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PLL, as shown in Fig. 5, was implemented to maintain the
locking stable by constantly monitoring the locked phase
of the slave, which depends on the free running frequency
difference between the master and slave lasers in the
locked state and correcting for the frequency shift in a
feedback loop controlling the current to the laser. The
PLL maintains a stable locking state at an injection power
as low as −55 dBm. To regenerate the pump at even lower
powers, a pre-amplifier (the EDFA) was introduced to
amplify the low-power pump prior to injection locking.
The noise transfer through the injection locking process is
minimized by optimizing the slave input power. As
injection locking is a polarization-dependent phenom-
enon, we used polarization-maintaining fibres in the setup
and adjusted the pump to the desired state of polarization.
A complete study of the noise transfer through injection
locking and its dependence on the slave laser linewidth
was provided in our previous work20. The minimum
locking power demonstrated in our previous work was
−65 dBm20. By further optimization of the system, we
performed locking down to a pump power level of
−72 dBm in the current experiment. The frequency-
locked pump was further amplified using the high-power
EDFA to provide sufficient power (~1W) for the PSA.
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organic molecules for highly efficient liquid
scintillators
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Abstract
Compared with solid scintillators, liquid scintillators have limited capability in dosimetry and radiography due to
their relatively low light yields. Here, we report a new generation of highly efficient and low-cost liquid scintillators
constructed by surface hybridisation of colloidal metal halide perovskite CsPbA3 (A: Cl, Br, I) nanocrystals (NCs)
with organic molecules (2,5-diphenyloxazole). The hybrid liquid scintillators, compared to state-of-the-art CsI and
Gd2O2S, demonstrate markedly highly competitive radioluminescence quantum yields under X-ray irradiation
typically employed in diagnosis and treatment. Experimental and theoretical analyses suggest that the enhanced
quantum yield is associated with X-ray photon-induced charge transfer from the organic molecules to the NCs.
High-resolution X-ray imaging is demonstrated using a hybrid CsPbBr3 NC-based liquid scintillator. The novel X-ray
scintillation mechanism in our hybrid scintillators could be extended to enhance the quantum yield of various
types of scintillators, enabling low-dose radiation detection in various fields, including fundamental science and
imaging.

Introduction
Highly sensitive X-ray detection is becoming increas-

ingly important in areas from everyday life to industry, the
military, and scientific research1–4. Scintillation materials
convert X-ray5, γ-ray6, and particle radiation into visible
or ultraviolet (UV) light. Among the various properties of
scintillation materials, quantum yield (or light output) is
the one most closely associated parameters with both the
efficiency and resolution of detectors. Because the quan-
tum yield depends on the nature of the incident particles
and photons with varying degrees of energy, a proper
scintillation material is chosen according to the type
of application. Compared with crystalline or plastic

scintillators, liquid scintillators generally have better
resistance to damage arising from exposure to intense
radiation while providing excellent area/volume scal-
ability7,8; consequently, liquid scintillators are used for
various purposes, such as in β-ray spectroscopy, radio-
activity measurements, and particle physics9,10. However,
despite the above advantages, liquid scintillators have
relatively low density and low radioluminescence (RL)
quantum yield, both of which are crucial in achieving high
resolution and contrast in X-ray imaging. As a result,
liquid scintillators have rarely been utilised in radiation
imaging.
Recently, metal halide perovskite materials, including

both bulk crystals of organic inorganic hybrid perovskites
and nanocrystals (NCs), have been demonstrated11–14 to
efficiently convert X-ray photons into charge carriers or
visible photons15–19. In particular, fully inorganic perovskite
NCs have advantages such as highly emissive X-ray-
generated excitonic states20, ultrafast radiative emission
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rates21, and resistance against high-energy radiation22, all of
which are essential for highly efficient and durable X-ray
scintillators. Moreover, perovskite NCs have high optical
sensitivity in response to exposure to X-rays and high X-ray
absorption efficiency22,23. Perovskite NCs are also com-
monly uniformly dispersed in nonpolar liquid media for use
in liquid scintillators. However, despite their unique prop-
erties being superior to those of commercially manu-
factured scintillators, for example, Tl-doped CsI24 and
Gd2O2S

25, perovskite NCs still require further improve-
ments in their quantum yield for practical applications.
Here, we report an experimental investigation of highly
efficient X-ray scintillation and significantly enhanced
quantum yields of liquid scintillators consisting of per-
ovskite metal halide CsPbA3 (A: Cl, Br, I) NCs and
C15H11NO (2,5-diphenyloxazole: PPO) organic molecules
in soft and hard X-ray regimes and demonstrate their use in
high-resolution X-ray imaging. We propose a new type of
mechanism for substantially enhancing the scintillation
quantum yield, which is accomplished by hybridising dif-
ferent scintillation nanomaterials.

Results
Hybrid CsPbA3 liquid scintillators and radiography
The hybrid liquid scintillators were manufactured by

dispersing CsPbA3 NCs and PPO in octane without pre-
cipitation (Fig. 1a). The perovskite NCs were synthesised
via a hot injection method26–28 (see “Methods” for
details). Transmission electron microscopy (TEM) mea-
surements revealed that the as-synthesized NCs have a
cubic shape with an average size of 12 nm (Fig. 1b). The
optical and structural properties of the perovskite NCs
were investigated using photoluminescence (PL),
ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffrac-
tion (XRD) measurements, and TEM images (Supple-
mentary Figs. S1 and S2)29–31. To quickly evaluate the
suitability of the CsPbBr3 NCs+PPO material as a scin-
tillator for X-ray imaging, we imaged a wide range of
biological and inorganic specimens with X-rays using a
liquid scintillator panel (Fig. 1c) combined with a charge-
coupled device (CCD) camera (Fig. 1d). For radiographic
measurements, the specially designed display panel was
used. The colloidal hybrid CsPbBr3 NCs+PPO solution
was sandwiched by two quartz windows with 4-inch dia-
meters. The X-ray images were taken at an accelerating
voltage of 70 kVp. To demonstrate X-ray imaging, the
concentrations of the CsPbBr3 NCs and PPO in octane
were set at 25 mg/ml and 10 mg/ml, respectively. An
object was placed on the panel detector, and an X-ray-
excited optical image was projected through a mirror onto
the CCD. As will be discussed in further detail, the
CsPbBr3 NCs+PPO scintillator was selected to demon-
strate the X-ray imaging because the CsPbBr3 NCs have
excellent durability and the strongest RL intensity. As

shown in Fig. 1e–g and Supplementary Fig. S3, the metal
structures within the biological and plastic specimens
were clearly imaged on the liquid scintillator panel.

