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Abstract
Light field microscopy (LFM) has been widely used for recording 3D biological dynamics at camera frame rate.
However, LFM suffers from artifact contaminations due to the illness of the reconstruction problem via naïve
Richardson–Lucy (RL) deconvolution. Moreover, the performance of LFM significantly dropped in low-light conditions
due to the absence of sample priors. In this paper, we thoroughly analyze different kinds of artifacts and present a new
LFM technique termed dictionary LFM (DiLFM) that substantially suppresses various kinds of reconstruction artifacts
and improves the noise robustness with an over-complete dictionary. We demonstrate artifact-suppressed
reconstructions in scattering samples such as Drosophila embryos and brains. Furthermore, we show our DiLFM can
achieve robust blood cell counting in noisy conditions by imaging blood cell dynamic at 100 Hz and unveil more
neurons in whole-brain calcium recording of zebrafish with low illumination power in vivo.

Introduction
Cellular motions and activities in vivo are usually in

millisecond time-scale and in 3D space, including voltage
and calcium transients of neurons1,2, blood cell flows in
beating hearts3, and membrane dynamics in embryo
cells4. Observing and understanding these fantastic phe-
nomena requires abilities to record cellular structures
with a high spatiotemporal resolution in 3D. Many tech-
niques are developed to meet this requirement, including
confocal5,6 and multiphoton scanning microscope7,
selective plane8, and structured illumination microscopy9.
Although these techniques can access the 3D structures in
combination with depth scanning, the temporal resolu-
tion is limited by the inertia of the scanning devices or the
single-plane recording rate. Therefore, a number of
advanced techniques with multiplexing techniques and
optimized sampling strategies have been introduced, such
as multiplane or multifocal imaging10, scanning temporal

focusing microscopy11, and random access microscopy12.
However, heat tolerance of living animals or organs and
sample density still prevent those methods to achieve high
throughput with low light doses.
Light field microscopy (LFM) emerges as a popular tool

in incoherent imaging of volumetric biological samples
within a single shot13–19. This is achieved by capturing a
4D light field on a single 2D array detector through spe-
cific optical components such as the microlens array
(MLA). The 3D information of biological samples is
extracted from 4D light field measurements through
multiple Richardson-Lucy (RL) reconstruction itera-
tions20,21. The lack of a scanning device makes LFM a
high-speed volumetric imaging tool for biological systems,
with various applications in live-cell imaging18, volumetric
imaging of beating hearts and blood flow22, and neural
recording23,24, to name a few. Although LFM has achieved
great success, current LFM implementations suffer several
disadvantages: (1) inherent trade-offs between improving
reconstruction contrast and reducing ringing effects at
edges; (2) severe block-wise artifacts near the native image
plane (NIP)13; (3) contaminations to 3D-resolved struc-
tures from depth crosstalk; and (4) quick performance
degradation under low single-to-noise ratio (SNR)
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situations. The reasons for these drawbacks are due to low
spatial sampling and illness of restoring 3D information
from 2D sensor images.
Many methods are proposed to mitigate parts of these

drawbacks. To avoid NIP artifact, it is straightforward to
carefully set the imaging volume on one side of the NIP23,
which reduces the imaging depth range a lot. Shifting the
MLA to avoid NIP will sacrifice the depth-of-field18.
Methods that reshape PSF25 or add additional views22,26

can help ease edge ringing and improve the contrast, but
either require customized optical components or com-
plicate the system by adding scanning devices or more
objectives. The additional complexity of adding more
hardware also hampers the usage of LFM in freely
behaving animals for volumetric functional imaging due
to space and weight limitation27. On the other hand,
modifying the reconstruction algorithm to mitigate the
LFM artifacts is more convenient and flexible since
adjusting the hardware is avoided. Introducing a strong
blur in the reconstructed volume can reduce the NIP
block-wise artifacts and depth crosstalk, but the imaging
resolution will be much worse28. The phase space
reconstruction approach by Zhi et al. achieves faster
convergence and reduces NIP block-wise artifacts
through serially reconstructing different angular views29

but cannot solve the contrast and ringing dilemma. All
these implements suffer from noise-induced artifacts
when imaging phototoxicity-sensitive samples like mito-
chondria and zebrafish embryos.
Here, we propose a new LFM method based on dic-

