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Artificial gauge field switching using orbital angular
momentum modes in optical waveguides
Christina Jörg1, Gerard Queraltó 2, Mark Kremer 3, Gerard Pelegrí2,4, Julian Schulz1, Alexander Szameit 3,
Georg von Freymann1,5, Jordi Mompart2 and Verònica Ahufinger2

Abstract
The discovery of artificial gauge fields controlling the dynamics of uncharged particles that otherwise elude the
influence of standard electromagnetic fields has revolutionised the field of quantum simulation. Hence, developing
new techniques to induce these fields is essential to boost quantum simulation of photonic structures. Here, we
experimentally demonstrate the generation of an artificial gauge field in a photonic lattice by modifying the
topological charge of a light beam, overcoming the need to modify the geometry along the evolution or impose
external fields. In particular, we show that an effective magnetic flux naturally appears when a light beam carrying
orbital angular momentum is injected into a waveguide lattice with a diamond chain configuration. To demonstrate
the existence of this flux, we measure an effect that derives solely from the presence of a magnetic flux, the Aharonov-
Bohm caging effect, which is a localisation phenomenon of wavepackets due to destructive interference. Therefore,
we prove the possibility of switching on and off artificial gauge fields just by changing the topological charge of the
input state, paving the way to accessing different topological regimes in a single structure, which represents an
important step forward for optical quantum simulation.

During the last decade, the growing interest in quantum
simulation has fostered the development of several tech-
niques for implementing effective electromagnetic fields
in systems of neutral particles1,2. In this vein, artificial
gauge fields (AGFs) have been widely used in photonics to
control light dynamics3–5, emulating the effect of elec-
tromagnetic fields on charged particles. Moreover, AGFs
have also allowed the exploration of a plethora of phe-
nomena stemming from their close connection to topo-
logical phases of matter6–9 (see Ozawa et al.10 for a recent
review). Typically, these AGFs are introduced either by
geometric manipulation4,5 or by time-dependent mod-
ulation11–13. While in Wu et al.14, wavepackets carrying
orbital angular momentum (OAM) were used to create

edge states in crystalline topological insulators, here, we
experimentally demonstrate that an AGF in the form of
an effective magnetic flux can be induced using
Laguerre–Gauss light beams carrying OAM15. Specifi-
cally, to prove the existence of this flux, we show how
Aharonov-Bohm (AB) caging naturally appears when
OAM modes with a specific topological charge are
injected into cylindrical optical waveguides arranged in a
diamond chain configuration16,17.
AB caging, which was originally studied in the context

of two-dimensional electronic systems, is a single-particle
localisation effect arising from the interplay between the
lattice geometry and a magnetic flux. More specifically, a
constant magnetic flux modifies the phase relations of
wavepackets, resulting in a destructive interference effect
that binds the modes. Thus, it enables one to halt all
propagation by controlling the flux. This phenomenon,
which can be interpreted in terms of quantum inter-
ference18,19, has been predicted to occur20–22 and
experimentally verified23,24 in photonic structures
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implementing AGFs. Unlike the previous photonic pro-
posals based on geometric manipulation20–22, we show in
this work how non-zero-energy flat bands, which are
responsible for the caging effect, can be naturally and
deliberately achieved by injecting light carrying OAM
instead of fabricating a new sample. Therefore, our pro-
posal enables the study of the effect of AGFs in photonic
lattices just by selecting the topological charge of the
input beam. In this context, our proposal differs from
related works where the intrinsic angular momentum, i.e.,
the polarisation of the input beam, instead of the extrinsic
one, i.e., the OAM, was used as the AGF switching
mechanism25. Moreover, this method also allows access to
different topological regimes without the need to fabricate
different structures or employ high intensities, as is the
case for topological phase transitions realised via non-
linear optics26.
To experimentally visualise the AB caging effect

induced by OAM modes, we fabricate photonic lattices
composed of direct laser written optical waveguides27