Enhanced radioluminescence in hybrid CsPbA3 scintillators
Figure 2a shows photographs of the X-ray imaging

system and colloidal CsPbA3 NCs+PPO scintillators in
the presence of white light and under X-ray irradiation
(accelerating voltage: 6 MVp). During X-ray exposure, the
CsPbBr3 NCs+PPO scintillator exhibited the brightest RL
and emitted a green colour. As anticipated, the hybrid
CsPbBr3 NCs+PPO scintillator exhibited the highest RL
intensity in both the soft and hard X-ray regimes (Sup-
plementary Fig. S4).
Figure 2b shows a comparison of the RL spectra emitted

from the CsPbBr3 NCs (25 mg/ml), PPO (10 mg/ml), and
hybrid CsPbBr3 NCs+ PPO scintillators. The hybrid NCs
+PPO scintillator exhibited strong RL that was several
times stronger than those emitted by other scintillators.
The hybrid NCs+ PPO and pure NCs scintillators had
the same RL peak positions, indicating that adding PPO
does not significantly affect the emission energy of the
CsPbBr3 NCs while enhancing their RL intensity. Another
interesting observation is that the RL signal of PPO
completely disappears in the spectrum of the hybrid NCs
+PPO scintillator, suggesting the likelihood of X-ray-
induced charge transfer from PPO to the CsPbBr3 NCs.
We have experimentally demonstrated that the RL spec-
trum of a powder mixture containing the same amounts
of PPO and CsPbBr3 NCs without octane exhibited two
resolved RL emissions, each corresponding to PPO and
CsPbBr3 NCs (Supplementary Fig. S5) and that the PPO
peak is not suppressed in the PL spectrum of the hybrid
NCs+PPO scintillator under UV irradiation (see Supple-
mentary Fig. S6); collectively, these findings support the
proposed mechanism that PPO plays a key role in
enhancing the RL of the CsPbA3 NCs in octane. The
surface hybridisation of halide perovskite NCs with PPO
is highly feasible in a nonpolar liquid solvent medium
such as octane. The same dramatic RL enhancement was
also observed with the hybrid CsPbCl3 NCs+ PPO and
CsPbI3 NCs+ PPO scintillators (Fig. 2c).

Scintillation mechanism
In lead halide perovskite NCs, the photoelectric inter-

action between incident high-energy X-ray photons and
heavy lattice atoms produces high-energy electrons, and
these energetic electrons subsequently generate secondary
high-energy carriers32,33. The hot carriers then undergo a
thermalisation process, producing numerous low-energy
excitons, and, consequently, high-energy X-ray photons
are converted to visible low-energy photons via direct-
bandgap luminescence23. For our hybrid CsPbA3 NCs
+PPO scintillators, X-ray-induced energetic electrons

Cho et al. Light: Science & Applications ����������(2020)�9:156� Page 2 of 9

generated from PPO can transfer to the CsPbA3 NCs via
surface hybridisation and amplify the number of energetic
electrons in the NCs, thereby enhancing the RL from the
CsPbA3 NCs with a significantly improved quantum yield
(Fig. 2d).
Density functional theory (DFT) calculations were per-

formed to simulate the surface hybridisation of CsPbBr3
NCs with PPO and elucidate the origin of the improved
quantum yield in the hybrid CsPbBr3 NCs+PPO scintil-
lator in terms of X-ray-induced charge transfer from PPO
to the NCs. For hybridisation of the CsPbBr3 NCs with
PPO, the PPO must compete with the oleic acid (OA)
ligand bound to the CsPbBr3 NC surfaces via surface
reactions. Thus, we first compared the binding energies of
PPO and OA on the CsPbBr3 NC surfaces and assessed
how well the desorbed OA could be dissolved in octane.
Neutral PPO and anionic OA showed binding energies

of −1.03 eV and −0.30 eV on the Pb site, respectively,

and anionic OA had a larger solvation free energy of
−36.05 kcal/mol compared with the value of −9.82 kcal/
mol for PPO in octane solvent. The calculated results
revealed that PPO, with its relatively large binding
energy, can replace the OA on the CsPbBr3 NC surface
and that the desorbed OA can be stabilised in octane
with a large negative solvation free energy (Supplemen-
tary Table S1). Therefore, the formation of the hybrid
CsPbBr3 NCs+PPO in octane was facilitated by the
strong interaction between PPO and Pb ion sites through
N-Pb bonding (Supplementary Figs. S7 and S8). XPS
measurements of CsPbBr3 NCs, PPO, and CsPbBr3 NCs
+PPO provide strong evidence for N-Pb bonding
(Supplementary Fig. S9).
We analysed the energy level alignment between PPO

and the CsPbBr3 NCs and the frontier orbital distribu-
tions. X-ray-induced charge transfer was allowed when
the excited state of PPO was much higher than the
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Fig. 1 X-ray radiography using colloidal CsPbBr3 nanocrystals (NCs) hybridised with 2,5-diphenyloxazole (PPO). a Photographs of CsPbBr3
NCs, PPO and colloidal hybrid CsPbBr3 NCs+PPO in octane under white light (upper column) and UV illumination (lower column). b TEM image of
the CsPbBr3 NCs. The inset shows a high-resolution TEM image of a single CsPbBr3 NC. The size distribution of the CsPbBr3 NCs is shown in
Supplementary Fig. S1. c X-ray flat panel detector consisting of the hybrid CsPbBr3 NCs+PPO scintillator dispersed in octane and sandwiched by two
quartz windows. The thickness of the colloidal hybrid scintillator is 1mm. d Schematic of the real-time X-ray imaging system consisting of a charge-
coupled device (CCD) camera and a specially designed liquid film panel containing the colloidal hybrid CsPbBr3 NCs+PPO scintillator. e–g Optical
and X-ray images of an electric power plug, a biological specimen (crab) containing a piece of metal, and a ball point pen containing the same piece
of metal on the scintillator panel
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rates21, and resistance against high-energy radiation22, all of
which are essential for highly efficient and durable X-ray
scintillators. Moreover, perovskite NCs have high optical
sensitivity in response to exposure to X-rays and high X-ray
absorption efficiency22,23. Perovskite NCs are also com-
monly uniformly dispersed in nonpolar liquid media for use
in liquid scintillators. However, despite their unique prop-
erties being superior to those of commercially manu-
factured scintillators, for example, Tl-doped CsI24 and
Gd2O2S

