattern.

iii. The incubation unit was built with the top heating
plate of a microscope incubator (INUBTFP-WSKM-
F1, Tokai Hit, Shizuoka, Japan), and it was housed by
a 3D frame printed by a 3D printer. The Petri dish
containing the sample was placed on the heating
plate with the surface having bacteria facing
downwards. The temperature was controlled by a
paired controller that maintained a temperature of
47 °C on the heating plate, resulting in a temperature
of 38 °C inside the Petri dish.

iv. The control circuit consisted of three components: a
microcontroller (Arduino Micro, Arduino LLC)
communicating with the computer through a USB
2.0 interface, two stepper motor driver chips
(DRV8834, Pololu Las Vegas, NV, US) externally
powered by a 4.2 V constant voltage power supply
(GPS-3303, GW Instek, Montclair, CA, US), and a
metal–oxide–semiconductor field-effect transistor-
based digital switch (SUP75P03-07, Vishay Siliconix,
Shelton, CT, United States) for controlling the
CMOS sensor connection.

v. The controlling program included a graphical user
interface and was developed using the C++
programming language. External libraries including
Qt (v5.9.3), AOTF (Gooch & Housego), and Pylon
(v5.0.11) were integrated.

Data acquisition
We prepared inoculated agar plates of pure bacterial colo-

nies (see the Sample Preparation subsection under the
“Methods” for details) and captured images of an entire agar
plate at 30-min intervals. The illumination light was set to a
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wavelength of 532 nm and an intensity of ~400μW. To
maximize the image acquisition speed, the captured images
were first saved into a computer memory buffer and then were
written to a hard disk by another independent thread. At the
end of each experiment (i.e., after 24 h of incubation), the
sample plate was imaged using a benchtop scanning micro-
scope (Olympus IX83) in reflection mode, and the resulting
images were automatically stitched to a full-FOV image, used
for comparison. Subsequently, the plate was disposed of as
solid biohazardous waste. We populated the data (i.e., time-
lapse lens-free images) corresponding to ~6969 E. coli, ~2613
K. aerogenes, and ~6727 K. pneumoniae individual bacterial
colonies to train and validate our models. Another 965 colo-
nies of 3 different species from 15 independent agar plates
were used to blindly test our machine learning models.

Image processing and analysis
The acquired lens-free images were processed using

custom-developed image processing and deep learning
algorithms. Five major image processing steps were used for
the early detection and automated classification and counting
of colonies. These steps are described in detail below.

Image stitching to obtain the image of the entire plate area
Following the acquisition of holographic images using

the multi-threading approach, all the images within a tile-
scan of the whole Petri dish per wavelength were merged
into a single full-FOV image. During a tile scan, the
images were acquired with ~30% overlap on each side of
the image to calculate the relative image shifts against
each other. For each image, the relative shifts against all
four of the neighbouring images were calculated using a
phase correlation43 method, followed by an optimization
step that minimized an object function, as defined by

argmin
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where V is the set of all tile images, F 2 V is a fixed image,
e.g., the image captured at the centre of the sample Petri
dish,~tAB stands for the relative position of image A with
respect to image B, and ~pAB is the local shift between
images A and B, calculated by the phase correlation
method using the overlapping regions of the two
neighbouring images, which can be formulated as

~pAB ¼ Δx;Δyð Þ ¼ argmax
ðx;yÞ

F�1 FfAg � FfBg�
FfAg � FfBg�j j

� �

ð2Þ

where F is the Fourier transform operator and F�1 is the
inverse Fourier transform operator. The optimal

configuration TVF ¼ ~tAF : A; F 2 V
� �

represents the rela-
tive positions of all the images with respect to the fixed
image F, and it was used as the global position of each tile
image for full-FOV image stitching. To eliminate tiles with
a low signal-to-noise ratio that lead to incorrect local shift
estimation values, a correlation threshold of 0.3 was applied
during the optimization, meaning that if the cross-
correlation coefficient of the overlapped parts of two
images was below 0.3, the shift calculation was discarded.
Once the positions of all of the tiles were obtained, they
were merged into a full-FOV image of the whole Petri dish
using linear blending. We defined a full-FOV image of the
whole Petri dish as a “frame”. All the frames were
normalized so that the mean value was 50, and they were
saved as unsigned 8-bit integer (0–255) arrays.