arranged in a diamond chain configuration, as displayed
in Fig. 1a. The unit cell j is composed of three waveguides
Sj ¼ Aj;Bj;Cj
� �

forming a triangle with a central angle θ.
Each cylindrical waveguide sustains OAM modes of the

form28

Ψ± ‘
Sj rSj ;ϕSj ; z
� �

¼ ψ‘
Sj rSj
� �

e
± i‘ ϕSj

�ϕ0

� �
e�iβ‘z ð1Þ

where ‘ ¼ 0; 1; 2; ¼ is the topological charge, ± accounts
for positive and negative circulation of the phase front,
ψ‘
Sj rSj
� �

is the radial mode profile given by the Bessel
functions15, ðrSj ;ϕSjÞ are the polar coordinates with
respect to the centre of each waveguide Sj in the
transverse plane, z is the propagation direction, ϕ0 is an
arbitrary phase origin, and β‘ is the propagation constant
of mode ‘. Moreover, while between fundamental modes
ð‘ ¼ 0Þ, there is only one coupling amplitude c0;0 � c0,
between OAM modes ð‘≠ 0Þ with the same or opposite
circulation directions, there are two coupling amplitudes
c‘;‘ � c1 and c‘;�‘ � c2ei2‘ϕ0 29. In particular, as a proof of
concept, we restrict our implementation to the ‘ ¼ 0 and
‘ ¼ 1 modes by properly engineering the refractive index
contrast and the width of the step-index profile presented
in Fig. 1b. In this case, between the ‘ ¼ 1 modes with the
same or opposite circulation directions, there are two
coupling amplitudes c1;1 � c1 and c1;�1 � c2ei2‘ϕ0 29.
Therefore, when dealing with OAM modes, complex
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Fig. 1 Lattice structure and optical waveguides. a Schematic representation of the structure composed of identical cylindrical waveguides
arranged in a diamond chain configuration. Each unit cell j hosts three waveguides sj � Aj ; Bj ; Cj forming a triangle with central angle θ. The
distances between waveguide centres are dAj�Bj ¼ dAj�Cj � d, dBj�Cj ¼ 2d sinðθ=2Þ and dAj�Ajþ1 ¼ 2d cosðθ=2Þ. The blue arrows indicate the
couplings. b Refractive index profile of the waveguides, defined by ncore= 1.548, nclad= 1.540 and waveguide radius R= 1.9 μm. Field intensity of the
‘ ¼ 0 (green) and ‘ ¼ 1 (red) modes, where β‘ is the propagation constant of mode ‘, k0 = 2π/λ0 is the vacuum wavenumber and λ0 is the light
wavelength in vacuum. c Numerically calculated coupling strengths for separation distances d= 5 μm, 5.5 μm, 6 μm, 6.5 μm, 7 μm and 7.5 μm using
λ0= 700 nm. In particular, c0 (crosses) accounts for the coupling between the ‘ ¼ 0 modes, and c1 (circles) and c2 (squares) account for the coupling
between the ‘ ¼ 1 modes with the same or opposite circulation directions, respectively. The dashed and solid lines correspond to the exponential
fittings of c0 dð Þ � K0 expð�κ0dÞ, c1ðdÞ � K1 expð�κ1dÞ and c2ðdÞ � K2 expð�κ2dÞ, where K0= 387 mm−1, κ0= 1.17 μm−1, K1= 19.39 mm−1, κ1=
0.52 μm−1, K2= 56.25 mm−1 and κ2= 0.59 μm−1. The inset in c shows c2/c1 with respect to the separation distance d
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coupling amplitudes between modes with different
circulation directions appear naturally. The different
coupling strengths c0; c1 and c2 are presented in Fig. 1c
(see Supplementary I for details on the calculations).
Specifically, we set the phase origin ϕ0 along the Aj $ Cj

direction such that c1;�1 ¼ c2 is real in this direction,
while c1;�1 ¼ c2e�i2‘θ is complex along the Aj $ Bj