25, perovskite NCs still require further improve-
ments in their quantum yield for practical applications.
Here, we report an experimental investigation of highly
efficient X-ray scintillation and significantly enhanced
quantum yields of liquid scintillators consisting of per-
ovskite metal halide CsPbA3 (A: Cl, Br, I) NCs and
C15H11NO (2,5-diphenyloxazole: PPO) organic molecules
in soft and hard X-ray regimes and demonstrate their use in
high-resolution X-ray imaging. We propose a new type of
mechanism for substantially enhancing the scintillation
quantum yield, which is accomplished by hybridising dif-
ferent scintillation nanomaterials.

Results
Hybrid CsPbA3 liquid scintillators and radiography
The hybrid liquid scintillators were manufactured by

dispersing CsPbA3 NCs and PPO in octane without pre-
cipitation (Fig. 1a). The perovskite NCs were synthesised
via a hot injection method26–28 (see “Methods” for
details). Transmission electron microscopy (TEM) mea-
surements revealed that the as-synthesized NCs have a
cubic shape with an average size of 12 nm (Fig. 1b). The
optical and structural properties of the perovskite NCs
were investigated using photoluminescence (PL),
ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffrac-
tion (XRD) measurements, and TEM images (Supple-
mentary Figs. S1 and S2)29–31. To quickly evaluate the
suitability of the CsPbBr3 NCs+PPO material as a scin-
tillator for X-ray imaging, we imaged a wide range of
biological and inorganic specimens with X-rays using a
liquid scintillator panel (Fig. 1c) combined with a charge-
coupled device (CCD) camera (Fig. 1d). For radiographic
measurements, the specially designed display panel was
used. The colloidal hybrid CsPbBr3 NCs+PPO solution
was sandwiched by two quartz windows with 4-inch dia-
meters. The X-ray images were taken at an accelerating
voltage of 70 kVp. To demonstrate X-ray imaging, the
concentrations of the CsPbBr3 NCs and PPO in octane
were set at 25 mg/ml and 10 mg/ml, respectively. An
object was placed on the panel detector, and an X-ray-
excited optical image was projected through a mirror onto
the CCD. As will be discussed in further detail, the
CsPbBr3 NCs+PPO scintillator was selected to demon-
strate the X-ray imaging because the CsPbBr3 NCs have
excellent durability and the strongest RL intensity. As

shown in Fig. 1e–g and Supplementary Fig. S3, the metal
structures within the biological and plastic specimens
were clearly imaged on the liquid scintillator panel.

Enhanced radioluminescence in hybrid CsPbA3 scintillators
Figure 2a shows photographs of the X-ray imaging

system and colloidal CsPbA3 NCs+PPO scintillators in
the presence of white light and under X-ray irradiation
(accelerating voltage: 6 MVp). During X-ray exposure, the
CsPbBr3 NCs+PPO scintillator exhibited the brightest RL
and emitted a green colour. As anticipated, the hybrid
CsPbBr3 NCs+PPO scintillator exhibited the highest RL
intensity in both the soft and hard X-ray regimes (Sup-
plementary Fig. S4).
Figure 2b shows a comparison of the RL spectra emitted

from the CsPbBr3 NCs (25 mg/ml), PPO (10 mg/ml), and
hybrid CsPbBr3 NCs+ PPO scintillators. The hybrid NCs
+PPO scintillator exhibited strong RL that was several
times stronger than those emitted by other scintillators.
The hybrid NCs+ PPO and pure NCs scintillators had
the same RL peak positions, indicating that adding PPO
does not significantly affect the emission energy of the
CsPbBr3 NCs while enhancing their RL intensity. Another
interesting observation is that the RL signal of PPO
completely disappears in the spectrum of the hybrid NCs
+PPO scintillator, suggesting the likelihood of X-ray-
induced charge transfer from PPO to the CsPbBr3 NCs.
We have experimentally demonstrated that the RL spec-
trum of a powder mixture containing the same amounts
of PPO and CsPbBr3 NCs without octane exhibited two
resolved RL emissions, each corresponding to PPO and
CsPbBr3 NCs (Supplementary Fig. S5) and that the PPO
peak is not suppressed in the PL spectrum of the hybrid
NCs+PPO scintillator under UV irradiation (see Supple-
mentary Fig. S6); collectively, these findings support the
proposed mechanism that PPO plays a key role in
enhancing the RL of the CsPbA3 NCs in octane. The
surface hybridisation of halide perovskite NCs with PPO
is highly feasible in a nonpolar liquid solvent medium
such as octane. The same dramatic RL enhancement was
also observed with the hybrid CsPbCl3 NCs+ PPO and
CsPbI3 NCs+ PPO scintillators (Fig. 2c).

Scintillation mechanism
In lead halide perovskite NCs, the photoelectric inter-

action between incident high-energy X-ray photons and
heavy lattice atoms produces high-energy electrons, and
these energetic electrons subsequently generate secondary
high-energy carriers32,33. The hot carriers then undergo a
thermalisation process, producing numerous low-energy
excitons, and, consequently, high-energy X-ray photons
are converted to visible low-energy photons via direct-
bandgap luminescence23. For our hybrid CsPbA3 NCs
+PPO scintillators, X-ray-induced energetic electrons