Colony candidate selection by differential analysis
When a new frame was acquired at time t, it was cross-

registered to the previous frame at time t− 1 and then
digitally back-propagated to the sample plane44,45 to
obtain the complex light field

eBt ¼ PðFt ; zÞ ð3Þ

where Ft is the frame at time t, z is a surface normal vector of
the sample plane obtained by digital autofocusing46 at 50
randomly spaced positions, and P denotes the angular
spectrum-based back-propagation operation44,45, which can
be calculated by multiplying the spatial Fourier transform of
the input signal and the following transfer function

Hkðνx; νyÞ ¼ exp �j � 2π n�z
λ
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where n is the refractive index of the medium, λ is the
illumination wavelength, and vx and vy are the spatial
frequencies. This operation was followed by an inverse 2D
Fourier transform. The resulting complex-valued recon-
struction provides both the amplitude and phase images
of the illuminated objects. To accommodate the large
FOV of a stitched frame (36,000 × 36,000 pixels), digital
back-propagation was performed with 2048 × 2048-pixel
blocks, which were then merged together.
Four consecutive frames were taken, i.e., from t− 3 to t,

and a differential image was calculated defined by

Dt ¼ HP LP
1
3

Xt
τ¼t�2

~Bτ � ~Bτ�1

�� ��
 !" #

ð4Þ

where Dt is the differential image at time t, ~Bt represents
the complex light field obtained by back-propagating
frame t, and LP and HP represent low-pass and
high-pass image filtering, respectively. The HP filter
removes the differential signal from a slowly varying
background (unwanted term), and the LP filter removes
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the high-frequency noise-introduced spatial patterns. The
LP and HP filter kernels were empirically set to 5 and 100,
respectively.
Following the differential image calculation, we selected

regions in the differential image with >50 connective
pixels that are above an intensity threshold, which was
empirically set to 12. These regions are marked as colony
candidates, as they give a differential signal over a period
of time (covering four consecutive frames). However,
some of the differential signals come from nonbacterial
objects, such as a water bubble or surface movement of
the agar itself. Therefore, we also used two DNNs to select
the true candidates and classify their species.

DNN-enabled detection of growing bacterial colonies
Following the colony candidate selection process out-

lined earlier, we cropped out candidate regions of 160 ×
160 pixels (~267 µm × 267 µm) across the four back-
propagated consecutive frames and separated the com-
plex field into amplitude and phase channels. Therefore,
each candidate region is represented by a 2 × 4 × 160 × 160
array. This four-dimensional (phase/amplitude–time–x–y)
data format differs from the traditional three-dimensional
data used in image classification tasks and requires a
custom-designed DNN architecture that accounts for the
additional dimension of time. We designed our DNN by
following the block diagram of DenseNet28 and replaced
the 2D convolutional layers with P3D convolutional lay-
ers47, as shown in Supplementary Fig. S9. Our network was
implemented in Python (v3.7.2) with the PyTorch Library
(v1.0.1). The network was randomly initialized and opti-
mized using an adaptive moment estimation (Adam)
optimizer48 with a starting learning rate of 1 × 10−4 and a
batch size of 64. To stabilize the accuracy of the network
model, we also set a learning rate scheduler that decayed
the learning rate by half every 20 epochs. Approximately,
16,000 growing colonies and 43,000 non-colony objects
captured from 71 agar plates were used in the training and
validation phases. The best network model was selected
based on the best validation accuracy. Data augmentation
was also applied by random 90°-rotations and flipping
operations in the spatial dimensions. The whole training
process took ~5 h using a desktop computer with dual
GPUs (GTX1080Ti, Nvidia). The decision threshold value
after the softmax layer was set to 0.5 during training, i.e.,
positive for softmax value >0.5 and negative for softmax
value <0.5, which implies equal penalty to false-positive and
false-negative events. We adjusted the threshold value to
0.99, empirically based on the training dataset before blind
testing, to favour fewer false-positive events.

