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appropriate sampling rate (see Fig. S2). Finally, the
objective light field can be computationally reconstructed
from a captured image by incorporating the calibrated
encoding kernel into the optimization procedure of Eq.
(3), achieving single-exposure lensless light-field imaging
through diffuser encoding.

System setup
The lensless imaging system was constructed using a

commercially available holographic diffuser (Edmund,
Polycarbonate, 0.5°) and an sCMOS sensor (PCO.edge
4.2, resolution: 2048 × 2048 pixels, pixel size: 6.5 ×
6.5 µm2). The diffuser was placed at a distance of 10 mm
in front of the sensor to generate high-contrast pseu-
dorandom patterns. A 6 × 6mm2 square aperture was
located close to the diffuser to limit the support of the
pattern. In addition, a halogen lamp together with a
15 µm pinhole was used to produce a point source illu-
mination. This point source was placed 20–50 mm away
from the diffuser and adjusted to generate a pattern
located at the centre of the sensor. In this case, the point
source was approximated as being on the axis. A com-
puter (CPU: i7-7700K, RAM: 64 GB) and MATLAB
programs33 without parallel computing were used to
carry out the decoupling reconstruction.
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Wolf phase tomography (WPT) of transparent
structures using partially coherent illumination
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Abstract
In 1969, Emil Wolf proposed diffraction tomography using coherent holographic imaging to extract 3D information
from transparent, inhomogeneous objects. In the same era, the Wolf equations were first used to describe the
propagation correlations associated with partially coherent fields. Combining these two concepts, we present Wolf
phase tomography (WPT), which is a method for performing diffraction tomography using partially coherent fields.
WPT reconstruction works directly in the space–time domain, without the need for Fourier transformation, and
decouples the refractive index (RI) distribution from the thickness of the sample. We demonstrate the WPT principle
using the data acquired by a quantitative-phase-imaging method that upgrades an existing phase-contrast
microscope by introducing controlled phase shifts between the incident and scattered fields. The illumination field in
WPT is partially spatially coherent (emerging from a ring-shaped pupil function) and of low temporal coherence (white
light), and as such, it is well suited for the Wolf equations. From three intensity measurements corresponding to
different phase-contrast frames, the 3D RI distribution is obtained immediately by computing the Laplacian and
second time derivative of the measured complex correlation function. We validate WPT with measurements of
standard samples (microbeads), spermatozoa, and live neural cultures. The high throughput and simplicity of this
method enables the study of 3D, dynamic events in living cells across the entire multiwell plate, with an RI sensitivity
on the order of 10−5.

Introduction
The refractive index (RI) is a fundamental physical

property that determines how light interacts with a
medium in terms of scattering, governed by its real part,
and absorption, through its imaginary part1–5. In biolo-
gical applications, the RI distribution correlates strongly
with cellular properties, such as dry mass and chemical
concentrations6–9. Tissue RI can also act as an intrinsic
marker for cancer diagnosis10,11. Nanoscale morpholo-
gical changes in cells and tissues can be revealed by RI
maps12,13. For example, it has been shown that cancer
tissue exhibits higher RI variances than normal tis-
sue10,11. The RI can also be used to study biological
dynamics, including cellular transport and mitosis14,15,
and can be used for phenotypic screening and cellular

monitoring16,17. To obtain the RI distribution of cells and
tissues from the measured field properties in different
imaging modalities, one must go beyond the typical
quantities measured in phase imaging and solve an
inverse scattering problem. A condition for this problem
to yield unique solutions is to measure the full informa-
tion about the scattered field, meaning both the ampli-
tude and phase. Interferometric microscopy provides a
method for phase retrieval in weakly scattered samples
such as cells and tissues18–20.
Quantitative-phase imaging (QPI) has emerged as a

growing field focused on extracting the phase distribu-
tions of an imaging field and exploiting that information
for biomedical applications18,21–27. White-light-based
methods, such as spatial light interference microscopy
(SLIM)28, gradient light interferometric microscopy29, and
(white-light) diffraction-phase microscopy30, can render
phase images of live cells without the speckle noise typi-
cally associated with coherent illumination21. As a result,
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the spatial sensitivity to pathlength changes is very high.
The optical pathlength measurement depends on both the
RI and the thickness of the sample31. To estimate the 2D
(axially averaged) RI from the optical pathlength, the
thickness distribution of the structures needs to be known
or decoupled from the optical pathlength32,33. However,
the accuracy is low due to the geometrical optics
approximation, and the results provide only a 2D map of
the longitudinally averaged RI.
For inferring the 3D RI distribution from QPI data,

several approaches have been proposed based on solving
the deterministic wave equations34,35. One of them is the
filtered back-projection algorithm, which uses the Fourier
diffraction theorem and the first-order Born or Rytov
approximation25. It connects the object function with the
Fourier transform of the projection. The reconstruction of
the RI distribution is obtained by combining the fre-
quency bands with respect to different angles36. One can
achieve this by rotating the illumination angles or mea-
suring a set of image fields at successive points across a
cell with focused beam illumination, also known as syn-
thetic aperture tomography-phase microscopy37. How-
ever, the Fourier diffraction theorem34 assumes plane-
wave illumination, and is only an approximation for
partially coherent fields. To obtain a more accurate
solution to the inverse problem, the coherence properties
must be taken into account. White-light diffraction
tomography (WDT) uses the temporal correlation and
instrument response to perform deconvolution on the
complex field data to extract the 3D scattering potential38.
However, WDT requires a priori knowledge of the
instrument impulse response (or transfer function), which
is often limited. At the same time, deconvolution opera-
tions are usually time-consuming and sensitive to noise.
The transport of the intensity equation can connect the RI