tionary patching, termed DiLFM, to enable fast, robust,
and artifact-suppressed volumetric imaging under differ-
ent noisy conditions without hardware modifications
(Fig. 1). Our approach is motivated by recent results in
sparse signal representation, suggesting that artifact-free
signals can be well represented using a linear combination
of few elements from a redundant dictionary even under
heavily noisy conditions30. The systematic artifacts due to
the low sampling rate in LFM can be compensated by
dictionary priors learned from general biological samples.
Our DiLFM reconstruction is a combination of a few RL
iterations to provide basic but ringing-reduced 3D
volumes with a dictionary patching process to fix the
reconstruction artifacts and improve the resolution and
contrast (Fig. S1). We train a pair of low- and high-fidelity
dictionaries under LFM forward model such that only
matched low-fidelity snippets from RL reconstructions
will be updated by high-fidelity elements. With the
robustness of both few-run RL and dictionary patching in
low-SNR conditions, our DiLFM provides superior per-
formances over other methods under noise contamina-
tions. We demonstrate the contrast improvement and
artifacts reduction by DiLFM via multiple simulations and
experiments, including the Drosophila embryo and brain.

We show the robustness of DiLFM in observing zebrafish
blood flow at 100 Hz in low-light conditions. We further
demonstrate that our DiLFM enables finding two times
more neurons in zebrafish brain in vivo with low-power
illumination.

Results
DiLFM substantially suppresses artifacts in LFM
Due to the illness of LFM reconstruction, traditional

LFM usually generates several kinds of artifacts with RL
deconvolutions (Methods and Fig. S1). First, we find
traditional LFM cannot achieve high contrast and ringing-
suppressed reconstructions at the same time. We
numerically simulate a USAF-1951 resolution target at
z=−50 µm and find the core of the square becomes
dimmer and dimmer as more RL iterations are involved
(Fig. S2a, b). The intensity cross-section of an originally
sharp edge clearly shows a ringing feature, while the peak-
to-valley ratio increasing with the iteration number sug-
gests improved contrast (Fig. S2c–e). We argue that such
contrast increase is at the cost of image structure distor-
tions, which should be alleviated for quantitative analysis.
Another well-known artifact of LFM is the block-wise
features in NIP due to the insufficient spatial sampling of
LFM near NIP (Fig. S3a, c). Block artifacts simultaneously
disturb structure continuity in both lateral and axial axes
(Fig. S3d, e). The third kind of image artifact is the
defocus artifact among different layers. We find a sphere
at z=−70 µm shows smear ghost with high-frequency
grids and blocks even at z=+50 µm after LFM recon-
struction, which is very different from a conventional
widefield microscope whose defocus pattern is smooth
(Fig. S4a). When there are two spheres in the space, the
original well-reconstructed sphere can be contaminated
by grid patterns due to the defocus of other spheres
(Fig. S9). When imaging a thick biological volume with
LFM, each depth layer generates a z-spread defocus pat-
tern that contains high-frequency components mixing
with other depths (Figs. S4b, f–h). The resulting recon-
structions will be full of gird-like patterns and have iso-
lated unnatural high-frequency components in the Fourier
domain (Fig. S4c).
To address all of the artifacts simultaneously, we pro-

pose DiLFM, which includes a few RL iterations to avoid
edge ringing and an additional dictionary patching
approach to suppress other artifacts and improve the
imaging contrast. The number of RL iterations in this
approach is carefully chosen such that beyond that
number the ringing artifact appears (Fig. S2a, b, Table S2).
Our DiLFM leverages the domain similarity of different
biological samples to assist high-fidelity recovery in LFM
(Methods). Compared to traditional LFM, DiLFM
achieves the same contrast as RL deconvolutions with 10
iterations but with significantly reduced edge ringing
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beating hearts3, and membrane dynamics in embryo
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Although these techniques can access the 3D structures in
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tion is limited by the inertia of the scanning devices or the
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focusing microscopy11, and random access microscopy12.
However, heat tolerance of living animals or organs and
sample density still prevent those methods to achieve high
throughput with low light doses.
Light field microscopy (LFM) emerges as a popular tool

in incoherent imaging of volumetric biological samples
within a single shot13–19. This is achieved by capturing a
4D light field on a single 2D array detector through spe-
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(MLA). The 3D information of biological samples is
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tions20,21. The lack of a scanning device makes LFM a
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situations. The reasons for these drawbacks are due to low
spatial sampling and illness of restoring 3D information
from 2D sensor images.
Many methods are proposed to mitigate parts of these

drawbacks. To avoid NIP artifact, it is straightforward to
carefully set the imaging volume on one side of the NIP23,
which reduces the imaging depth range a lot. Shifting the
MLA to avoid NIP will sacrifice the depth-of-field18.
Methods that reshape PSF25 or add additional views22,26