direction. In particular, we fix θ= π/2, which allows the
coupling between modes propagating in next-nearest
neighbour waveguides to be neglected30 (see Supplemen-
tary II for a detailed discussion). Moreover, for this
specific angle, a relative phase difference of π between the
c1;�1 couplings in the Aj $ Cj and Aj $ Bj directions
appears. This phase difference introduces a π flux into the
plaquettes that opens an energy gap between the
dispersive bands, as discussed in detail in the following.
Assuming periodic boundary conditions, the bulk band

structure for the ‘ ¼ 0 modes consists of one flat and two
dispersive bands (Fig. 2a), with energies given by20

E0
0 kð Þ ¼ 0; E0

± kð Þ ¼ ± 2c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cosðk

ffiffiffi
2

p
dÞ

q
ð2Þ

where k is the quasi-momentum and
ffiffiffi
2

p
d is the lattice

constant. On the other hand, as presented in Fig. 2b, the
band structure for ‘ ¼ 1 is composed of six energy bands,
i.e., three bands with a twofold degeneracy (positive and

negative circulation)16

E1
0 kð Þ ¼ 0;E1

± kð Þ
¼ ± 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ c22ð Þ þ c21 � c22ð Þcosðk

ffiffiffi
2

p
dÞ

q ð3Þ

The main difference between the energy bands in the
two cases is the existence of an energy gap for ‘ ¼ 1,
which is absent for ‘ ¼ 0, indicating the presence of an
AGF. By performing a basis rotation (Supplementary III),
the original diamond chain can be decoupled into two
identical chains with three energy bands and a π flux
through the plaquettes that opens the energy gap16.
Moreover, as illustrated in Fig. 2c, in the c2=c1 ! 1 limit,
the dispersive bands E1

± ! ± 2
ffiffiffi
2

p
c1 become flat, and the

associated supermodes are localised in the Aj;Bj;Bjþ1;Cj

and Cjþ1 waveguides. Therefore, if one excites Aj with a
‘ ¼ 1 mode, then the injected intensity will oscillate
between the central and four surrounding waveguides, as
predicted by the AB caging effect (Supplementary III).
To experimentally demonstrate AB caging using OAM

modes, we excite a central waveguide Aj using modes with
and without OAM and compare the resulting dynamics.
We fabricate several samples with seven unit cells with
different total lengths (ranging from z= 250 μm to
z= 1000 μm) and extract the output pattern intensities. A
scheme of the samples is depicted in Fig. 3. First, as
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implementing AGFs. Unlike the previous photonic pro-
posals based on geometric manipulation20–22, we show in
this work how non-zero-energy flat bands, which are
responsible for the caging effect, can be naturally and
deliberately achieved by injecting light carrying OAM
instead of fabricating a new sample. Therefore, our pro-
posal enables the study of the effect of AGFs in photonic
lattices just by selecting the topological charge of the
input beam. In this context, our proposal differs from
related works where the intrinsic angular momentum, i.e.,
the polarisation of the input beam, instead of the extrinsic
one, i.e., the OAM, was used as the AGF switching
mechanism25. Moreover, this method also allows access to
different topological regimes without the need to fabricate
different structures or employ high intensities, as is the
case for topological phase transitions realised via non-
linear optics26.
To experimentally visualise the AB caging effect

induced by OAM modes, we fabricate photonic lattices
composed of direct laser written optical waveguides27

arranged in a diamond chain configuration, as displayed
in Fig. 1a. The unit cell j is composed of three waveguides
Sj ¼ Aj;Bj;Cj
� �

forming a triangle with a central angle θ.
Each cylindrical waveguide sustains OAM modes of the

form28
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¼ ψ‘
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e
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� �
e�iβ‘z ð1Þ

where ‘ ¼ 0; 1; 2; ¼ is the topological charge, ± accounts
for positive and negative circulation of the phase front,
ψ‘
Sj rSj
� �

is the radial mode profile given by the Bessel
functions15, ðrSj ;ϕSjÞ are the polar coordinates with
respect to the centre of each waveguide Sj in the
transverse plane, z is the propagation direction, ϕ0 is an
arbitrary phase origin, and β‘ is the propagation constant
of mode ‘. Moreover, while between fundamental modes
ð‘ ¼ 0Þ, there is only one coupling amplitude c0;0 � c0,
between OAM modes ð‘≠ 0Þ with the same or opposite
circulation directions, there are two coupling amplitudes
c‘;‘ � c1 and c‘;�‘ � c2ei2‘ϕ0 29. In particular, as a proof of
concept, we restrict our implementation to the ‘ ¼ 0 and
‘ ¼ 1 modes by properly engineering the refractive index
contrast and the width of the step-index profile presented
in Fig. 1b. In this case, between the ‘ ¼ 1 modes with the
same or opposite circulation directions, there are two
coupling amplitudes c1;1 � c1 and c1;�1 � c2ei2‘ϕ0 29.
Therefore, when dealing with OAM modes, complex
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Fig. 1 Lattice structure and optical waveguides. a Schematic representation of the structure composed of identical cylindrical waveguides
arranged in a diamond chain configuration. Each unit cell j hosts three waveguides sj � Aj ; Bj ; Cj forming a triangle with central angle θ. The
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0.52 μm−1, K2= 56.25 mm−1 and κ2= 0.59 μm−1. The inset in c shows c2/c1 with respect to the separation distance d
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coupling amplitudes between modes with different
circulation directions appear naturally. The different
coupling strengths c0; c1 and c2 are presented in Fig. 1c
(see Supplementary I for details on the calculations).
Specifically, we set the phase origin ϕ0 along the Aj $ Cj

direction such that c1;�1 ¼ c2 is real in this direction,
while c1;�1 ¼ c2e�i2‘θ is complex along the Aj $ Bj

direction. In particular, we fix θ= π/2, which allows the
coupling between modes propagating in next-nearest
neighbour waveguides to be neglected30 (see Supplemen-
tary II for a detailed discussion). Moreover, for this
specific angle, a relative phase difference of π between the
c1;�1 couplings in the Aj $ Cj and Aj $ Bj directions
appears. This phase difference introduces a π flux into the
plaquettes that opens an energy gap between the
dispersive bands, as discussed in detail in the following.
Assuming periodic boundary conditions, the bulk band

structure for the ‘ ¼ 0 modes consists of one flat and two
dispersive bands (Fig. 2a), with energies given by20
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constant. On the other hand, as presented in Fig. 2b, the
band structure for ‘ ¼ 1 is composed of six energy bands,
i.e., three bands with a twofold degeneracy (positive and
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The main difference between the energy bands in the
two cases is the existence of an energy gap for ‘ ¼ 1,
which is absent for ‘ ¼ 0, indicating the presence of an
AGF. By performing a basis rotation (Supplementary III),
the original diamond chain can be decoupled into two
identical chains with three energy bands and a π flux
through the plaquettes that opens the energy gap16.
Moreover, as illustrated in Fig. 2c, in the c2=c1 ! 1 limit,
the dispersive bands E1
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c1 become flat, and the

associated supermodes are localised in the Aj;Bj;Bjþ1;Cj

and Cjþ1 waveguides. Therefore, if one excites Aj with a
‘ ¼ 1 mode, then the injected intensity will oscillate
between the central and four surrounding waveguides, as
predicted by the AB caging effect (Supplementary III).
To experimentally demonstrate AB caging using OAM