to the intensity of bright-field images39,40. However, this
method is only applicable under a paraxial approximation
(see, e.g., Section 12.1 in ref. 18). Integrated microchips have
been used to measure RI information, combining an external
cavity laser, microlenses, and microfluidic channels into a
monolithic device41,42. Such a device can determine the
average RI of a single live cell in real time, but cannot render
the RI distribution. 3D RI distributions are usually con-
structed through axial scanning (z scanning)29,38,43 or pro-
jections from different angles (computed tomography)25,26,44.
To increase the axial resolution in 3D reconstruction, efforts
have been devoted toward alleviating the incomplete fre-
quency coverage of imaging systems, or “the missing cone
problem”45. Illumination angle scanning and rotation of the
sample can help fill in a missing cone region. Cells can be
rotated by optical tweezers or dielectrophoretic forces in
microfluidics46–49. However, these methods involve more
complicated procedures.

In this paper, we propose a fast 3D RI construction
method based on the Wolf equations for propagating
correlations of partially coherent light50,51. This approach,
referred to as Wolf phase tomography (WPT), involves
minimal computational steps, and renders high-resolution
RI tomograms without time-consuming deconvolution
operations. WPT decouples the RI distribution from the
thickness of the sample in the space–time domain
directly, without the need for Fourier transformation. We
demonstrate that from three independent intensity mea-
surements corresponding to each phase shift, the RI dis-
tribution can be reconstructed directly from the Laplacian
and second time derivative of the complex correlation
functions. We demonstrate WPT with standard poly-
styrene beads, fixed spermatozoa, and dynamic live-cell
imaging over many hours. Interestingly, we find that WPT
is able to extract intrinsic RI changes in live cells with a
sensitivity on the order of 10−5, which can indicate cell
viability in screening applications.

Results
WPT principle
WPT relies on a commercial phase-contrast micro-

scope upgraded with a spatial light modulator (SLM)
conjugated to the pupil plane. In our implementation,
this hardware is provided by a SLIM module (SLIM Pro,
Phi Optics), as shown in Fig. 1a. Figure 1b–d shows the
temporal spectrum and autocorrelation properties of the
illumination (white-light) field. In addition to the π/2
phase shift between the incident and scattered fields
introduced by the objective-phase ring, the SLIM module
provides further phase shifts with π/2 increments. At the
camera plane, we record three intensity images, corre-
sponding to each phase shift, as illustrated in Fig. 1e,
namely

IdðrÞ ¼ IiðrÞ þ ISðrÞ þ 2<½Γis ωh iτd þ ΔϕðrÞð Þ� ð1Þ

where ωh iτd ¼ �dπ=2, d= 1, 2, 3, ωh i is the central
frequency of the incident field, < stands for the real
part, Δϕ is the phase difference between the incident field
Ui and scattered field US, and Γpqðr1; r2; τÞ ¼
hU�

p ðr1; tÞUqðr2; t þ τÞit , p; q ¼ fi; sg: From these three
frames, we solve for < Γisð ωh iτd þ ΔϕðrÞÞ½ �. Based on
partially coherent light propagation, governed by the Wolf
equations51, the RI of the object can be obtained by (see
the full derivation in Supplementary Note 1)

nðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðrÞ � n20 1� gðrÞ½ �

1þ gðrÞ

s
ð2Þ
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In Eq. (2), the functions m and g are defined as

mðrÞ ¼ c2 ∇2<½Γisðr; r; τÞ� þ ζðrÞ� �
∂2<½Γisðr;r;τÞ�

∂τ2

�����
τ¼�π= ωh i

ð3aÞ

ζðrÞ ¼ �2<
Z1

0

h∇U�
i ðr;ωÞ � ∇Usðr;ωÞieiωπ= ωh idω

ð3bÞ

gðrÞ ¼
∂2<½Γiiðr;r;τÞ�

∂τ2

∂2<½Γisðr;r;τÞ�
∂τ2

�����
τ¼�π= ωh i

ð3cÞ

where r= (x, y, z) is the spatial coordinate, n0 is the RI of
the background media, and c is the speed of light in
vacuum. The detailed steps for calculating the terms in
Eqs. (3a)–(3c) are given in Supplementary Note 1. The
term in Eq. (3b) does not substantially contribute to
the final RI and can be omitted for faster construction (see the
discussion in Supplementary Note 2). Figure 1b describes
the normalized spectrum of a halogen source measured by
the spectrometer (ocean optics). The real part of the
normalized autocorrelation <½Γiiðr; r;ω0τÞ� is obtained by
taking the Fourier transform of the spectrum (see Fig. 1c).
To retrieve the temporal correlation function quantita-
tively, we normalized the Γii(r,r,0) value from the
spectrometer data to the background intensity from the
camera, and corrected it with the spectrally dependent