Cho et al. Light: Science & Applications ����������(2020)�9:156� Page 2 of 9

generated from PPO can transfer to the CsPbA3 NCs via
surface hybridisation and amplify the number of energetic
electrons in the NCs, thereby enhancing the RL from the
CsPbA3 NCs with a significantly improved quantum yield
(Fig. 2d).
Density functional theory (DFT) calculations were per-

formed to simulate the surface hybridisation of CsPbBr3
NCs with PPO and elucidate the origin of the improved
quantum yield in the hybrid CsPbBr3 NCs+PPO scintil-
lator in terms of X-ray-induced charge transfer from PPO
to the NCs. For hybridisation of the CsPbBr3 NCs with
PPO, the PPO must compete with the oleic acid (OA)
ligand bound to the CsPbBr3 NC surfaces via surface
reactions. Thus, we first compared the binding energies of
PPO and OA on the CsPbBr3 NC surfaces and assessed
how well the desorbed OA could be dissolved in octane.
Neutral PPO and anionic OA showed binding energies

of −1.03 eV and −0.30 eV on the Pb site, respectively,

and anionic OA had a larger solvation free energy of
−36.05 kcal/mol compared with the value of −9.82 kcal/
mol for PPO in octane solvent. The calculated results
revealed that PPO, with its relatively large binding
energy, can replace the OA on the CsPbBr3 NC surface
and that the desorbed OA can be stabilised in octane
with a large negative solvation free energy (Supplemen-
tary Table S1). Therefore, the formation of the hybrid
CsPbBr3 NCs+PPO in octane was facilitated by the
strong interaction between PPO and Pb ion sites through
N-Pb bonding (Supplementary Figs. S7 and S8). XPS
measurements of CsPbBr3 NCs, PPO, and CsPbBr3 NCs
+PPO provide strong evidence for N-Pb bonding
(Supplementary Fig. S9).
We analysed the energy level alignment between PPO

and the CsPbBr3 NCs and the frontier orbital distribu-
tions. X-ray-induced charge transfer was allowed when
the excited state of PPO was much higher than the

X-ray

CCD

d

ca

e

b

f

g

CsPbBr3 NCs PPO NCs + PPO

4 inch

1 mm

Quartz

Quartz

CsPbBr3 NCs + PPO

2nm

20 nm
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conduction band state of the CsPbBr3 NCs. In particular,
the large contribution of N and Pb in forming N-Pb bonds
that led to the aligned states of PPO and the CsPbBr3 NCs
effectively led to charge transfer from PPO to the CsPbBr3
NCs (Fig. 2e and Supplementary Fig. S10). Here, we used
the p-band centre of the Pb atom as the representative
conduction band state of the CsPbBr3 NCs because the
valence 6p-orbital of Pb is involved in the N–Pb bond and
is distributed over a wide range of conduction bands with
various contributions. The energy level alignment in Fig.
2f revealed that the lowest unoccupied molecular orbital
(LUMO) state of PPO and the p-band centre of the Pb
atom were located at 3.31 eV and 3.64 eV, respectively.
Energy levels are denoted based on the aligned Fermi
energy (Ef) of the hybrid CsPbBr3 NCs+PPO at 0 eV. In
addition, the N atom in PPO significantly contributed to
LUMO, LUMO+1, and LUMO+4; therefore, the LUMO
+1 and LUMO+4 states, which were located above the
p-band centre of the Pb atom and had large contributions
from the N atom, could effectively induce charge transfer

from PPO to the CsPbBr3 NCs. This implies that a suf-
ficiently high-energy source, such as X-ray irradiation, is
required to induce charge transfer from the excited states
above the LUMO of PPO to the Pb p-orbital of the
CsPbBr3 NCs.
Consequently, the characteristic structural and electro-

nic features of the hybrid CsPbBr3 NCs+PPO scintillator
resulted in selective charge transfer under X-ray irradia-
tion, eventually enhancing the scintillation quantum yield.
On the other hand, an excited electron in PPO cannot
move to an NC upon UV illumination because the energy
levels of the allowed states in the NC are too high. This is
consistent with the experimental observation that low-
energy UV light cannot enhance the quantum yield in the
hybrid NCs+PPO scintillator (Supplementary Fig. S11).

Characterisation of radioluminescence
We then measured the RL spectra of the CsPbA3 NC

(25mg/ml)+PPO (10mg/ml) hybrid scintillators as a
function of dose rate (Supplementary Fig. S12). The
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measured RL emission exhibited a linear response to the
X-ray dose rate, which is a desirable feature of a good
scintillator for X-ray imaging and dosimetry. We also
measured the X-ray response characteristics of the hybrid
scintillator upon excitation with a single X-ray photon
from a portable coin-type 60Co source (Supplementary
Fig. S13). The extracted fast scintillation decay time τ was
60–100 ns for the CsPbA3 NCs+PPO hybrid scintillators,
which is much shorter than that for the bulk CsI:Tl (on
the order of μs). The fast RL decay time of the hybrid
scintillators is also expected to act as a favourable trait for
use in medical radiography.
We further quantitatively investigated how PPO con-

tributes to the RL of the CsPbBr3 NCs+PPO hybrid
scintillator by varying the concentration ratio of the NCs
and PPO. As shown in the photographs (Fig. 3a) under X-
ray irradiation (accelerating voltage: 6 MVp), the RL
emission from the hybrid NCs+PPO scintillator became
brighter as the PPO density was increased for a fixed NC
density of 5 mg/ml. We measured the RL spectra of the
hybrid NCs+PPO scintillators in the soft (dose rate of
37.4 mGy s−1 at an accelerating voltage of 50 kVp) and
hard X-ray regimes (Fig. 3b, Supplementary Fig. S14a),
plotted the measured RL peak intensity as a function of

the PPO density (Fig. 3c), and observed a linear rela-
tionship between the RL intensity and PPO density. The
scintillation efficiency of a hybrid CsPbBr3+PPO scintil-
lator was enhanced with increasing PPO density (Sup-
plementary Fig. S15). Without CsPbBr3 NCs, the RL
intensity of the pure PPO liquid scintillator decreased at
high PPO densities (>10 mg/ml), which was likely due to
scintillation quenching (namely, self-absorption)34,35