modes, we excite a central waveguide Aj using modes with
and without OAM and compare the resulting dynamics.
We fabricate several samples with seven unit cells with
different total lengths (ranging from z= 250 μm to
z= 1000 μm) and extract the output pattern intensities. A
scheme of the samples is depicted in Fig. 3. First, as
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displayed in Fig. 3a, we inject a mode with ‘ ¼ 1 and
negative circulation into A4 (see Supplementary IV for
complementary results). The injected mode spreads to the
four surrounding waveguides at z= 250 μm (Fig. 3b) and
recombines in the central waveguide at z= 500 μm (Fig.
3c). This spreading and recombination effect can be
observed a second time at 750 μm (Fig. 3d) and 1000 μm
(Fig. 3e). Even though we implement the model with
c2=c1 � 2 due to experimental restrictions on the total
size of the samples, we measure two full oscillations of the
AB caging effect. Since the dispersive bands are not totally
flat, light propagates into waveguides A3 and A5 during
the second oscillation, and part of the intensity escapes
from the cage (Fig. 3d, e). Additionally, although we try to
excite the donut mode with negative circulation (see the
input beam in Fig. 3a), the propagating mode has a lobe-
shaped intensity (Fig. 3b–e) corresponding to a super-
position of donut modes with positive and negative cir-
culation. This lobe-shaped mode appears due to a slight
ellipticity of the fabricated waveguides and the influence
of the surrounding waveguides (see Supplementary IV for
a complementary discussion). Nevertheless, since the
propagation of the ‘ ¼ 1 modes with positive and negative
circulation results in the same flux, the observed AB

caging is the same for any superposition of both types of
circulation, i.e., a lobe-shaped mode (Supplementary III).
In contrast, the ‘ ¼ 0 mode injected into A4 only spreads
transversally as it evolves along the propagation direction,
and no caging is observed in Fig. 3f–j.
Finally, we compare the experimental observations of

the light dynamics with numerical calculations. Figure 4
shows the intensity extracted at the output port from the
A4 waveguide and its associated cage formed by
A4; B4;C4;B5; C5. In Fig. 4a, we can observe how the
experimentally measured intensity maxima in A4 asso-
ciated with the caging phenomenon occur around
z= 500 μm and 1000 μm, in agreement with finite-
difference method (FDM) simulations. On the other
hand, in Fig. 4b, one can observe the standard decay of the
intensity in A4 when the ‘ ¼ 0 mode is injected. More-
over, we also compute the light dynamics for longer dis-
tances using coupled-mode equations (Supplementary I
and II). In Fig. 4c, one can observe how for ‘ ¼ 1, the first
and second intensity maxima in A4 have ~60% and 10% of
the injected intensity, respectively, which can be increased
by reducing the difference between c1 and c2 (see inset of
Fig. 1c). For example, for c2=c1 � 1:25; i.e., d= 15 μm, the
first and second maxima increase up to 97% and 80%,
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respectively, achieving 100% in the flat-band limit. However,
larger separations between waveguides require longer
samples, which were not feasible in our experiments.
Alternatively, for ‘ ¼ 0, the intensity in A4 exponentially
decays independent of the waveguide separation, confirm-
ing the different origins of the oscillations. Finally, note that
the agreement between the experimental results obtained
with different samples and waveguides and injecting modes
with both types of circulation shown in Supplementary IV
confirms the robustness of the AB caging effect since each
measurement includes slight parameter variations (see
Supplementary V for more details).
In summary, we demonstrated that an artificial gauge

field in the form of an effective magnetic flux could be
induced in a photonic lattice by exploiting the orbital
angular momentum carried by light beams. Specifically,
we demonstrated the appearance of this synthetic flux by
experimentally measuring the photonic analogue of the
Aharonov-Bohm caging effect for an arrangement of