quantum efficiency of the camera. Thus, we ensured that
the autocorrelations Γii(r,r,0) measured by the two
different devices have the same value. The second-order
time derivative of Γii(r,r,τ) is depicted in Fig. 1d. The
Laplacian in Eq. (3a) is calculated using three images with
a first-order finite-difference approximation. The z
component of the Laplacian was computed using three
axially distributed frames separated by a distance that
matches the x–y pixel sampling, and is much smaller than
the diffraction spot. For example, for a ×40/0.75 NA
objective, this distance is 0.14 μm, while the diffraction-
limited resolution is 0.4 μm. The second-order derivatives
in Eqs. (3a) and (3c) are calculated in MATLAB using
three phase-shifted frames. Smaller phase shifts would
give more accurate derivatives. However, the contrast
between different frames would greatly decrease; thus, the
signal-to-noise ratio would decrease as well, resulting in a
lower accuracy for the derivative. Therefore, to increase
the signal-to-noise ratio and accuracy, we keep the phase
increment at π/2. This algorithm requires 40 ms to
reconstruct the RI map at one z position with a 3-
megapixel field of view (MATLAB, i7-8650U CPU).

WPT on standard samples
To validate the capability of WPT in extracting the RI

distribution, we imaged 2-μm polystyrene microsphere
(Polysciences Inc.) z stacks with an RI value of 1.59 at the
central wavelength. The beads are suspended in immer-
sion oil (Zeiss) with an RI value of 1.518. Figure 2a shows
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the spatial sensitivity to pathlength changes is very high.
The optical pathlength measurement depends on both the
RI and the thickness of the sample31. To estimate the 2D
(axially averaged) RI from the optical pathlength, the
thickness distribution of the structures needs to be known
or decoupled from the optical pathlength32,33. However,
the accuracy is low due to the geometrical optics
approximation, and the results provide only a 2D map of
the longitudinally averaged RI.
For inferring the 3D RI distribution from QPI data,

several approaches have been proposed based on solving
the deterministic wave equations34,35. One of them is the
filtered back-projection algorithm, which uses the Fourier
diffraction theorem and the first-order Born or Rytov
approximation25. It connects the object function with the
Fourier transform of the projection. The reconstruction of
the RI distribution is obtained by combining the fre-
quency bands with respect to different angles36. One can
achieve this by rotating the illumination angles or mea-
suring a set of image fields at successive points across a
cell with focused beam illumination, also known as syn-
thetic aperture tomography-phase microscopy37. How-
ever, the Fourier diffraction theorem34 assumes plane-
wave illumination, and is only an approximation for
partially coherent fields. To obtain a more accurate
solution to the inverse problem, the coherence properties
must be taken into account. White-light diffraction
tomography (WDT) uses the temporal correlation and
instrument response to perform deconvolution on the
complex field data to extract the 3D scattering potential38.
However, WDT requires a priori knowledge of the
instrument impulse response (or transfer function), which
is often limited. At the same time, deconvolution opera-
tions are usually time-consuming and sensitive to noise.
The transport of the intensity equation can connect the RI

to the intensity of bright-field images39,40. However, this
method is only applicable under a paraxial approximation
(see, e.g., Section 12.1 in ref. 18). Integrated microchips have
been used to measure RI information, combining an external
cavity laser, microlenses, and microfluidic channels into a
monolithic device41,42. Such a device can determine the
average RI of a single live cell in real time, but cannot render
the RI distribution. 3D RI distributions are usually con-
structed through axial scanning (z scanning)29,38,43 or pro-
jections from different angles (computed tomography)25,26,44.
To increase the axial resolution in 3D reconstruction, efforts
have been devoted toward alleviating the incomplete fre-
quency coverage of imaging systems, or “the missing cone
problem”45. Illumination angle scanning and rotation of the
sample can help fill in a missing cone region. Cells can be
rotated by optical tweezers or dielectrophoretic forces in
microfluidics46–49. However, these methods involve more
complicated procedures.

In this paper, we propose a fast 3D RI construction
method based on the Wolf equations for propagating
correlations of partially coherent light50,51. This approach,
referred to as Wolf phase tomography (WPT), involves
minimal computational steps, and renders high-resolution
RI tomograms without time-consuming deconvolution
operations. WPT decouples the RI distribution from the
thickness of the sample in the space–time domain
directly, without the need for Fourier transformation. We
demonstrate that from three independent intensity mea-
surements corresponding to each phase shift, the RI dis-
tribution can be reconstructed directly from the Laplacian
and second time derivative of the complex correlation
functions. We demonstrate WPT with standard poly-
styrene beads, fixed spermatozoa, and dynamic live-cell
imaging over many hours. Interestingly, we find that WPT
is able to extract intrinsic RI changes in live cells with a
sensitivity on the order of 10−5, which can indicate cell
viability in screening applications.