(Supplementary Fig. S16). When the PPO density was
greater than 50mg/ml in the colloidal hybrid scintillator,
a yellowish-green dense precipitate was formed. As the
PPO density was further increased to above the critical
value of ~500mg/ml, the hybrid NCs+PPO material in
octane completely transformed into an opaque dense
precipitate that emitted a very strong RL.
We also carried out similar measurements while increasing

the CsPbBr3 NC density for a fixed PPO density of 30mg/ml
and observed that precipitates were not formed. In contrast,
as the CsPbBr3 NC density increased, the RL emission
quickly saturated in both the soft and hard X-ray regions, as
shown in the photographs (Fig. 3d) and RL spectra (Fig. 3e
and Supplementary Fig. S14b). The observed features are
summarised in Fig. 3f, in which the measured RL peak
intensity is plotted as a function of NC density.
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conduction band state of the CsPbBr3 NCs. In particular,
the large contribution of N and Pb in forming N-Pb bonds
that led to the aligned states of PPO and the CsPbBr3 NCs
effectively led to charge transfer from PPO to the CsPbBr3
NCs (Fig. 2e and Supplementary Fig. S10). Here, we used
the p-band centre of the Pb atom as the representative
conduction band state of the CsPbBr3 NCs because the
valence 6p-orbital of Pb is involved in the N–Pb bond and
is distributed over a wide range of conduction bands with
various contributions. The energy level alignment in Fig.
2f revealed that the lowest unoccupied molecular orbital
(LUMO) state of PPO and the p-band centre of the Pb
atom were located at 3.31 eV and 3.64 eV, respectively.
Energy levels are denoted based on the aligned Fermi
energy (Ef) of the hybrid CsPbBr3 NCs+PPO at 0 eV. In
addition, the N atom in PPO significantly contributed to
LUMO, LUMO+1, and LUMO+4; therefore, the LUMO
+1 and LUMO+4 states, which were located above the
p-band centre of the Pb atom and had large contributions
from the N atom, could effectively induce charge transfer

from PPO to the CsPbBr3 NCs. This implies that a suf-
ficiently high-energy source, such as X-ray irradiation, is
required to induce charge transfer from the excited states
above the LUMO of PPO to the Pb p-orbital of the
CsPbBr3 NCs.
Consequently, the characteristic structural and electro-

nic features of the hybrid CsPbBr3 NCs+PPO scintillator
resulted in selective charge transfer under X-ray irradia-
tion, eventually enhancing the scintillation quantum yield.
On the other hand, an excited electron in PPO cannot
move to an NC upon UV illumination because the energy
levels of the allowed states in the NC are too high. This is
consistent with the experimental observation that low-
energy UV light cannot enhance the quantum yield in the
hybrid NCs+PPO scintillator (Supplementary Fig. S11).

Characterisation of radioluminescence
We then measured the RL spectra of the CsPbA3 NC

(25mg/ml)+PPO (10mg/ml) hybrid scintillators as a
function of dose rate (Supplementary Fig. S12). The
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measured RL emission exhibited a linear response to the
X-ray dose rate, which is a desirable feature of a good
scintillator for X-ray imaging and dosimetry. We also
measured the X-ray response characteristics of the hybrid
scintillator upon excitation with a single X-ray photon
from a portable coin-type 60Co source (Supplementary
Fig. S13). The extracted fast scintillation decay time τ was
60–100 ns for the CsPbA3 NCs+PPO hybrid scintillators,
which is much shorter than that for the bulk CsI:Tl (on
the order of μs). The fast RL decay time of the hybrid
scintillators is also expected to act as a favourable trait for
use in medical radiography.
We further quantitatively investigated how PPO con-

tributes to the RL of the CsPbBr3 NCs+PPO hybrid
scintillator by varying the concentration ratio of the NCs
and PPO. As shown in the photographs (Fig. 3a) under X-
ray irradiation (accelerating voltage: 6 MVp), the RL
emission from the hybrid NCs+PPO scintillator became
brighter as the PPO density was increased for a fixed NC
density of 5 mg/ml. We measured the RL spectra of the
hybrid NCs+PPO scintillators in the soft (dose rate of
37.4 mGy s−1 at an accelerating voltage of 50 kVp) and
hard X-ray regimes (Fig. 3b, Supplementary Fig. S14a),
plotted the measured RL peak intensity as a function of

the PPO density (Fig. 3c), and observed a linear rela-
tionship between the RL intensity and PPO density. The
scintillation efficiency of a hybrid CsPbBr3+PPO scintil-
lator was enhanced with increasing PPO density (Sup-
plementary Fig. S15). Without CsPbBr3 NCs, the RL
intensity of the pure PPO liquid scintillator decreased at
high PPO densities (>10 mg/ml), which was likely due to
scintillation quenching (namely, self-absorption)34,35

(Supplementary Fig. S16). When the PPO density was
greater than 50mg/ml in the colloidal hybrid scintillator,
a yellowish-green dense precipitate was formed. As the
PPO density was further increased to above the critical
value of ~500mg/ml, the hybrid NCs+PPO material in
octane completely transformed into an opaque dense
precipitate that emitted a very strong RL.
We also carried out similar measurements while increasing

the CsPbBr3 NC density for a fixed PPO density of 30mg/ml
and observed that precipitates were not formed. In contrast,
as the CsPbBr3 NC density increased, the RL emission
quickly saturated in both the soft and hard X-ray regions, as
shown in the photographs (Fig. 3d) and RL spectra (Fig. 3e
and Supplementary Fig. S14b). The observed features are
summarised in Fig. 3f, in which the measured RL peak
intensity is plotted as a function of NC density.
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Fig. 3 Radioluminescence of the hybrid CsPbBr3 NCs+PPO scintillators with different density ratios. a Photographs of the hybrid CsPbBr3
NCs+PPO scintillators in ambient light and under X-ray irradiation. The PPO density was increased from 1 to 500mg/ml. The PPO densities of samples
1 through 8 were (1) 1, (2) 5, (3) 10, (4) 30, (5) 50, (6) 100, (7) 300, and (8) 500mg/ml. b RL spectra of hybrid scintillator samples 1 through 8 in the hard
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X-ray imaging performance
To directly confirm any enhancement in the X-ray

image quality when using the hybrid CsPbBr3 NCs+PPO
liquid scintillator, we recorded the X-ray images of a
portable data storage device using PPO, CsPbBr3 NC, and
hybrid CsPbBr3 NCs+PPO scintillators (Fig. 4a). The
hybrid NCs+PPO scintillator produced notably clearer
X-ray images than those of PPO the CsPbBr3 NCs. The
spatial resolution and image quality of the scintillation
materials were quantitatively evaluated using a radio-
graphy test phantom36,37 (Leeds test objects, model: TOR
18FG, Supplementary Fig. S17). Figure 4b shows X-ray
images of the test objects. The imaging performances of
the scintillators were comparatively evaluated by counting
the maximal number of resolvable line pairs per milli-
metre (lp/mm) and checking the abruptness of the con-
trast changes at the boundary. Figure 4c–e shows the
intensity variation along the yellow lines in the X-ray
images of the line patterns. The largest detectable lp/mm