DNN-enabled classification of the bacterial colony species
Once the true bacterial colonies are selected, they

grow for another 2 h to collect 8 consecutive frames, i.e.,

4 h, and then are sent to the second DNN as a 2 × 8 ×
288 × 288 array for the classification of colony species.
To perform the classification task, this time, the training
data only contain the true colonies and their corre-
sponding species (ground truth). The network follows a
similar structure and training process as the detection
model, as illustrated in Supplementary Fig. S9. The
network was randomly initialized and optimized using
the Adam optimizer48, with a starting learning rate of
1 × 10−4 and a batch size of 64. The learning rate
decayed by 0.9 times every 10 epochs. To avoid over-
fitting to a specific plate, we discarded colony images
extracted from extremely dense samples (>1000 CFU
per plate). As a result, approximately 9400 growing
colonies were used in the training and validation of the
classification model. The whole training process took
~15 h using a desktop computer with dual GPUs
(GTX1080Ti, Nvidia).

Colony counting
The respective ground truth information on the

growing colonies in each experiment was created after
the sample was incubated for >24 h. At the boundary of
the plate, the agar always forms a curved surface owing
to surface tension, thereby distorting the images of the
colonies. Therefore, we limited the effective imaging
area to a 50 mm-diameter circle in the centre of the agar
plate. In cases where multiple colonies are closely
spaced and eventually merge into one large colony (e.g.,
towards the end of the 24 h incubation period), we then
used lens-free time-lapsed images to verify the true
colony number when detected by our method to avoid
overcounting.

Calculation of the imaging throughput
In Supplementary Table S2, we compared the imaging

throughput of our system and a conventional lens-based
scanning microscope in terms of the space-bandwidth
product49 using the following formula:

NI ¼ α � FOV � r2=δ2 ð5Þ

where NI is the effective pixel count of a frame, δ is the
half-pitch resolution, r is the digital sampling factor along
the x and y directions, α= 2 represents the independent
spatial information contained in the phase and amplitude
images of the holographic reconstruction, and α= 1
represents the amplitude-only information contained in
an image captured using the standard lens-based bright-
field scanning microscope. In the lens-based microscope,
we used a colour camera with a pixel size of 7.4 µm.
Therefore, for a 4× objective lens, the image resolution is
limited to ~3.7 µm, owing to the Nyquist sampling limit.
Without loss of generality, we set r= 250.
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the high-frequency noise-introduced spatial patterns. The
LP and HP filter kernels were empirically set to 5 and 100,
respectively.
Following the differential image calculation, we selected

regions in the differential image with >50 connective
pixels that are above an intensity threshold, which was
empirically set to 12. These regions are marked as colony
candidates, as they give a differential signal over a period
of time (covering four consecutive frames). However,
some of the differential signals come from nonbacterial
objects, such as a water bubble or surface movement of
the agar itself. Therefore, we also used two DNNs to select
the true candidates and classify their species.

DNN-enabled detection of growing bacterial colonies
Following the colony candidate selection process out-

lined earlier, we cropped out candidate regions of 160 ×
160 pixels (~267 µm × 267 µm) across the four back-
propagated consecutive frames and separated the com-
plex field into amplitude and phase channels. Therefore,
each candidate region is represented by a 2 × 4 × 160 × 160
array. This four-dimensional (phase/amplitude–time–x–y)
data format differs from the traditional three-dimensional
data used in image classification tasks and requires a
custom-designed DNN architecture that accounts for the
additional dimension of time. We designed our DNN by
following the block diagram of DenseNet28 and replaced
the 2D convolutional layers with P3D convolutional lay-
ers47, as shown in Supplementary Fig. S9. Our network was
implemented in Python (v3.7.2) with the PyTorch Library
(v1.0.1). The network was randomly initialized and opti-
mized using an adaptive moment estimation (Adam)
optimizer48 with a starting learning rate of 1 × 10−4 and a
batch size of 64. To stabilize the accuracy of the network
model, we also set a learning rate scheduler that decayed
the learning rate by half every 20 epochs. Approximately,
16,000 growing colonies and 43,000 non-colony objects
captured from 71 agar plates were used in the training and
validation phases. The best network model was selected
based on the best validation accuracy. Data augmentation
was also applied by random 90°-rotations and flipping
operations in the spatial dimensions. The whole training
process took ~5 h using a desktop computer with dual
GPUs (GTX1080Ti, Nvidia). The decision threshold value
after the softmax layer was set to 0.5 during training, i.e.,
positive for softmax value >0.5 and negative for softmax
value <0.5, which implies equal penalty to false-positive and
false-negative events. We adjusted the threshold value to
0.99, empirically based on the training dataset before blind
testing, to favour fewer false-positive events.