Results
WPT principle
WPT relies on a commercial phase-contrast micro-

scope upgraded with a spatial light modulator (SLM)
conjugated to the pupil plane. In our implementation,
this hardware is provided by a SLIM module (SLIM Pro,
Phi Optics), as shown in Fig. 1a. Figure 1b–d shows the
temporal spectrum and autocorrelation properties of the
illumination (white-light) field. In addition to the π/2
phase shift between the incident and scattered fields
introduced by the objective-phase ring, the SLIM module
provides further phase shifts with π/2 increments. At the
camera plane, we record three intensity images, corre-
sponding to each phase shift, as illustrated in Fig. 1e,
namely

IdðrÞ ¼ IiðrÞ þ ISðrÞ þ 2<½Γis ωh iτd þ ΔϕðrÞð Þ� ð1Þ

where ωh iτd ¼ �dπ=2, d= 1, 2, 3, ωh i is the central
frequency of the incident field, < stands for the real
part, Δϕ is the phase difference between the incident field
Ui and scattered field US, and Γpqðr1; r2; τÞ ¼
hU�

p ðr1; tÞUqðr2; t þ τÞit , p; q ¼ fi; sg: From these three
frames, we solve for < Γisð ωh iτd þ ΔϕðrÞÞ½ �. Based on
partially coherent light propagation, governed by the Wolf
equations51, the RI of the object can be obtained by (see
the full derivation in Supplementary Note 1)

nðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðrÞ � n20 1� gðrÞ½ �

1þ gðrÞ
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ð2Þ

Chen et al. Light: Science & Applications ����������(2020)�9:142� Page 2 of 9

In Eq. (2), the functions m and g are defined as

mðrÞ ¼ c2 ∇2<½Γisðr; r; τÞ� þ ζðrÞ� �
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where r= (x, y, z) is the spatial coordinate, n0 is the RI of
the background media, and c is the speed of light in
vacuum. The detailed steps for calculating the terms in
Eqs. (3a)–(3c) are given in Supplementary Note 1. The
term in Eq. (3b) does not substantially contribute to
the final RI and can be omitted for faster construction (see the
discussion in Supplementary Note 2). Figure 1b describes
the normalized spectrum of a halogen source measured by
the spectrometer (ocean optics). The real part of the
normalized autocorrelation <½Γiiðr; r;ω0τÞ� is obtained by
taking the Fourier transform of the spectrum (see Fig. 1c).
To retrieve the temporal correlation function quantita-
tively, we normalized the Γii(r,r,0) value from the
spectrometer data to the background intensity from the
camera, and corrected it with the spectrally dependent

quantum efficiency of the camera. Thus, we ensured that
the autocorrelations Γii(r,r,0) measured by the two
different devices have the same value. The second-order
time derivative of Γii(r,r,τ) is depicted in Fig. 1d. The
Laplacian in Eq. (3a) is calculated using three images with
a first-order finite-difference approximation. The z
component of the Laplacian was computed using three
axially distributed frames separated by a distance that
matches the x–y pixel sampling, and is much smaller than
the diffraction spot. For example, for a ×40/0.75 NA
objective, this distance is 0.14 μm, while the diffraction-
limited resolution is 0.4 μm. The second-order derivatives
in Eqs. (3a) and (3c) are calculated in MATLAB using
three phase-shifted frames. Smaller phase shifts would
give more accurate derivatives. However, the contrast
between different frames would greatly decrease; thus, the
signal-to-noise ratio would decrease as well, resulting in a
lower accuracy for the derivative. Therefore, to increase
the signal-to-noise ratio and accuracy, we keep the phase
increment at π/2. This algorithm requires 40 ms to
reconstruct the RI map at one z position with a 3-
megapixel field of view (MATLAB, i7-8650U CPU).

WPT on standard samples
To validate the capability of WPT in extracting the RI

distribution, we imaged 2-μm polystyrene microsphere
(Polysciences Inc.) z stacks with an RI value of 1.59 at the
central wavelength. The beads are suspended in immer-
sion oil (Zeiss) with an RI value of 1.518. Figure 2a shows
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the three frames corresponding to the different phase
shifts of the polystyrene beads. For these experiments, we
use a ×63/1.4 NA objective. The real parts of the corre-
lation function Γis at different time-lapse values are illu-
strated in Fig. 2b. The RI distribution of the microspheres
for each z slice is reconstructed via Eq. (2). The 3D ren-
dering of the RI distribution described in Fig. 2c was
obtained in AMIRA (Thermo Fisher Scientific). The
reconstructed RI value of the microspheres agrees well
with the expected value of 1.59 at the central wavelength.
The halo artifacts associated with phase-contrast and
SLIM images were removed from the final RI maps using
our previously reported algorithm52.

WPT of sperm cells
A 3D rendering of a bovine sperm cell is displayed in

Fig. 3a (Supplementary Video 1). In the sperm head, the
acrosome and the nucleus can be identified with RI values
between 1.35 and 1.37. The centriole and mitochondria-
rich midpiece of the sperm cell yield high RI values (Fig.
3b). The tail of the sperm has an RI value of 1.35, and the
axial filament inside the tail, with a slightly higher RI value
of 1.36, can be recognized. The end piece of the sperm has
the lowest RI value, ~1.34.