can help ease edge ringing and improve the contrast, but
either require customized optical components or com-
plicate the system by adding scanning devices or more
objectives. The additional complexity of adding more
hardware also hampers the usage of LFM in freely
behaving animals for volumetric functional imaging due
to space and weight limitation27. On the other hand,
modifying the reconstruction algorithm to mitigate the
LFM artifacts is more convenient and flexible since
adjusting the hardware is avoided. Introducing a strong
blur in the reconstructed volume can reduce the NIP
block-wise artifacts and depth crosstalk, but the imaging
resolution will be much worse28. The phase space
reconstruction approach by Zhi et al. achieves faster
convergence and reduces NIP block-wise artifacts
through serially reconstructing different angular views29

but cannot solve the contrast and ringing dilemma. All
these implements suffer from noise-induced artifacts
when imaging phototoxicity-sensitive samples like mito-
chondria and zebrafish embryos.
Here, we propose a new LFM method based on dic-

tionary patching, termed DiLFM, to enable fast, robust,
and artifact-suppressed volumetric imaging under differ-
ent noisy conditions without hardware modifications
(Fig. 1). Our approach is motivated by recent results in
sparse signal representation, suggesting that artifact-free
signals can be well represented using a linear combination
of few elements from a redundant dictionary even under
heavily noisy conditions30. The systematic artifacts due to
the low sampling rate in LFM can be compensated by
dictionary priors learned from general biological samples.
Our DiLFM reconstruction is a combination of a few RL
iterations to provide basic but ringing-reduced 3D
volumes with a dictionary patching process to fix the
reconstruction artifacts and improve the resolution and
contrast (Fig. S1). We train a pair of low- and high-fidelity
dictionaries under LFM forward model such that only
matched low-fidelity snippets from RL reconstructions
will be updated by high-fidelity elements. With the
robustness of both few-run RL and dictionary patching in
low-SNR conditions, our DiLFM provides superior per-
formances over other methods under noise contamina-
tions. We demonstrate the contrast improvement and
artifacts reduction by DiLFM via multiple simulations and
experiments, including the Drosophila embryo and brain.

We show the robustness of DiLFM in observing zebrafish
blood flow at 100 Hz in low-light conditions. We further
demonstrate that our DiLFM enables finding two times
more neurons in zebrafish brain in vivo with low-power
illumination.

Results
DiLFM substantially suppresses artifacts in LFM
Due to the illness of LFM reconstruction, traditional

LFM usually generates several kinds of artifacts with RL
deconvolutions (Methods and Fig. S1). First, we find
traditional LFM cannot achieve high contrast and ringing-
suppressed reconstructions at the same time. We
numerically simulate a USAF-1951 resolution target at
z=−50 µm and find the core of the square becomes
dimmer and dimmer as more RL iterations are involved
(Fig. S2a, b). The intensity cross-section of an originally
sharp edge clearly shows a ringing feature, while the peak-
to-valley ratio increasing with the iteration number sug-
gests improved contrast (Fig. S2c–e). We argue that such
contrast increase is at the cost of image structure distor-
tions, which should be alleviated for quantitative analysis.
Another well-known artifact of LFM is the block-wise
features in NIP due to the insufficient spatial sampling of
LFM near NIP (Fig. S3a, c). Block artifacts simultaneously
disturb structure continuity in both lateral and axial axes
(Fig. S3d, e). The third kind of image artifact is the
defocus artifact among different layers. We find a sphere
at z=−70 µm shows smear ghost with high-frequency
grids and blocks even at z=+50 µm after LFM recon-
struction, which is very different from a conventional
widefield microscope whose defocus pattern is smooth
(Fig. S4a). When there are two spheres in the space, the
original well-reconstructed sphere can be contaminated
by grid patterns due to the defocus of other spheres
(Fig. S9). When imaging a thick biological volume with
LFM, each depth layer generates a z-spread defocus pat-
tern that contains high-frequency components mixing
with other depths (Figs. S4b, f–h). The resulting recon-
structions will be full of gird-like patterns and have iso-
lated unnatural high-frequency components in the Fourier
domain (Fig. S4c).
To address all of the artifacts simultaneously, we pro-