DNN-enabled classification of the bacterial colony species
Once the true bacterial colonies are selected, they

grow for another 2 h to collect 8 consecutive frames, i.e.,

4 h, and then are sent to the second DNN as a 2 × 8 ×
288 × 288 array for the classification of colony species.
To perform the classification task, this time, the training
data only contain the true colonies and their corre-
sponding species (ground truth). The network follows a
similar structure and training process as the detection
model, as illustrated in Supplementary Fig. S9. The
network was randomly initialized and optimized using
the Adam optimizer48, with a starting learning rate of
1 × 10−4 and a batch size of 64. The learning rate
decayed by 0.9 times every 10 epochs. To avoid over-
fitting to a specific plate, we discarded colony images
extracted from extremely dense samples (>1000 CFU
per plate). As a result, approximately 9400 growing
colonies were used in the training and validation of the
classification model. The whole training process took
~15 h using a desktop computer with dual GPUs
(GTX1080Ti, Nvidia).

Colony counting
The respective ground truth information on the

growing colonies in each experiment was created after
the sample was incubated for >24 h. At the boundary of
the plate, the agar always forms a curved surface owing
to surface tension, thereby distorting the images of the
colonies. Therefore, we limited the effective imaging
area to a 50 mm-diameter circle in the centre of the agar
plate. In cases where multiple colonies are closely
spaced and eventually merge into one large colony (e.g.,
towards the end of the 24 h incubation period), we then
used lens-free time-lapsed images to verify the true
colony number when detected by our method to avoid
overcounting.

Calculation of the imaging throughput
In Supplementary Table S2, we compared the imaging

throughput of our system and a conventional lens-based
scanning microscope in terms of the space-bandwidth
product49 using the following formula:

NI ¼ α � FOV � r2=δ2 ð5Þ

where NI is the effective pixel count of a frame, δ is the
half-pitch resolution, r is the digital sampling factor along
the x and y directions, α= 2 represents the independent
spatial information contained in the phase and amplitude
images of the holographic reconstruction, and α= 1
represents the amplitude-only information contained in
an image captured using the standard lens-based bright-
field scanning microscope. In the lens-based microscope,
we used a colour camera with a pixel size of 7.4 µm.
Therefore, for a 4× objective lens, the image resolution is
limited to ~3.7 µm, owing to the Nyquist sampling limit.
Without loss of generality, we set r= 250.

Wang et al. Light: Science & Applications ����������(2020)�9:118� Page 15 of 17

Acknowledgements
The authors acknowledge the funding of ARO (Contract # W911NF-17-1-0161),
Koc Group and HHMI. The authors would also like to acknowledge IDEXX
Laboratories Inc. for loaning the Quanti-Tray Sealer and Drs. Janine R.
Hutchison and Richard M. Ozanich from Pacific Northwest National Laboratory
for sharing their assistance with the chlorination of bacterial samples.

Author details
1Electrical and Computer Engineering Department, University of California,
Los Angeles, CA 90095, USA. 2Bioengineering Department, University of
California, Los Angeles, CA 90095, USA. 3California NanoSystems Institute,
University of California, Los Angeles, CA 90095, USA. 4Department of
Biophysics, Istanbul Medical Faculty, Istanbul University, Istanbul 22000, Turkey.
5Department of Microbiology, Immunology, and Molecular Genetics, University
of California, Los Angeles, CA 90095, USA. 6Department of Surgery, David
Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA

Author contributions
H.W., H.C.K., and Y.Q. designed and built the lens-free imaging platform and the
computer algorithms. H.C.K. prepared all bacterial samples. B.B., Y.Z., Y.Y., and Y.R.
contributed to the system and algorithm design. H.W., H.C.K., and Y.Q. performed
the experiments on the presented system. E.C.Y. and H.C.K. captured the images of
cultured plates at a benchtop microscope. H.W., Y.Q., B.B., and H.C.K. processed the
experimental data. E.G. and H.C.K. prepared the chlorine injured bacterial samples.
S.T. and H.C.K. prepared the agar plates for the optimization of image capture
settings. H.W., H.C.K., and A.O. wrote the paper. H.C.K. and A.O. formulated the
research goals and aims. A.O. supervised the research.