WPT of neurons
Applying the WPT principle, the three frames of hip-

pocampal neurons and their correlation functions are
depicted in Fig. 4a and b. The reconstructed RI distribu-
tion and 3D rendering of the neurons (Supplementary
Video 2) are displayed in Fig. 4c and d. The more detailed
structures of individual hippocampal neurons (Supple-
mentary Videos 3 and 4) are illustrated in Fig. 4e and f.
The rendering in this case used two colormaps, as shown
in Fig. 4e and f. The neuron dendrites have an RI value of
~1.34, while the cell body ranges from 1.35 to 1.38, with a
nucleolus of 1.39–1.4. The axon can be recognized in
Fig. 4f, as the morphology shows a longer and thinner
filamentous structure.

Dynamic WPT of live cells
Due to its high throughput, low phototoxicity, absence

of photobleaching, and easy sample preparation, WPT is
capable of studying real-time volumetric biological events
in living cells. We imaged the growth and proliferation of
hippocampal neurons over the course of several days in
six-well plates typical in phenotypic screening applica-
tions. The RI distribution of the whole well of neurons is
displayed in Fig. 5a (Supplementary Video 5). One tile
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zoom-in of the whole well and its distribution of RI is
shown in Fig. 5b (Supplementary Video 6). Figure 5c
describes the averages of the RI values within this tile
versus time. The average RI values increase with time due
to neuron growth. Figure 5c illustrates the average RI of
the whole tile, including the neurons and background. As
the neurons grow, more pixels in the region of interest
appear with higher RIs; thus, the average RI becomes
larger. Another point worth mentioning is that the range
of the y axis in Fig. 5c is from 1.34045 to 1.34070. Thus,
due to the averaging over the large field of view, the
change in the RI value detected by our system is at the
fifth decimal place, indicating the high sensitivity of WPT.
Figure 5d shows that the variance of the RI for this tile
increases with time as well53. Note that the range of RI
variance values is on the order of 10−6, which is detectable
due to the sensitivity conferred by the common-path
stability and lack of speckles in SLIM.
Figure 5e is the enlarged image of the area in the red

box in Fig. 5b containing two neurons. The neurons
spread out into two regions at ~t= 16 h, continued
growing until ~t= 53 h, and then died. We can see that
both the average and variance of the RI show three dif-
ferent stages (Fig. 5f, g). One significant change in the
average and variance of the RI appeared when the two
neurons separated (red arrows). Another change is visible
when the two neurons died (green arrows). The death
event was accompanied by a decrease in the mean RI,
likely due to the membrane permeability, which allowed
for water influx.
Figure 5h is a magnified image of the area in the yellow

box in Fig. 5b containing one neuron. The neuron den-
drites started to appear at ~t= 13 h, resulting in a jump in

the average RI (Fig. 5i). The neuron continued growing
until ~t= 62 h and then died, leading to a decrease in the
average RI. Some oscillations in the variance (Fig. 5j) of
the RI appeared before the neuron died and exhibited a
clear change after the neuron died. Figure 6 demonstrates
the capability of WPT for 3D real-time live-cell imaging.
The changes in the morphology of the neuron can be
recognized at different time frames.

Discussion
In summary, we proposed a new high-throughput RI

tomography method, WPT, based on the correlation
propagation of partially coherent light. We demonstrated
the capability of WPT with tomographic reconstructions
of standard polystyrene beads, spermatozoa, and hippo-
campal neurons. Our method builds on the coherence
theory pioneered by Emil Wolf by combining the Wolf
equations and diffraction tomography to perform the
reconstruction directly in the space–time domain, with-
out the need for Fourier transformation. WPT decouples
the RI distribution from the thickness of the object by
calculating the Laplacian and the second-order time
derivative of the complex correlation functions. High-
resolution tomograms of RI distributions are acquired
using a z stack of three phase-shifted intensity frames. As
a result, the tomographic reconstruction is very fast,
requiring only 40ms per z slice. In our implementation,
the total acquisition time is 180ms per z slice. With more
advanced SLMs, z-scanning stages, and cameras, ~40ms
of the total acquisition time can be achieved per z slice.
WPT has a high RI sensitivity, on the order of 10−5, which
is useful as an intrinsic marker for live-cell monitoring.
We illustrated this ability by imaging dynamic live cells
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the three frames corresponding to the different phase
shifts of the polystyrene beads. For these experiments, we
use a ×63/1.4 NA objective. The real parts of the corre-
lation function Γis at different time-lapse values are illu-
strated in Fig. 2b. The RI distribution of the microspheres
for each z slice is reconstructed via Eq. (2). The 3D ren-
dering of the RI distribution described in Fig. 2c was
obtained in AMIRA (Thermo Fisher Scientific). The
reconstructed RI value of the microspheres agrees well
with the expected value of 1.59 at the central wavelength.
The halo artifacts associated with phase-contrast and
SLIM images were removed from the final RI maps using
our previously reported algorithm52.

WPT of sperm cells
A 3D rendering of a bovine sperm cell is displayed in

Fig. 3a (Supplementary Video 1). In the sperm head, the
acrosome and the nucleus can be identified with RI values
between 1.35 and 1.37. The centriole and mitochondria-
rich midpiece of the sperm cell yield high RI values (Fig.
3b). The tail of the sperm has an RI value of 1.35, and the
axial filament inside the tail, with a slightly higher RI value
of 1.36, can be recognized. The end piece of the sperm has
the lowest RI value, ~1.34.