direct laser written cylindrical waveguides in a diamond
chain configuration. Using this structure, we showed how
an energy gap is opened between the dispersive bands of
the system when light carrying OAM is injected, analo-
gous to the effect produced by an artificial gauge field20.
Moreover, we proved how non-zero-energy flat bands,
which yield the AB caging effect, can be achieved by
properly tuning the geometry of the unit cells and the
separation between waveguides. The agreement between
the dynamics revealed by the coupled-mode equations,
the FDM simulations and the experiments confirms the
validity of the presented model, which constitutes a step
towards accessing different topological regimes in an
active way by controlling the input states. Moreover, the
inherently infinite dimensionality of OAM modes15 can
be potentially exploited to increase the transmission
capacity by using mode multiplexing31, paving the way
towards combining integrated spatial multiplexing32 with
topological protection10.
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displayed in Fig. 3a, we inject a mode with ‘ ¼ 1 and
negative circulation into A4 (see Supplementary IV for
complementary results). The injected mode spreads to the
four surrounding waveguides at z= 250 μm (Fig. 3b) and
recombines in the central waveguide at z= 500 μm (Fig.
3c). This spreading and recombination effect can be
observed a second time at 750 μm (Fig. 3d) and 1000 μm
(Fig. 3e). Even though we implement the model with
c2=c1 � 2 due to experimental restrictions on the total
size of the samples, we measure two full oscillations of the
AB caging effect. Since the dispersive bands are not totally
flat, light propagates into waveguides A3 and A5 during
the second oscillation, and part of the intensity escapes
from the cage (Fig. 3d, e). Additionally, although we try to
excite the donut mode with negative circulation (see the
input beam in Fig. 3a), the propagating mode has a lobe-
shaped intensity (Fig. 3b–e) corresponding to a super-
position of donut modes with positive and negative cir-
culation. This lobe-shaped mode appears due to a slight
ellipticity of the fabricated waveguides and the influence
of the surrounding waveguides (see Supplementary IV for
a complementary discussion). Nevertheless, since the
propagation of the ‘ ¼ 1 modes with positive and negative
circulation results in the same flux, the observed AB

caging is the same for any superposition of both types of
circulation, i.e., a lobe-shaped mode (Supplementary III).
In contrast, the ‘ ¼ 0 mode injected into A4 only spreads
transversally as it evolves along the propagation direction,
and no caging is observed in Fig. 3f–j.
Finally, we compare the experimental observations of

the light dynamics with numerical calculations. Figure 4
shows the intensity extracted at the output port from the
A4 waveguide and its associated cage formed by
A4; B4;C4;B5; C5. In Fig. 4a, we can observe how the
experimentally measured intensity maxima in A4 asso-
ciated with the caging phenomenon occur around
z= 500 μm and 1000 μm, in agreement with finite-
difference method (FDM) simulations. On the other
hand, in Fig. 4b, one can observe the standard decay of the
intensity in A4 when the ‘ ¼ 0 mode is injected. More-
over, we also compute the light dynamics for longer dis-
tances using coupled-mode equations (Supplementary I
and II). In Fig. 4c, one can observe how for ‘ ¼ 1, the first
and second intensity maxima in A4 have ~60% and 10% of
the injected intensity, respectively, which can be increased
by reducing the difference between c1 and c2 (see inset of
Fig. 1c). For example, for c2=c1 � 1:25; i.e., d= 15 μm, the
first and second maxima increase up to 97% and 80%,
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respectively, achieving 100% in the flat-band limit. However,
larger separations between waveguides require longer
samples, which were not feasible in our experiments.
Alternatively, for ‘ ¼ 0, the intensity in A4 exponentially
decays independent of the waveguide separation, confirm-
ing the different origins of the oscillations. Finally, note that
the agreement between the experimental results obtained
with different samples and waveguides and injecting modes
with both types of circulation shown in Supplementary IV
confirms the robustness of the AB caging effect since each
measurement includes slight parameter variations (see
Supplementary V for more details).
In summary, we demonstrated that an artificial gauge

field in the form of an effective magnetic flux could be
induced in a photonic lattice by exploiting the orbital
angular momentum carried by light beams. Specifically,
we demonstrated the appearance of this synthetic flux by
experimentally measuring the photonic analogue of the
Aharonov-Bohm caging effect for an arrangement of