of the hybrid scintillator was at least 3.5 lp/mm, which
was several times greater than those of the pure halide
perovskite NCs and PPO scintillators.
Figure 4f–h show the edge spread functions (ESFs) at

the boundary of the test phantom, indicated by the red
dashed boxes in the insets, which characterise the
sharpness of the images. The abrupt change in intensity is
reflected by the slope across the boundary. The measured
slope was 17.6 grey value/pixel for the hybrid NCs+PPO
scintillator, which was much larger than those for the
other materials (range, 1.36–1.66 grey value/pixel) (pixel
size: 9 μm). The line spread functions (LSFs) extracted
from the ESFs (red curves above the insets) also indicated
how sharp the image was near the boundary in terms of
the full width at half maximum (FWHM)38. The estimated
FWHM of the NCs+PPO hybrid material was 7.6 pixels,
which is much smaller than those of the other scintillators
(range: 16–32 pixels). The image contrast is a measure of
how clearly an object is distinguishable and can be
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Fig. 4 X-ray imaging with significantly enhanced resolution using the hybrid CsPbBr3 NCs+PPO scintillator. a Photograph of a data storage
device on a homemade X-ray flat panel detector consisting of the hybrid CsPbBr3 NCs+PPO scintillator and X-ray images taken using the PPO,
CsPbBr3 NCs and hybrid CsPbBr3 NCs+PPO scintillators. The densities of the PPO and CsPbBr3 NCs were 10 mg/ml and 25mg/ml, respectively.
b Photograph of the Leeds test objects on the homemade X-ray panel, and X-ray images taken using the PPO, CsPbBr3 NCs, and hybrid CsPbBr3
NCs+PPO scintillators. The X-ray images were taken at a voltage of 70kVp. c–e X-ray line pair profiles along the yellow line in Fig. 4b. The numbers
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assessed using the following expression:

Contrast %ð Þ ¼ 100 ´ IObject � IBackground
� �

= IObject þ IBackground
� �

ð1Þ

where IObject and IBackground represent the RL intensities of
the object and adjacent material near the boundary,
respectively. The contrast near the boundary was 33% for
the hybrid NCs+PPO scintillator and 12−13% for the
other scintillators.
Ageing and deterioration of the hybrid NCs+PPO

scintillator were examined by repeating the X-ray imaging
measurements in the same environment after a year
(Supplementary Fig. S18) and after continuous irradiation
with a very high-energy X-ray for a prolonged period
(Supplementary Fig. S19). The colloidal hybrid scintillator
exhibited almost no degradation in performance, thereby
confirming its stability.

Discussion
In conclusion, we developed a new type of liquid scin-

tillator by hybridising colloidal halide perovskite CsPbA3

(A: Cl, Br, I) nanocrystals with 2,5-diphenyloxazole (PPO)
and demonstrated that the novel liquid scintillator has a
very high quantum yield that allows for efficient X-ray
detection. Considering their additional advantages,
including cost-effective mass production, stability under
high-energy X-ray irradiation, and easy processability in
combination with various substances, these novel hybrid
nanomaterials are suitable as scintillators for a wide range
of X-ray technologies that require high-performance
detectors and imagers. While the fundamentals of scin-
tillation in these halide perovskite NCs+PPO hybrid
nanomaterials require further elucidation, these colloidal
hybrid nanocrystals hold substantial promise for advan-
cing the industrial applications of X-ray imaging and
producing intriguing scintillation in hybrid nanomaterials.

Materials and methods
Chemicals
Caesium carbonate (Cs2CO3, 99.9%), lead iodide (PbI2,

99.9%), lead bromide (PbBr2, 99.9%), lead chloride (PbCl2,
99.9%), oleic acid (OA, technical grade, 90%), oleylamine
(OAm, technical grade 70%), 1-octadecene (ODE, technical
grade 90%), n-octane (99%, Germany), and 2,5-dipheny-
loxazole (PPO, 99%) were purchased from Sigma-Aldrich.

Preparation of Cs-oleate
The Cs-oleate precursor was synthesised using the

conventional hot injection method26–28. Cs2CO3 (0.407 g),
OA (1.25 ml) and ODE (15 ml) were dissolved in a 3-
necked round-bottom flask by heating under vacuum at
120 °C for 60min with magnetic stirring. To ensure a

complete reaction between Cs2CO3 and OA, the mixture
was heated at 150 °C for 60min in N2.

Synthesis of CsPbA3 (A: Cl, Br, I) nanocrystals and hybrid
scintillators
The CsPbA3 nanocrystals were prepared using the

conventional hot injection method. ODE (25 ml) and
1.89 mmol lead halide (PbI2: 0.436 g), lead bromide
(PbBr2: 0.347 g), or lead chloride (PbCl2: 0.263 g) were
dissolved in a 3-necked round bottom flask by heating the
mixture at 120 °C for 60 min with magnetic stirring under
vacuum. Then, the reaction temperature was adjusted
from 150–180 °C depending on the lead halide source.
Then, the dried OA (2.5 ml) and OAm (2.5 ml) were
injected under N2. After 30 min, 2 ml of the as-prepared
Cs-oleate solution was quickly injected into the reaction
mixture solution. As soon as the solution exhibited var-
ious colours, corresponding to the perovskite (CsPbA3)
NCs for each lead halide (PbA2), the solution was cooled
down in an ice-water bath. The synthesized CsPbA3 NC
powder was purified by adding hexane and methyl acetate
(volume ratio of 1:1) and centrifuged at 8500 rpm. The
precipitated CsPbA3 NCs were redispersed in octane
containing PPO.