WPT of neurons
Applying the WPT principle, the three frames of hip-

pocampal neurons and their correlation functions are
depicted in Fig. 4a and b. The reconstructed RI distribu-
tion and 3D rendering of the neurons (Supplementary
Video 2) are displayed in Fig. 4c and d. The more detailed
structures of individual hippocampal neurons (Supple-
mentary Videos 3 and 4) are illustrated in Fig. 4e and f.
The rendering in this case used two colormaps, as shown
in Fig. 4e and f. The neuron dendrites have an RI value of
~1.34, while the cell body ranges from 1.35 to 1.38, with a
nucleolus of 1.39–1.4. The axon can be recognized in
Fig. 4f, as the morphology shows a longer and thinner
filamentous structure.

Dynamic WPT of live cells
Due to its high throughput, low phototoxicity, absence

of photobleaching, and easy sample preparation, WPT is
capable of studying real-time volumetric biological events
in living cells. We imaged the growth and proliferation of
hippocampal neurons over the course of several days in
six-well plates typical in phenotypic screening applica-
tions. The RI distribution of the whole well of neurons is
displayed in Fig. 5a (Supplementary Video 5). One tile
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zoom-in of the whole well and its distribution of RI is
shown in Fig. 5b (Supplementary Video 6). Figure 5c
describes the averages of the RI values within this tile
versus time. The average RI values increase with time due
to neuron growth. Figure 5c illustrates the average RI of
the whole tile, including the neurons and background. As
the neurons grow, more pixels in the region of interest
appear with higher RIs; thus, the average RI becomes
larger. Another point worth mentioning is that the range
of the y axis in Fig. 5c is from 1.34045 to 1.34070. Thus,
due to the averaging over the large field of view, the
change in the RI value detected by our system is at the
fifth decimal place, indicating the high sensitivity of WPT.
Figure 5d shows that the variance of the RI for this tile
increases with time as well53. Note that the range of RI
variance values is on the order of 10−6, which is detectable
due to the sensitivity conferred by the common-path
stability and lack of speckles in SLIM.
Figure 5e is the enlarged image of the area in the red

box in Fig. 5b containing two neurons. The neurons
spread out into two regions at ~t= 16 h, continued
growing until ~t= 53 h, and then died. We can see that
both the average and variance of the RI show three dif-
ferent stages (Fig. 5f, g). One significant change in the
average and variance of the RI appeared when the two
neurons separated (red arrows). Another change is visible
when the two neurons died (green arrows). The death
event was accompanied by a decrease in the mean RI,
likely due to the membrane permeability, which allowed
for water influx.
Figure 5h is a magnified image of the area in the yellow

box in Fig. 5b containing one neuron. The neuron den-
drites started to appear at ~t= 13 h, resulting in a jump in

the average RI (Fig. 5i). The neuron continued growing
until ~t= 62 h and then died, leading to a decrease in the
average RI. Some oscillations in the variance (Fig. 5j) of
the RI appeared before the neuron died and exhibited a
clear change after the neuron died. Figure 6 demonstrates
the capability of WPT for 3D real-time live-cell imaging.
The changes in the morphology of the neuron can be
recognized at different time frames.

Discussion
In summary, we proposed a new high-throughput RI

tomography method, WPT, based on the correlation
propagation of partially coherent light. We demonstrated
the capability of WPT with tomographic reconstructions
of standard polystyrene beads, spermatozoa, and hippo-
campal neurons. Our method builds on the coherence
theory pioneered by Emil Wolf by combining the Wolf
equations and diffraction tomography to perform the
reconstruction directly in the space–time domain, with-
out the need for Fourier transformation. WPT decouples
the RI distribution from the thickness of the object by
calculating the Laplacian and the second-order time
derivative of the complex correlation functions. High-
resolution tomograms of RI distributions are acquired
using a z stack of three phase-shifted intensity frames. As
a result, the tomographic reconstruction is very fast,
requiring only 40ms per z slice. In our implementation,
the total acquisition time is 180ms per z slice. With more
advanced SLMs, z-scanning stages, and cameras, ~40ms
of the total acquisition time can be achieved per z slice.
WPT has a high RI sensitivity, on the order of 10−5, which
is useful as an intrinsic marker for live-cell monitoring.
We illustrated this ability by imaging dynamic live cells
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over many hours. As a label-free method, WPT is non-
destructive and is not limited by the photobleaching and
phototoxicity commonly associated with fluorescence
microscopy.
In a larger context, WPT highlights the advantage of

partially coherent illumination, phase shifting, and phase-
contrast geometry. The white-light illumination and
common-path interferometry allow for speckle-free and
nanometer-path-length stability. As phase shifting is

performed in the pupil plane, in the time domain, our
reconstruction preserves the diffraction-limited resolution
of the microscope without introducing coherent artifacts
(such as residual fringes)54.
Although the mathematical model derived in WPT does

not use approximation, the ability to access the informa-
tion of the correlation functions is limited experimentally
to weakly scattering samples. It is also worth mentioning
that since we use white light with a very short coherence
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length (~1–2 µm), long optical paths are cut off via
coherence gating. This implies that within the optical
section, scattering is characterized well by the Born
approximation, even though the entire specimen might

produce multiple scattering. However, WPT is still lim-
ited by the “missing cone problem” due to its finite
numerical aperture. Therefore, WPT can also adopt other
methods, such as cell rotation and illumination angle

t = 8h

t = 16h

t = 36h

t = 53h

t = 8h

t = 13h
t = 46h

t = 62h

a b

e

h

c d

f g

i j

1.3407

8

6

6

4

2

1.3406

av
g 

(n
)

va
r 

(n
)