Data availability
The data analyzed during the study are available from the corresponding
author upon reasonable request.

Code availability
The codes used to perform the study are available from the corresponding
author upon reasonable request.

Conflict of interest
H.C.K, H.W., Y.R., Y.Q., and A.O. have a patent application on the invention
reported in this paper.

Supplementary information is available for this paper at https://doi.org/
10.1038/s41377-020-00358-9.

Received: 18 April 2020 Revised: 20 June 2020 Accepted: 22 June 2020

References
1. Sandgren, A. et al. Tuberculosis drug resistance mutation database. PLoS Med.

6, e1000002 (2009).
2. Arain, T. M. et al. Bioluminescence screening in vitro (Bio-Siv) assays for high-

volume antimycobacterial drug discovery. Antimicrob. Agents Chemother. 40,
1536–1541 (1996).

3. Jacobs, W. R. Jr. et al. Rapid assessment of drug susceptibilities of Myco-
bacterium tuberculosis by means of luciferase reporter phages. Science 260,
819–822 (1993).

4. Goodacre, R. et al. Rapid identification of urinary tract infection bacteria using
hyperspectral whole-organism fingerprinting and artificial neural networks.
Microbiology 144, 1157–1170 (1998).

5. Lagier, J. C. et al. Culturing the human microbiota and culturomics. Nat. Rev.
Microbiol. 16, 540–550 (2018).

6. Fierer, N. et al. Forensic identification using skin bacterial communities. Proc.
Natl Acad. Sci. USA 107, 6477–6481 (2010).

7. Koydemir, H. C. et al. Rapid imaging, detection and quantification of Giardia
lamblia cysts using mobile-phone based fluorescent microscopy and machine
learning. Lab a Chip 15, 1284–1293 (2015).

8. Oliver, S. P., Jayarao, B. M. & Almeida, R. A. Foodborne pathogens in milk and
the dairy farm environment: food safety and public health implications.
Foodborne Pathog. Dis. 2, 115–129 (2005).

9. World Water Day. https://www.cdc.gov/healthywater/observances/wwd.
html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Ffeatures%
2Fworldwaterday%2Findex.html (2020).

10. DeFlorio-Barker, S. et al. Estimate of incidence and cost of recreational
waterborne illness on United States surface waters. Environ. Health 17, 3 (2018).

11. US Environmental Protection Agency. Method 1604: Total Coliforms and
Escherichia Coli in Water by Membrane Filtration Using A Simultaneous Detection
Technique (MI Medium). (Environmental Protection Agency, Office of Water,
United States, 2002).

12. Current Waterborne Disease Burden Data & Gaps | Healthy Water | CDC.
https://www.cdc.gov/healthywater/burden/current-data.html (2018).

13. US EPA. Analytical Methods Approved for Compliance Monitoring under the
Long Term 2 Enhanced Surface Water Treatment Rule (US EPA, 2017).

14. Deshmukh, R. A. et al. Recent developments in detection and enumeration of
waterborne bacteria: a retrospective minireview. MicrobiologyOpen 5, 901–922
(2016).

15. Amann, R. & Fuchs, B. M. Single-cell identification in microbial communities by
improved fluorescence in situ hybridization techniques. Nat. Rev. Microbiol. 6,
339–348 (2008).

16. Kang, D. K. et al. Rapid detection of single bacteria in unprocessed blood using
Integrated Comprehensive Droplet Digital Detection. Nat. Commun. 5, 5427
(2014).

17. Title 40: Protection of Environment. Electronic Code of Federal Regulations Vol.
136.3. https://www.ecfr.gov/cgi-bin/text-idx?node=pt40.1.136 (2020).

18. Huff, K. et al. Light-scattering sensor for real-time identification of Vibrio
parahaemolyticus, Vibrio vulnificus and Vibrio cholerae colonies on solid agar
plate. Microb. Biotechnol. 5, 607–620 (2012).

19. Choi, J. et al. A rapid antimicrobial susceptibility test based on single-cell
morphological analysis. Sci. Transl. Med. 6, 267ra174 (2014).

20. Jo, Y. et al. Holographic deep learning for rapid optical screening of anthrax
spores. Sci. Adv. 3, e1700606 (2017).

21. Van Poucke, S. O. & Nelis, H. J. A 210-min solid phase cytometry test for the
enumeration of Escherichia coli in drinking water. J. Appl. Microbiol. 89,
390–396 (2000).