Density functional theory calculations
All ab initio calculations were performed with the

Vienna Ab initio Simulation Package (VASP 5.4.4)39,40.
We used the Perdew–Burke–Ernzerhof (PBE) exchange-
correlation functional and the projector augmented-wave
(PAW) method41. Calculations for geometric optimisation
were carried out in a periodically repeated surface (3 × 3)
supercell with 1 × 1 k-point sampling. A four-layered slab
model was employed for CsPbBr3 (001), separated by a
15 Å vacuum space in the z-direction to avoid interaction
between layers. In addition, the two topmost layers were
allowed to fully relax, while the other layers were fixed to
their optimised bulk positions. A plane-wave cut-off
energy of 500 eV was used. Lattice constants and internal
atomic positions were fully optimised until the residual
forces were <0.04 eV/Å. The schematics of the models are
shown in Figs. S5 and S6. To investigate the electronic
structures, we employed the Heyd–Scuseria–Ernzerhof
(HSE06) hybrid functional calculation42 using the GGA-
PBE-optimised structures. The solvation free energy
(ΔGsolv) calculations were performed using the solvation
model based on density (SMD)43 at the B3LYP/6-311+G
(2d,p) level of theory with the Gaussian09 package44.

Radioluminescence and X-ray imaging
To evaluate the feasibility of the fabricated scintillation

materials in radiation imaging applications, the scintilla-
tion characteristics were confirmed under diagnostic X-ray
irradiation. The radioluminescence (RL) was measured in
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X-ray imaging performance
To directly confirm any enhancement in the X-ray

image quality when using the hybrid CsPbBr3 NCs+PPO
liquid scintillator, we recorded the X-ray images of a
portable data storage device using PPO, CsPbBr3 NC, and
hybrid CsPbBr3 NCs+PPO scintillators (Fig. 4a). The
hybrid NCs+PPO scintillator produced notably clearer
X-ray images than those of PPO the CsPbBr3 NCs. The
spatial resolution and image quality of the scintillation
materials were quantitatively evaluated using a radio-
graphy test phantom36,37 (Leeds test objects, model: TOR
18FG, Supplementary Fig. S17). Figure 4b shows X-ray
images of the test objects. The imaging performances of
the scintillators were comparatively evaluated by counting
the maximal number of resolvable line pairs per milli-
metre (lp/mm) and checking the abruptness of the con-
trast changes at the boundary. Figure 4c–e shows the
intensity variation along the yellow lines in the X-ray
images of the line patterns. The largest detectable lp/mm

of the hybrid scintillator was at least 3.5 lp/mm, which
was several times greater than those of the pure halide
perovskite NCs and PPO scintillators.
Figure 4f–h show the edge spread functions (ESFs) at

the boundary of the test phantom, indicated by the red
dashed boxes in the insets, which characterise the
sharpness of the images. The abrupt change in intensity is
reflected by the slope across the boundary. The measured
slope was 17.6 grey value/pixel for the hybrid NCs+PPO
scintillator, which was much larger than those for the
other materials (range, 1.36–1.66 grey value/pixel) (pixel
size: 9 μm). The line spread functions (LSFs) extracted
from the ESFs (red curves above the insets) also indicated
how sharp the image was near the boundary in terms of
the full width at half maximum (FWHM)38. The estimated
FWHM of the NCs+PPO hybrid material was 7.6 pixels,
which is much smaller than those of the other scintillators
(range: 16–32 pixels). The image contrast is a measure of
how clearly an object is distinguishable and can be
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Fig. 4 X-ray imaging with significantly enhanced resolution using the hybrid CsPbBr3 NCs+PPO scintillator. a Photograph of a data storage
device on a homemade X-ray flat panel detector consisting of the hybrid CsPbBr3 NCs+PPO scintillator and X-ray images taken using the PPO,
CsPbBr3 NCs and hybrid CsPbBr3 NCs+PPO scintillators. The densities of the PPO and CsPbBr3 NCs were 10 mg/ml and 25mg/ml, respectively.
b Photograph of the Leeds test objects on the homemade X-ray panel, and X-ray images taken using the PPO, CsPbBr3 NCs, and hybrid CsPbBr3
NCs+PPO scintillators. The X-ray images were taken at a voltage of 70kVp. c–e X-ray line pair profiles along the yellow line in Fig. 4b. The numbers
(0.63−5) indicate lp/mm. f–h Edge spread function (ESF) along the lines in the X-ray images (as shown in the inset) taken using the PPO, CsPbBr3 NCs,
and hybrid CsPbBr3 NCs+PPO scintillators from the top. G/P: grey value/pixel
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assessed using the following expression:

Contrast %ð Þ ¼ 100 ´ IObject � IBackground
� �

= IObject þ IBackground
� �

ð1Þ

where IObject and IBackground represent the RL intensities of
the object and adjacent material near the boundary,
respectively. The contrast near the boundary was 33% for
the hybrid NCs+PPO scintillator and 12−13% for the
other scintillators.
Ageing and deterioration of the hybrid NCs+PPO

scintillator were examined by repeating the X-ray imaging
measurements in the same environment after a year
(Supplementary Fig. S18) and after continuous irradiation
with a very high-energy X-ray for a prolonged period
(Supplementary Fig. S19). The colloidal hybrid scintillator
exhibited almost no degradation in performance, thereby
confirming its stability.

Discussion
In conclusion, we developed a new type of liquid scin-

tillator by hybridising colloidal halide perovskite CsPbA3

(A: Cl, Br, I) nanocrystals with 2,5-diphenyloxazole (PPO)
and demonstrated that the novel liquid scintillator has a
very high quantum yield that allows for efficient X-ray
detection. Considering their additional advantages,
including cost-effective mass production, stability under
high-energy X-ray irradiation, and easy processability in
combination with various substances, these novel hybrid
nanomaterials are suitable as scintillators for a wide range
of X-ray technologies that require high-performance
detectors and imagers. While the fundamentals of scin-
tillation in these halide perovskite NCs+PPO hybrid
nanomaterials require further elucidation, these colloidal
hybrid nanocrystals hold substantial promise for advan-
cing the industrial applications of X-ray imaging and
producing intriguing scintillation in hybrid nanomaterials.

Materials and methods
Chemicals
Caesium carbonate (Cs2CO3, 99.9%), lead iodide (PbI2,

99.9%), lead bromide (PbBr2, 99.9%), lead chloride (PbCl2,
99.9%), oleic acid (OA, technical grade, 90%), oleylamine
(OAm, technical grade 70%), 1-octadecene (ODE, technical
grade 90%), n-octane (99%, Germany), and 2,5-dipheny-
loxazole (PPO, 99%) were purchased from Sigma-Aldrich.