pose DiLFM, which includes a few RL iterations to avoid
edge ringing and an additional dictionary patching
approach to suppress other artifacts and improve the
imaging contrast. The number of RL iterations in this
approach is carefully chosen such that beyond that
number the ringing artifact appears (Fig. S2a, b, Table S2).
Our DiLFM leverages the domain similarity of different
biological samples to assist high-fidelity recovery in LFM
(Methods). Compared to traditional LFM, DiLFM
achieves the same contrast as RL deconvolutions with 10
iterations but with significantly reduced edge ringing
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(Fig. S2f). Meanwhile, DiLFM faithfully recovers the
block-like feature of a round bead in both x–y and x–z
planes compared to traditional LFM (Fig. S3b–d). Com-
pared to frequency-domain filtering methods, DiLFM can
achieve higher contrast over different depths (Fig. S7).
The grid-like crosstalk artifacts by traditional LFM are
suppressed in DiLFM and reconstructed samples become
much smoother (Fig. S4d, i–k, Fig. S9b). Such artifact
reduction is also confirmed in the frequency domain since
the reconstruction by DiLFM has a more natural and
clearer frequency response (Fig. S4e) compared to that by
traditional LFM.
We further compare our DiLFM with other emerging

LFM methods28,29 through simulation. We see all
methods apart from RL deconvolution from traditional
LFM suppress the block-like artifacts, while anti-aliasing
filter blurs the sample, and phase space method gen-
erates ringing artifacts (Fig. 3a–c). DiLFM achieves the
artifact-suppressed reconstruction together with a sharp
edge which shows a great balance between artifact
reduction and resolution maintenance. We use an
imaging quality metric called structural similarity index
(SSIM)31 to quantitatively assess the reconstruction
quality. We find the SSIM by our method is 0.89, which
is much higher than 0.81 of phase space approach, 0.69
of RL with an anti-aliasing filter, and 0.65 of RL
deconvolution. For objects with gradual changes in the
intensity profiles, our DiLFM also achieves superior
reconstruction results compared to other methods
(Fig. S8).

DiLFM improves fidelity in biological observations
The artifact reduction makes LFM more reliable in

observing Drosophila embryos and adult Drosophila
brains (Fig. 2a and Fig. S5a). We observe that the block-
wise artifacts are largely reduced by DiLFM, and the
embryo boundary and brain sulcus are restored to be
smooth (Fig. 2d, f, Fig. S5i–k). Embryo cells at NIP that
are incorrectly reconstructed into square forms by tradi-
tional LFM are restored to be round by DiLFM (Fig. 2e, g).
The frequency response of these structures is restored to
be a natural form with reduced periodic artifacts (Fig. 2f
and Fig. S5k). We also observe the grid patterns from
depth crosstalk are largely reduced by DiLFM (Fig. 2h, i,
Fig. S5f–h). We find the peak-to-valley ratio of a brain
sulcus is improved ~1.2 times at z= 10 µm by DiLFM,
underlining the reduction of artifacts in DiLFM does not
sacrifice resolution, as compared to previous methods.
LFM is widely used in high-speed volumetric recording

tasks due to its scanning-free and low phototoxicity,
compared to scanning techniques such as confocal
microscopy and two-photon microscopy. We thus
demonstrate the superior performances of DiLFM in
zebrafish blood flow imaging in vivo at 100 Hz in 3D
(Fig. S6). We find DiLFM achieves reduced background
compared to traditional LFM (Fig. S6b, c). Blood cells are
with reduced depth crosstalk in DiLFM such that they can
be easily tracked (Fig. S6d, e). High-speed volumetric
recording enables us to analyze blood flows in zebrafish
larvae by calculating time-lapse intensity changes through
a blood vessel cross-section. Such intensity fluctuations
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fail to predict blood cell flows in traditional LFM due to
low contrast and artifacts (Fig. S6f, h). In the contrast,
DiLFM provides clear reconstructions and suppresses the
ambiguity in blood cell counting (Fig. S6g, i, Fig. S11).