direct laser written cylindrical waveguides in a diamond
chain configuration. Using this structure, we showed how
an energy gap is opened between the dispersive bands of
the system when light carrying OAM is injected, analo-
gous to the effect produced by an artificial gauge field20.
Moreover, we proved how non-zero-energy flat bands,
which yield the AB caging effect, can be achieved by
properly tuning the geometry of the unit cells and the
separation between waveguides. The agreement between
the dynamics revealed by the coupled-mode equations,
the FDM simulations and the experiments confirms the
validity of the presented model, which constitutes a step
towards accessing different topological regimes in an
active way by controlling the input states. Moreover, the
inherently infinite dimensionality of OAM modes15 can
be potentially exploited to increase the transmission
capacity by using mode multiplexing31, paving the way
towards combining integrated spatial multiplexing32 with
topological protection10.
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the case with d= 5.3 μm, i.e., c2=c1 � 2, while the dashed lines correspond to d= 15 μm, i.e., c2=c1 � 1:25. Note that the simulations were
performed considering N= 7 unit cells and λ0= 700 nm with a correction of Δd= –0.2 μm with respect to the expected experimental distance
d= 5.5 μm. This difference may originate from slight variations in the position during the writing process (±0.05 μm) and small changes in the
refractive index contrast
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Materials and methods
Sample fabrication
The waveguide samples were fabricated via direct laser

writing (DLW)33 using a commercial Nanoscribe system
and the photoresist IP-Dip. To create waveguides in a
single writing step, the inside of waveguides was written
with higher laser power (60%) than the surrounding
material (35%), which resulted in a refractive index con-
trast Δn of ~0.008. The scan speed used was 20mm/s.
Multiple samples were fabricated (each on its own
substrate) with different total lengths corresponding to
z= 250 μm, 500 μm, 750 μm and 1000 μm. We used a
waveguide radius of R= 1.9 μm and a centre-to-centre
distance of d= 5.5 μm. In contrast to common methods,
where the sample is placed in isopropanol after writing to
remove the non-polymerised resist, here, the sample was
not developed. Excess resist on the sample output facet
was observed to distort the images during measurements.
Therefore, this resist was removed by carefully dabbing
the sample facet with a tissue wetted by isopropanol.
During the writing process, the laser intensity towards

the edges of the sample decreased due to vignetting of the
writing objective lens. At the same time, the proximity
effect34 had less influence at the edges of the sample than
in the centre. Both phenomena led to a non-uniform
refractive index profile of the sample, with a higher index
in the centre and a lower index at the edges. Preliminary
results27 led us to assume that the index does not increase
linearly with the used writing power but saturates for high
powers below the threshold for resist destruction. As a
result, the waveguides written with a high laser power
were less prone to refractive index changes by vignetting
and the proximity effect than the material surrounding
the waveguides (written with a low laser power). The
refractive index contrast between the waveguides and
surrounding material is therefore supposed to increase
towards the edges of the sample. Therefore, the mea-
surements were performed on the central waveguides (A3

and A4).

Measurement
The full setup can be seen in Supplementary VI.
Laser light from a white light laser (NKT photonics)

was sent through a VARIA filter box to select a wave-
length of 700 nm. The beam was linearly polarised,
expanded and sent to a spatial light modulator (SLM).
We loaded a hologram onto the SLM that consisted of a
phase-only vortex, with an added blazed grating to shift
the pattern to the first diffraction order. Other orders
were blocked by a pinhole. The beam was circularly
polarised and imaged onto an objective lens, which
Fourier transformed the phase hologram to create a
donut-shaped intensity profile with ‘ ¼ 1 and positive/

negative circulation or a Gaussian-shaped intensity pro-
file with ‘ ¼ 0 and constant phase (depending on the
hologram that we loaded).
The reflection of the input mode was imaged via a