Preparation of Cs-oleate
The Cs-oleate precursor was synthesised using the

conventional hot injection method26–28. Cs2CO3 (0.407 g),
OA (1.25 ml) and ODE (15 ml) were dissolved in a 3-
necked round-bottom flask by heating under vacuum at
120 °C for 60min with magnetic stirring. To ensure a

complete reaction between Cs2CO3 and OA, the mixture
was heated at 150 °C for 60min in N2.

Synthesis of CsPbA3 (A: Cl, Br, I) nanocrystals and hybrid
scintillators
The CsPbA3 nanocrystals were prepared using the

conventional hot injection method. ODE (25 ml) and
1.89 mmol lead halide (PbI2: 0.436 g), lead bromide
(PbBr2: 0.347 g), or lead chloride (PbCl2: 0.263 g) were
dissolved in a 3-necked round bottom flask by heating the
mixture at 120 °C for 60 min with magnetic stirring under
vacuum. Then, the reaction temperature was adjusted
from 150–180 °C depending on the lead halide source.
Then, the dried OA (2.5 ml) and OAm (2.5 ml) were
injected under N2. After 30 min, 2 ml of the as-prepared
Cs-oleate solution was quickly injected into the reaction
mixture solution. As soon as the solution exhibited var-
ious colours, corresponding to the perovskite (CsPbA3)
NCs for each lead halide (PbA2), the solution was cooled
down in an ice-water bath. The synthesized CsPbA3 NC
powder was purified by adding hexane and methyl acetate
(volume ratio of 1:1) and centrifuged at 8500 rpm. The
precipitated CsPbA3 NCs were redispersed in octane
containing PPO.

Density functional theory calculations
All ab initio calculations were performed with the

Vienna Ab initio Simulation Package (VASP 5.4.4)39,40.
We used the Perdew–Burke–Ernzerhof (PBE) exchange-
correlation functional and the projector augmented-wave
(PAW) method41. Calculations for geometric optimisation
were carried out in a periodically repeated surface (3 × 3)
supercell with 1 × 1 k-point sampling. A four-layered slab
model was employed for CsPbBr3 (001), separated by a
15 Å vacuum space in the z-direction to avoid interaction
between layers. In addition, the two topmost layers were
allowed to fully relax, while the other layers were fixed to
their optimised bulk positions. A plane-wave cut-off
energy of 500 eV was used. Lattice constants and internal
atomic positions were fully optimised until the residual
forces were <0.04 eV/Å. The schematics of the models are
shown in Figs. S5 and S6. To investigate the electronic
structures, we employed the Heyd–Scuseria–Ernzerhof
(HSE06) hybrid functional calculation42 using the GGA-
PBE-optimised structures. The solvation free energy
(ΔGsolv) calculations were performed using the solvation
model based on density (SMD)43 at the B3LYP/6-311+G
(2d,p) level of theory with the Gaussian09 package44.

Radioluminescence and X-ray imaging
To evaluate the feasibility of the fabricated scintillation

materials in radiation imaging applications, the scintilla-
tion characteristics were confirmed under diagnostic X-ray
irradiation. The radioluminescence (RL) was measured in
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the diagnostic energy region of X-rays by varying the tube
voltages (10–300 kVp) and currents (5–40mA) using an
X-ray irradiator (X-RAD 320TM, Precision, USA). The
amount of radiation absorbed by the scintillation materials
was verified by using radiochromic films (Ashland, USA)
widely used for radiation dose measurements.
In the therapeutic energy region of X-rays, the RL was

also measured using medical linear accelerators for cancer
treatment. The RL spectra of the scintillation materials
were measured at room temperature under X-ray irra-
diation. The spectra were recorded using a compact
spectrometer that could measure a wavelength range of
200–1000 nm (CCS200, Thorlabs). The scintillation light
was transmitted through a Ø200 µm core fibre optically
coupled to the spectrometer.
Radiography was performed using a specially designed

panel containing the scintillation material (PPO, CsPbA3

NCs or PPO+CsPbA3 NCs) dissolved in octane. The
diameter and thickness of the panel were 4 inches and
1mm, respectively. The X-ray imaging of the fabricated
scintillator was examined for kVp and MVp X-ray irra-
diation using a medical LINAC (VitalBeam®, Varian,
USA) equipped with an On-Board Imager® kV imaging
system.

Radiation decay time
The measurement system consisted of two photo-

multiplier tubes (PMTs) that sensed the scintillation light
emitted from the scintillator material. As shown in the
figure, PMMA discs with 1 ml sample vials were optically
bonded between the two facing PMTs and irradiated with
60Co gamma-rays. The signals from the two PMTs were
acquired with a 500MHz FADC to measure the amount
and decay time of the scintillation light of all individual
events. The event triggering condition was set to be the
coincidence of the two channels.
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the diagnostic energy region of X-rays by varying the tube
voltages (10–300 kVp) and currents (5–40mA) using an
X-ray irradiator (X-RAD 320TM, Precision, USA). The
amount of radiation absorbed by the scintillation materials
was verified by using radiochromic films (Ashland, USA)
widely used for radiation dose measurements.
In the therapeutic energy region of X-rays, the RL was

also measured using medical linear accelerators for cancer
treatment. The RL spectra of the scintillation materials
were measured at room temperature under X-ray irra-
diation. The spectra were recorded using a compact
spectrometer that could measure a wavelength range of
200–1000 nm (CCS200, Thorlabs). The scintillation light
was transmitted through a Ø200 µm core fibre optically
coupled to the spectrometer.
Radiography was performed using a specially designed

panel containing the scintillation material (PPO, CsPbA3

NCs or PPO+CsPbA3 NCs) dissolved in octane. The
diameter and thickness of the panel were 4 inches and
1mm, respectively. The X-ray imaging of the fabricated
scintillator was examined for kVp and MVp X-ray irra-
diation using a medical LINAC (VitalBeam®, Varian,
USA) equipped with an On-Board Imager® kV imaging
system.

Radiation decay time
The measurement system consisted of two photo-

multiplier tubes (PMTs) that sensed the scintillation light
emitted from the scintillator material. As shown in the
figure, PMMA discs with 1 ml sample vials were optically
bonded between the two facing PMTs and irradiated with
60Co gamma-rays. The signals from the two PMTs were
acquired with a 500MHz FADC to measure the amount
and decay time of the scintillation light of all individual
events. The event triggering condition was set to be the
coincidence of the two channels.
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