DiLFM achieves significant noise robustness
As a volumetric imaging tool, LFM shows much lower

phototoxicity compared to a confocal microscope since
almost all emitted fluorescent photons contribute to the
final image without waste. However, the illness of LFM
reconstruction causes severe artifacts in low photon
flux conditions. The dominant source of noise in LFM is
the shot noise, which can be modeled as a Poisson dis-
tribution13, while the readout noise following Gaussian
distribution also contaminates the image. Although tra-
ditional LFM reconstruction is derived through Poisson
noise, its performance drops quickly when noise is severe
and other types of noise appear. Our DiLFM can intake
mixed Poisson and Gaussian noise contamination as a
prior during the training process (Methods), and prevent
noise-induced artifacts and resolution degradations. We
show DiLFM achieves superior performance under dif-
ferent noise levels compared to other methods in
numerical simulations (Fig. 3d–f). When the noise level is

at 23.5 dB peak signal-to-noise ratio (PSNR), we find the
DiLFM has clear background while RL and anti-aliasing
methods still have noisy pixels remained (Fig. 3d). DiLFM
achieves the least distorted reconstructions of simulated
spheres among all methods with the highest SSIM
(Fig. 3e). We conduct reconstruction quality assessment
through different noise levels (PSNR ranges from 15.9 dB
to 33.2 dB) and find DiLFM achieves the best recon-
struction quality across the whole noise range (Fig. 3f).
Especially, when PSNR drops below 20 dB, all other
methods show a significant performance drop while our
method remains high performance. Similar performance
improvement by DiLFM is also observed in samples with
gradual changes in intensity profiles (Fig. S8).
The robust performance of DiLFM in noisy conditions

fully unleashes the potential of LFM in long-term in vivo
observation of living zebrafish, where illumination heat
damage needs to be carefully avoided. To confirm such
potentials, we image the zebrafish blood cells (erythrocytes)
with only 0.12 mWmm�2 laser power compared to 6.8
mWmm�2 used in previous experiments (Fig. S6) while the
imaging rate remains at 100Hz. We find the traditional
LFM reconstruction at z= -30 µm is noisy with unrecog-
nizable blood vessels and cells due to extremely low laser
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(Fig. S2f). Meanwhile, DiLFM faithfully recovers the
block-like feature of a round bead in both x–y and x–z
planes compared to traditional LFM (Fig. S3b–d). Com-
pared to frequency-domain filtering methods, DiLFM can
achieve higher contrast over different depths (Fig. S7).
The grid-like crosstalk artifacts by traditional LFM are
suppressed in DiLFM and reconstructed samples become
much smoother (Fig. S4d, i–k, Fig. S9b). Such artifact
reduction is also confirmed in the frequency domain since
the reconstruction by DiLFM has a more natural and
clearer frequency response (Fig. S4e) compared to that by
traditional LFM.
We further compare our DiLFM with other emerging

LFM methods28,29 through simulation. We see all
methods apart from RL deconvolution from traditional
LFM suppress the block-like artifacts, while anti-aliasing
filter blurs the sample, and phase space method gen-
erates ringing artifacts (Fig. 3a–c). DiLFM achieves the
artifact-suppressed reconstruction together with a sharp
edge which shows a great balance between artifact
reduction and resolution maintenance. We use an
imaging quality metric called structural similarity index
(SSIM)31 to quantitatively assess the reconstruction
quality. We find the SSIM by our method is 0.89, which
is much higher than 0.81 of phase space approach, 0.69
of RL with an anti-aliasing filter, and 0.65 of RL
deconvolution. For objects with gradual changes in the
intensity profiles, our DiLFM also achieves superior
reconstruction results compared to other methods
(Fig. S8).

DiLFM improves fidelity in biological observations
The artifact reduction makes LFM more reliable in

observing Drosophila embryos and adult Drosophila
brains (Fig. 2a and Fig. S5a). We observe that the block-
wise artifacts are largely reduced by DiLFM, and the
embryo boundary and brain sulcus are restored to be
smooth (Fig. 2d, f, Fig. S5i–k). Embryo cells at NIP that
are incorrectly reconstructed into square forms by tradi-
tional LFM are restored to be round by DiLFM (Fig. 2e, g).
The frequency response of these structures is restored to
be a natural form with reduced periodic artifacts (Fig. 2f
and Fig. S5k). We also observe the grid patterns from
depth crosstalk are largely reduced by DiLFM (Fig. 2h, i,
Fig. S5f–h). We find the peak-to-valley ratio of a brain
sulcus is improved ~1.2 times at z= 10 µm by DiLFM,
underlining the reduction of artifacts in DiLFM does not
sacrifice resolution, as compared to previous methods.
LFM is widely used in high-speed volumetric recording

tasks due to its scanning-free and low phototoxicity,
compared to scanning techniques such as confocal
microscopy and two-photon microscopy. We thus
demonstrate the superior performances of DiLFM in
zebrafish blood flow imaging in vivo at 100 Hz in 3D
(Fig. S6). We find DiLFM achieves reduced background
compared to traditional LFM (Fig. S6b, c). Blood cells are
with reduced depth crosstalk in DiLFM such that they can
be easily tracked (Fig. S6d, e). High-speed volumetric
recording enables us to analyze blood flows in zebrafish
larvae by calculating time-lapse intensity changes through
a blood vessel cross-section. Such intensity fluctuations
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fail to predict blood cell flows in traditional LFM due to
low contrast and artifacts (Fig. S6f, h). In the contrast,
DiLFM provides clear reconstructions and suppresses the
ambiguity in blood cell counting (Fig. S6g, i, Fig. S11).