1.3405

1.3405

1.34065

1.34055

1.34045

1.3407

1.3406

av
g 

(n
)

av
g 

(n
)

1.3405

1.34065

1.34055

1.34045

1.34052

1.34048

1.34046

1.34044

1.34042

0 20 40 60 80 100
Time (h)

0 20 40 60 80 100
Time (h)

0 20 40 60 80 100
Time (h)

0 20 40 60 80 100
Time (h)

0 20 40 60 80 100
Time (h)

0 20 40 60 80 100
Time (h)

×10–6

8

4

2

2

3

4

5

6

7

va
r 

(n
)

×10–6

va
r 

(n
)

×10–6

Fig. 5 Dynamic Wolf phase tomography (WPT) of live cells across multiwell plates. a The refractive index (RI) map across a whole well of living
hippocampal neurons (×10/0.3 NA objective) is composed of 20 × 21 mosaic tiles, each 214 × 204 µm2 in area. b Enlarged RI map of the purple box in
(a) with the average (c) and variance (d) of the RI versus time. e Enlarged RI map of the area in the red box in (b) with the average (f) and variance (g)
of the RI. The green arrow indicates the increase in the RI when the two neurons separated and their dendrites appeared, and the red arrow shows
the decrease in RI when the two neurons died. h Enlarged RI map of the area in the yellow box in (b) with the average (i) and variance (j) of the RI.
The green arrow indicates the change in the RI when the dendrites appeared, and the red arrow indicates the decrease in RI when the neuron died

t = 0 min t = 12 min

t = 24 min t = 36 min

b

ed

ca1.41
1.40

1.38

1.36

1.34

1.39

1.37

1.35

1.34

Fig. 6 Time-lapse Wolf phase tomography (WPT) of live neurons. a Refractive index (RI) map of a live hippocampal neuron imaged with a ×40/
0.75 NA objective. b–e 3D RI tomograms of the hippocampal neuron 12-min apart

Chen et al. Light: Science & Applications ����������(2020)�9:142� Page 7 of 9



Light Sci Appl | 2020 | Vol 9 | Issue 5 | 1407

over many hours. As a label-free method, WPT is non-
destructive and is not limited by the photobleaching and
phototoxicity commonly associated with fluorescence
microscopy.
In a larger context, WPT highlights the advantage of

partially coherent illumination, phase shifting, and phase-
contrast geometry. The white-light illumination and
common-path interferometry allow for speckle-free and
nanometer-path-length stability. As phase shifting is

performed in the pupil plane, in the time domain, our
reconstruction preserves the diffraction-limited resolution
of the microscope without introducing coherent artifacts
(such as residual fringes)54.
Although the mathematical model derived in WPT does

not use approximation, the ability to access the informa-
tion of the correlation functions is limited experimentally
to weakly scattering samples. It is also worth mentioning
that since we use white light with a very short coherence
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length (~1–2 µm), long optical paths are cut off via
coherence gating. This implies that within the optical
section, scattering is characterized well by the Born
approximation, even though the entire specimen might

produce multiple scattering. However, WPT is still lim-
ited by the “missing cone problem” due to its finite
numerical aperture. Therefore, WPT can also adopt other
methods, such as cell rotation and illumination angle
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scanning, to achieve better axial resolution and depth
sectioning. As an alternative, new advances in deep
learning appear promising in addressing this issue by
frequency extrapolation55. We envision that WPT will
find important applications in material and life sciences,
such as studying adherent cell growth with the segmen-
tation of a nucleus compared to the whole cell, cell clas-
sification based on RI, histopathology for cancer diagnosis
based on RI10, and 3D tracking of collagen fibers.

Materials and methods
SLIM add-on module
The SLIM add-on module is mounted to the output

camera port of a commercial phase-contrast microscope.
The module contains an SLM (Meadowlark, XY Series)
and a camera (Hamamatsu, ORCA-Flash 4.0 V2). Mea-
surements were conducted using an inverted microscope
(Zeiss, Axio Observer Z1) with a halogen light source
(Zeiss, HAL 100). Cells were imaged with an incubation
system under ×63/1.4 NA, ×40/0.75 NA, and 10×0.3 NA
objectives with matching phase-contrast illumination.
The sampling was uniform in the x, y, and z directions.
For example, for a ×40/0.75 NA objective, the distance is
0.14 μm, which is smaller than the diffraction-limited
resolution of 0.4 μm.
The 40-ms reconstruction per frame is faster than the

SLIM image acquisition rate of 180 ms, which requires
30 ms for SLM stabilization (Meadowlark XY Series),
10 ms for exposure (Hamamatsu, V2 Orca Flash), and
60ms for z scanning. We expect the technique to be
able to be implemented on faster hardware without
modification.