beamsplitter onto camera 1. The use of white light from a
common torch lamp allowed additional imaging of the
sample input facet onto camera 1 at the same time to
overlay the input mode with the waveguide position. The
output intensity at the sample output facet was imaged
onto camera 2. The intensity distributions for the differ-
ent outputs were normalised to the maximum value to
increase the visibility. Moreover, the recorded images
were post-processed to reduce noise. This was achieved
by overlaying the pictures with a mask of the waveguide
structure at the position determined by a convolution. In
this way, the intensities within the waveguides and in the
surroundings were separated. The noise level of the sur-
roundings was then subtracted from the original recorded
picture. All resulting negative values were set to zero. To
extract the intensities shown in Fig. 4, we subsequently
integrated over a circle that covered almost the whole
mode at the position of each waveguide. The circles were
as large as possible such that they touched at the
diagonals.
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Materials and methods
Sample fabrication
The waveguide samples were fabricated via direct laser

writing (DLW)33 using a commercial Nanoscribe system
and the photoresist IP-Dip. To create waveguides in a
single writing step, the inside of waveguides was written
with higher laser power (60%) than the surrounding
material (35%), which resulted in a refractive index con-
trast Δn of ~0.008. The scan speed used was 20mm/s.
Multiple samples were fabricated (each on its own
substrate) with different total lengths corresponding to
z= 250 μm, 500 μm, 750 μm and 1000 μm. We used a
waveguide radius of R= 1.9 μm and a centre-to-centre
distance of d= 5.5 μm. In contrast to common methods,
where the sample is placed in isopropanol after writing to
remove the non-polymerised resist, here, the sample was
not developed. Excess resist on the sample output facet
was observed to distort the images during measurements.
Therefore, this resist was removed by carefully dabbing
the sample facet with a tissue wetted by isopropanol.
During the writing process, the laser intensity towards

the edges of the sample decreased due to vignetting of the
writing objective lens. At the same time, the proximity
effect34 had less influence at the edges of the sample than
in the centre. Both phenomena led to a non-uniform
refractive index profile of the sample, with a higher index
in the centre and a lower index at the edges. Preliminary
results27 led us to assume that the index does not increase
linearly with the used writing power but saturates for high
powers below the threshold for resist destruction. As a
result, the waveguides written with a high laser power
were less prone to refractive index changes by vignetting
and the proximity effect than the material surrounding
the waveguides (written with a low laser power). The
refractive index contrast between the waveguides and
surrounding material is therefore supposed to increase
towards the edges of the sample. Therefore, the mea-
surements were performed on the central waveguides (A3

and A4).

Measurement
The full setup can be seen in Supplementary VI.
Laser light from a white light laser (NKT photonics)

was sent through a VARIA filter box to select a wave-
length of 700 nm. The beam was linearly polarised,
expanded and sent to a spatial light modulator (SLM).
We loaded a hologram onto the SLM that consisted of a
phase-only vortex, with an added blazed grating to shift
the pattern to the first diffraction order. Other orders
were blocked by a pinhole. The beam was circularly
polarised and imaged onto an objective lens, which
Fourier transformed the phase hologram to create a
donut-shaped intensity profile with ‘ ¼ 1 and positive/

negative circulation or a Gaussian-shaped intensity pro-
file with ‘ ¼ 0 and constant phase (depending on the
hologram that we loaded).
The reflection of the input mode was imaged via a

beamsplitter onto camera 1. The use of white light from a
common torch lamp allowed additional imaging of the
sample input facet onto camera 1 at the same time to
overlay the input mode with the waveguide position. The
output intensity at the sample output facet was imaged
onto camera 2. The intensity distributions for the differ-
ent outputs were normalised to the maximum value to
increase the visibility. Moreover, the recorded images
were post-processed to reduce noise. This was achieved
by overlaying the pictures with a mask of the waveguide
structure at the position determined by a convolution. In
this way, the intensities within the waveguides and in the
surroundings were separated. The noise level of the sur-
roundings was then subtracted from the original recorded
picture. All resulting negative values were set to zero. To
extract the intensities shown in Fig. 4, we subsequently
integrated over a circle that covered almost the whole
mode at the position of each waveguide. The circles were
as large as possible such that they touched at the
diagonals.
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