DiLFM achieves significant noise robustness
As a volumetric imaging tool, LFM shows much lower

phototoxicity compared to a confocal microscope since
almost all emitted fluorescent photons contribute to the
final image without waste. However, the illness of LFM
reconstruction causes severe artifacts in low photon
flux conditions. The dominant source of noise in LFM is
the shot noise, which can be modeled as a Poisson dis-
tribution13, while the readout noise following Gaussian
distribution also contaminates the image. Although tra-
ditional LFM reconstruction is derived through Poisson
noise, its performance drops quickly when noise is severe
and other types of noise appear. Our DiLFM can intake
mixed Poisson and Gaussian noise contamination as a
prior during the training process (Methods), and prevent
noise-induced artifacts and resolution degradations. We
show DiLFM achieves superior performance under dif-
ferent noise levels compared to other methods in
numerical simulations (Fig. 3d–f). When the noise level is

at 23.5 dB peak signal-to-noise ratio (PSNR), we find the
DiLFM has clear background while RL and anti-aliasing
methods still have noisy pixels remained (Fig. 3d). DiLFM
achieves the least distorted reconstructions of simulated
spheres among all methods with the highest SSIM
(Fig. 3e). We conduct reconstruction quality assessment
through different noise levels (PSNR ranges from 15.9 dB
to 33.2 dB) and find DiLFM achieves the best recon-
struction quality across the whole noise range (Fig. 3f).
Especially, when PSNR drops below 20 dB, all other
methods show a significant performance drop while our
method remains high performance. Similar performance
improvement by DiLFM is also observed in samples with
gradual changes in intensity profiles (Fig. S8).
The robust performance of DiLFM in noisy conditions

fully unleashes the potential of LFM in long-term in vivo
observation of living zebrafish, where illumination heat
damage needs to be carefully avoided. To confirm such
potentials, we image the zebrafish blood cells (erythrocytes)
with only 0.12 mWmm�2 laser power compared to 6.8
mWmm�2 used in previous experiments (Fig. S6) while the
imaging rate remains at 100Hz. We find the traditional
LFM reconstruction at z= -30 µm is noisy with unrecog-
nizable blood vessels and cells due to extremely low laser
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power (Fig. 4a, c, e). On the other hand, DiLFM restores
clear structures with reduced background (Fig. 4b, d, e). The
quality improvement by DiLFM is 3D instead of 2D, con-
firmed through better resolved hollow-core vessels and
elliptical blood cells (Fig. 4d, e). Benefitting from the
improved image quality, we show the DiLFM significantly
increases the counting accuracy of flowing blood cells
by simply calculating cross-section intensity fluctuations
(Fig. 4f, h), compared to traditional LFM which has a highly
noisy baseline and is hard to judge cell flows (Fig. 4f, g).
Blood cells reconstructed by DiLFM have much more
compact and clearer profiles, which reduces ambiguity in
cell counting (Fig. S10).
Finally, we demonstrate DiLFM can achieve better neuron

activity inference compared to the traditional LFM method
in low-illumination conditions. We record a HUC: H2B-
GCaMP6s larvae zebrafish embedded in 1% agar with
0.37mWmm−2. We visualize the neuron extraction by
plotting the projected standard deviation volume along the
temporal axis in Fig. 5a (Methods). The thick larvae zebrafish
head and low illumination power blur the reconstruction by