22. Kim, M. et al. Optofluidic ultrahigh-throughput detection of fluorescent drops.
Lab a Chip 15, 1417–1423 (2015).

23. Tryland, I. et al. Monitoring of β-D-Galactosidase activity as a surrogate para-
meter for rapid detection of sewage contamination in urban recreational
water. Water 8, 65 (2016).

24. Van Poucke, S. O. & Nelis, H. J. Limitations of highly sensitive enzymatic
presence-absence tests for detection of waterborne coliforms and Escherichia
coli. Appl. Environ. Microbiol. 63, 771–774 (1997).

25. London, R. et al. An automated system for rapid non-destructive enumeration
of growing microbes. PLoS ONE 5, e8609 (2010).

26. EPA. EPA Microbiological Alternate Test Procedure (ATP) Protocol for Drinking
Water, Ambient Water, Wastewater, and Sewage Sludge Monitoring Methods.
(Environmental Protection Agency, Office of Water, United States, 2010).

27. CHROMagarTM ECC Product Leaflet. http://www.chromagar.com/
fichiers/1559127431LF_EXT_003_EF_V8.0.pdf?PHPSESSID=
bfb3a740c98b2bf26f8ac5c4d1880fe9 (2020).

28. Huang, G. et al. Densely connected convolutional networks. 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR) (IEEE, Honolulu,
2017).

29. Shapiro, J. A. The significances of bacterial colony patterns. BioEssays 17,
597–607 (1995).

30. Su, P. T. et al. Bacterial colony from two-dimensional division to three-
dimensional development. PLoS ONE 7, e48098 (2012).

31. Farrell, F. D. et al. Mechanical interactions in bacterial colonies and the
surfing probability of beneficial mutations. J. R. Soc. Interface 14, 20170073
(2017).

32. Sheats, J. et al. Role of growth rate on the orientational alignment of
Escherichia coli in a slit. R. Soc. Open Sci. 4, 170463 (2017).

33. LeChevallier, M. W. & McFeters, G. A. Enumerating injured coliforms in drinking
water. J. Am. Water Works Assoc. 77, 81–87 (1985).

34. CDC-Salmonella-Factsheet. https://www.cdc.gov/salmonella/pdf/CDC-
Salmonella-Factsheet.pdf (2016).

35. Liu, H. L., Whitehouse, C. A. & Li, B. G. Presence and persistence of salmonella in
water: the impact on microbial quality of water and food safety. Front. Public
Health 6, 159 (2018).

36. Alternate Test Procedures in Clean Water Act Analytical Methods. https://
www.epa.gov/cwa-methods/alternate-test-procedures (2018).

Wang et al. Light: Science & Applications ����������(2020)�9:118� Page 16 of 17



1166 | Light Sci Appl | 2020 | Vol 9 | Issue 4

37. Sanders, E. R. Aseptic laboratory techniques: plating methods. J. Vis. Exp.
https://doi.org/10.3791/3064 (2012).

38. Zhang, Y. B. et al. Motility-based label-free detection of parasites in bodily
fluids using holographic speckle analysis and deep learning. Light 7, 108
(2018).

39. Isikman, S. O. et al. Lens-free optical tomographic microscope with a large
imaging volume on a chip. Proc. Natl Acad. Sci. USA 108, 7296–7301 (2011).

40. Cobo, M. P. et al. Visualizing bacterial colony morphologies using time-lapse
imaging chamber MOCHA. J. Bacteriol. 200, e00413–e00417 (2018).

41. Hutchison, J. R. et al. Consistent production of chlorine-stressed bacteria from
non-chlorinated secondary sewage effluents for use in the U.S. Environmental
Protection Agency Alternate Test Procedure protocol. J. Microbiol. Methods
163, 105651 (2019).

42. Colilert 18—IDEXX US. https://www.idexx.com/en/water/water-products-
services/colilert-18/ (2020).

43. Preibisch, S., Saalfeld, S. & Tomancak, P. Globally optimal stitching of
tiled 3D microscopic image acquisitions. Bioinformatics 25, 1463–1465 (2009).