Sample preparation
The hippocampal neurons were prepared as follows:

primary neurons were harvested from dissected hippo-
campi of Sprague–Dawley rat embryos. The hippocampi
were dissociated with the enzyme to obtain hippocampal
neurons. The hippocampal neurons were then plated onto
a six-well plate that was precoated with poly-D-lysine
(0.1 mg/ml, Sigma-Aldrich). The hippocampal neurons
were initially incubated with plating medium containing
86.55% MEM Eagle’s with Earle’s BSS (Lonza), 10% fetal
bovine serum (refiltered, heat-inactivated, Thermo
Fisher), 0.45% of 20% (wt./vol.) glucose, 1 × 100mM
sodium pyruvate (100×, Sigma-Aldrich), 1 × 200mM
glutamine (100×, Sigma-Aldrich), and 1× penicillin/
streptomycin (100×, Sigma-Aldrich) to facilitate the
attachment of neurons (300 cells/mm2). After 3 h of
incubation in an incubator (37 °C and 5% CO2), the
plating medium was aspirated and replaced with main-
tenance medium containing NeurobasalTM growth med-
ium supplemented with B-27 (Thermo Fisher), 1%
200mM glutamine (Thermo Fisher), and 1% penicillin/

streptomycin (Thermo Fisher) at 37 °C in the presence of
5% CO2. The hippocampal neurons in Fig. 5 were grown
for 2 days in vitro, and dynamic images were taken for
4 days. The hippocampal neurons in Fig. 6 were grown for
14 days in vitro, and snapshots were taken every 12min.
The hippocampal neurons in Fig. 4 were fixed. The sperm
cells in Fig. 3 were fixed in 10% paraformaldehyde.
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scanning, to achieve better axial resolution and depth
sectioning. As an alternative, new advances in deep
learning appear promising in addressing this issue by
frequency extrapolation55. We envision that WPT will
find important applications in material and life sciences,
such as studying adherent cell growth with the segmen-
tation of a nucleus compared to the whole cell, cell clas-
sification based on RI, histopathology for cancer diagnosis
based on RI10, and 3D tracking of collagen fibers.

Materials and methods
SLIM add-on module
The SLIM add-on module is mounted to the output

camera port of a commercial phase-contrast microscope.
The module contains an SLM (Meadowlark, XY Series)
and a camera (Hamamatsu, ORCA-Flash 4.0 V2). Mea-
surements were conducted using an inverted microscope
(Zeiss, Axio Observer Z1) with a halogen light source
(Zeiss, HAL 100). Cells were imaged with an incubation
system under ×63/1.4 NA, ×40/0.75 NA, and 10×0.3 NA
objectives with matching phase-contrast illumination.
The sampling was uniform in the x, y, and z directions.
For example, for a ×40/0.75 NA objective, the distance is
0.14 μm, which is smaller than the diffraction-limited
resolution of 0.4 μm.
The 40-ms reconstruction per frame is faster than the

SLIM image acquisition rate of 180 ms, which requires
30 ms for SLM stabilization (Meadowlark XY Series),
10 ms for exposure (Hamamatsu, V2 Orca Flash), and
60ms for z scanning. We expect the technique to be
able to be implemented on faster hardware without
modification.

Sample preparation
The hippocampal neurons were prepared as follows:

primary neurons were harvested from dissected hippo-
campi of Sprague–Dawley rat embryos. The hippocampi
were dissociated with the enzyme to obtain hippocampal
neurons. The hippocampal neurons were then plated onto
a six-well plate that was precoated with poly-D-lysine
(0.1 mg/ml, Sigma-Aldrich). The hippocampal neurons
were initially incubated with plating medium containing
86.55% MEM Eagle’s with Earle’s BSS (Lonza), 10% fetal
bovine serum (refiltered, heat-inactivated, Thermo
Fisher), 0.45% of 20% (wt./vol.) glucose, 1 × 100mM
sodium pyruvate (100×, Sigma-Aldrich), 1 × 200mM
glutamine (100×, Sigma-Aldrich), and 1× penicillin/
streptomycin (100×, Sigma-Aldrich) to facilitate the
attachment of neurons (300 cells/mm2). After 3 h of
incubation in an incubator (37 °C and 5% CO2), the
plating medium was aspirated and replaced with main-
tenance medium containing NeurobasalTM growth med-
ium supplemented with B-27 (Thermo Fisher), 1%
200mM glutamine (Thermo Fisher), and 1% penicillin/

streptomycin (Thermo Fisher) at 37 °C in the presence of
5% CO2. The hippocampal neurons in Fig. 5 were grown
for 2 days in vitro, and dynamic images were taken for
4 days. The hippocampal neurons in Fig. 6 were grown for
14 days in vitro, and snapshots were taken every 12min.
The hippocampal neurons in Fig. 4 were fixed. The sperm
cells in Fig. 3 were fixed in 10% paraformaldehyde.
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