traditional LFM and generate high backgrounds and arti-
facts, which severely disturb neuron inference (Fig. 5a). On
the other hand, our proposed DiLFM technique obtains
sharper images with finer spatial details thanks to the learned
dictionary prior. Detectable artifacts due to noise and low
spatial sampling of LFM which covers neurons are absent in
DiLFM. We find neurons can be much easier to be recog-
nized through DiLFM compared to traditional LFM (Fig. 5c).
In the temporal domain, traditional LFM only achieves
neuron activities with poor ΔF/F since the SNR is low, while
DiLFM achieves higher activity contrast since the back-
ground is largely suppressed and noise is smoothed through
the dictionary patching (Fig. 5d). In our experiment, DiLFM
unveils 779 neurons through CNMF-E32 analysis in a range
of 800 ´ 600 ´ 100 µm3 volume, compared to 383 neurons
by LFM. The spatial distributions of those active neurons,
temporal activities, and temporal correlations are plotted in
Fig. 5e-g. The artifacts of traditional LFM prevent CNMF-E
from finding neurons near NIP, while neurons found by
CNMF-E under the same parameters are uniform along
different depths by DiLFM (Fig. 5h). Higher fidelity of
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inferring neurons in both spatial and temporal domain of
DiLFM makes it superior in volumetric functional imaging
(Fig. S12). Compared to other LFM techniques which
require scanning33 or multiview imaging22, DiLFM gives
an efficient performance-improving solution without any
hardware modifications.

Discussion
In summary, we have developed DiLFM, an algorithm-

enhanced LFM technique that can substantially reduce

reconstruction artifacts and maintain high contrast without
any hardware modification even in extremely noisy condi-
tions. To optimize the performance of the proposed DiLFM,
we thoroughly discuss the appearance and mechanism of
three different kinds of LFM reconstruction artifacts and
intake them all into a dictionary patching model to correct
them. Furthermore, the proposed dictionary patching
increases the reconstruction resolution and contrast by
supplying high-resolution and high-contrast information
from the training stage. We validate our DiLFM through
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power (Fig. 4a, c, e). On the other hand, DiLFM restores
clear structures with reduced background (Fig. 4b, d, e). The
quality improvement by DiLFM is 3D instead of 2D, con-
firmed through better resolved hollow-core vessels and
elliptical blood cells (Fig. 4d, e). Benefitting from the
improved image quality, we show the DiLFM significantly
increases the counting accuracy of flowing blood cells
by simply calculating cross-section intensity fluctuations
(Fig. 4f, h), compared to traditional LFM which has a highly
noisy baseline and is hard to judge cell flows (Fig. 4f, g).
Blood cells reconstructed by DiLFM have much more
compact and clearer profiles, which reduces ambiguity in
cell counting (Fig. S10).
Finally, we demonstrate DiLFM can achieve better neuron

activity inference compared to the traditional LFM method
in low-illumination conditions. We record a HUC: H2B-
GCaMP6s larvae zebrafish embedded in 1% agar with
0.37mWmm−2. We visualize the neuron extraction by
plotting the projected standard deviation volume along the
temporal axis in Fig. 5a (Methods). The thick larvae zebrafish
head and low illumination power blur the reconstruction by

traditional LFM and generate high backgrounds and arti-
facts, which severely disturb neuron inference (Fig. 5a). On
the other hand, our proposed DiLFM technique obtains
sharper images with finer spatial details thanks to the learned
dictionary prior. Detectable artifacts due to noise and low
spatial sampling of LFM which covers neurons are absent in
DiLFM. We find neurons can be much easier to be recog-
nized through DiLFM compared to traditional LFM (Fig. 5c).
In the temporal domain, traditional LFM only achieves
neuron activities with poor ΔF/F since the SNR is low, while
DiLFM achieves higher activity contrast since the back-
ground is largely suppressed and noise is smoothed through
the dictionary patching (Fig. 5d). In our experiment, DiLFM
unveils 779 neurons through CNMF-E32 analysis in a range
of 800 ´ 600 ´ 100 µm3 volume, compared to 383 neurons
by LFM. The spatial distributions of those active neurons,
temporal activities, and temporal correlations are plotted in
Fig. 5e-g. The artifacts of traditional LFM prevent CNMF-E
from finding neurons near NIP, while neurons found by
CNMF-E under the same parameters are uniform along
different depths by DiLFM (Fig. 5h). Higher fidelity of
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inferring neurons in both spatial and temporal domain of
DiLFM makes it superior in volumetric functional imaging
(Fig. S12). Compared to other LFM techniques which
require scanning33 or multiview imaging22, DiLFM gives
an efficient performance-improving solution without any
hardware modifications.