44. Goodman, J. W. Introduction to Fourier Optics. (Roberts and Company Pub-
lishers, Greenwoood Village, 2005).

45. Rivenson, Y. et al. Sparsity-based multi-height phase recovery in holographic
microscopy. Sci. Rep. 6, 37862 (2016).

46. Zhang, Y. B. et al. Edge sparsity criterion for robust holographic autofocusing.
Opt. Lett. 42, 3824–3827 (2017).

47. Qiu, Z. F., Yao, T. & Mei, T. Learning spatio-temporal representation with
pseudo-3D residual networks. 2017 IEEE International Conference on Com-
puter Vision (ICCV) (IEEE, Venice, Italy, 2017).

48. Kingma, D. P. & Ba, J. Adam: a method for stochastic
optimization. 3rd International Conference on Learning Representations (ICLR,
Ithaca, 2015)

49. Wang, H. D. et al. Computational out-of-focus imaging increases the
space–bandwidth product in lens-based coherent microscopy. Optica 3,
1422–1429 (2016).

50. Greenbaum, A. et al. Increased space-bandwidth product in pixel super-
resolved lensfree on-chip microscopy. Sci. Rep. 3, 1717 (2013).

Wang et al. Light: Science & Applications ����������(2020)�9:118� Page 17 of 17 Hu et al. Light: Science & Applications ����������(2020)�9:119� Official journal of the CIOMP 2047-7538
https://doi.org/10.1038/s41377-020-00362-z www.nature.com/lsa

ART ICLE Open Ac ce s s

Efficient full-path optical calculation of scalar and
vector diffraction using the Bluestein method
Yanlei Hu1,2, Zhongyu Wang1, Xuewen Wang3, Shengyun Ji1, Chenchu Zhang4, Jiawen Li1, Wulin Zhu1, Dong Wu1 and
Jiaru Chu1

Abstract
Efficient calculation of the light diffraction in free space is of great significance for tracing electromagnetic field
propagation and predicting the performance of optical systems such as microscopy, photolithography, and manipulation.
However, existing calculation methods suffer from low computational efficiency and poor flexibility. Here, we present a
fast and flexible calculation method for computing scalar and vector diffraction in the corresponding optical regimes
using the Bluestein method. The computation time can be substantially reduced to the sub-second level, which is 105

faster than that achieved by the direct integration approach (~hours level) and 102 faster than that achieved by the fast
Fourier transform method (~minutes level). The high efficiency facilitates the ultrafast evaluation of light propagation in
diverse optical systems. Furthermore, the region of interest and the sampling numbers can be arbitrarily chosen,
endowing the proposed method with superior flexibility. Based on these results, full-path calculation of a complex optical
system is readily demonstrated and verified by experimental results, laying a foundation for real-time light field analysis for
realistic optical implementation such as imaging, laser processing, and optical manipulation.

Introduction
Diffraction is a classic optical phenomenon accounting

for the propagation of light waves. The efficient calcula-
tion of light diffraction is of significant value toward the
real-time prediction of light fields in microscopy1, laser
fabrication2–5, and optical manipulation6,7. The diffrac-
tion of electromagnetic (EM) waves can be cataloged into
scalar diffraction and vector diffraction according to the
validation of different approximation conditions. Scalar
diffraction considers only the scalar amplitude of one
transverse component of either the electric or the mag-
netic field with certain simplifications and approxima-
tions8. Scalar diffraction can yield sufficiently accurate

results if the diffracting aperture and observing distance
are both far larger than a wavelength, which is most valid
for optical systems with a low numerical aperture (NA).
For high-NA optical systems, polarization effects play a
paramount role near the focal spot, and thus, vector dif-
fraction must be adopted for light field tracing9–11.
Although mathematical expressions for optical diffrac-
tions have been presented authoritatively for ages, fun-
damental breakthroughs have rarely been achieved in
diffraction computations. The direct integration method
was first used to calculate both scalar and vector diffrac-
tion12–14. However, the point-by-point calculation fashion
renders the computation extremely tedious and ineffi-
cient. Fast Fourier transform (FFT)-based algorithms have
been developed to perform fast calculations of light dif-
fraction15–19. However, these methods can generate only
the light field distribution within a fixed region of interest
(ROI) and sampling numbers (i.e., resolution) determined
by the intrinsic characteristic of the Fourier transform
(FT), lacking flexibility in computing the desired local
distribution with variable sampling intervals. Therefore,
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