Discussion
In summary, we have developed DiLFM, an algorithm-

enhanced LFM technique that can substantially reduce

reconstruction artifacts and maintain high contrast without
any hardware modification even in extremely noisy condi-
tions. To optimize the performance of the proposed DiLFM,
we thoroughly discuss the appearance and mechanism of
three different kinds of LFM reconstruction artifacts and
intake them all into a dictionary patching model to correct
them. Furthermore, the proposed dictionary patching
increases the reconstruction resolution and contrast by
supplying high-resolution and high-contrast information
from the training stage. We validate our DiLFM through
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both simulations and experiments, including imaging Dro-
sophila embryos and Drosophila brain. We further show
DiLFM can increase the cell-counting accuracy of flowing
blood cells in zebrafish in vivo even under extremely noisy
conditions to keep the animal safe in long-term recordings.
In the functional imaging experiment, we show DiLFM can
discover two times more neurons with improved ΔF/F and
reduced artifacts disturbance with low light dosage. We
hope the scheme can help LFM become a promising and
reliable tool for high-speed imaging biological tissues in 3D.
The proposed DiLFM achieves superior performance

compared to traditional LFM but with full advantages of
LFM in other aspects. For example, the volume acquisition
rate of DiLFM is independent of the size of the sample and
only limited by camera frame rate, compared to other 3D
imaging technology. Introducing the dictionary only affects
the downstream data processing speed without any sacrifice

of capturing rate. It is straightforward to extend DiLFM to a
larger FOV or a compact head-mounted LFM27. Further-
more, by introducing photon-scattering models into
dictionary priors34, it is possible to exceed the depth-
penetration limitation of DiLFM in in vivo mouse-brain
imaging23. Borrowing the thoughts from DiLFM of using the
versatile dictionary to adopt different imaging environments,
other deconvolution energized volumetric imaging meth-
ods22,35 can also use such a prior for better performance in
various applications.

Materials and methods
DiLFM optical setup
We set up the light field microscope based on a com-

mercial microscope (Zeiss, Observer Z1) and use a mercury
lamp as the illumination source. We use different objectives
for different imaging tasks (see Table S1) with the same
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f = 165mm tube lens. The MLA is put on the image plane
of the microscope. The specification of the MLA we use has
a 100 µm pitch size and a 2.1mm focal length to code the
3D information. We put a relay system between the camera
(Andor Zyla 4.2 Plus, Oxford Instruments) and the MLA,
which conjugates the back-pupil plane of the MLA to the
sensor plane. The sensor pixel size is 6.5 µm and the mag-
nification of the relay lens system is set to be 0.845.

DiLFM principle
The proposed DiLFM can be decomposed into two parts:

raw reconstructions through a few runs of RL iterations
and fine reconstructions through dictionary patching. In
the following sections, we first mathematically represent
the RL iteration of LFM, then describe the way that our
proposed dictionary patching fixes these artifacts and
improves the reconstruction resolution and contrast.

Light-field microscopy model and RL deconvolution
A common light-field microscope is composited by a

wide-field microscopy and an MLA put in the native ima-
ging plane, as shown in Fig. 1. We denote the sample space
coordinate as x1; x2; zð Þ and sensor space coordinate as
s1; s2ð Þ. The point spread function (PSF) of LFM can be
formulated by

h x1; x2; z; s1; s2ð Þ ¼ =fμ U x1; x2; z; s1; s2ð ÞΦ s1; s2ð Þf g�� ��2
ð1Þ

Here, U x1; x2; z; s1; s2ð Þ is the optical field in the NIP
generated by a point source in x1; x2; zð Þ, which is defined
by36

U x1; x2; z; s1; s2ð Þ
¼ M

f 2objλ
2 exp � iu

4 sin2 α=2ð Þ
� � R α

0 P θð Þ exp � iu sin2 θ=2ð Þ
2 sin2 α=2ð Þ

� �
J0

sin θð Þ
sin αð Þ v
� �

sin θð Þdθ

v � k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � s1ð Þ2þ x2 � s2ð Þ2

q
sin αð Þ

u � 4kz sin2 α=2ð Þ
ð2Þ

Φ s1; s2ð Þ is the modulation function of the MLA which
has pitch size d and focal length fμ

Φ s1; s2ð Þ ¼ RR rect t1
d

� �
rect t2

d

� �
exp � ik

2fμ
t21 þ t22
� �� �

s1�t1
d

� �
comb s2�t2

d

� �
dt1dt2

ð3Þ
=fμ �f g is the Fresnel propagation operator which carries a
light field as input and propagates a distance fμ along the
optical axis.
To reconstruct the 3D sample from the captured image,

we need to bin the continuous sample and sensor
space for voxelization and pixelization13. LFM can then be
modeled as a linear system H that maps the 3D sample

space into 2D sensor space

X
x1;x2;z

H x1; x2; z; s1; s2ð ÞX x1; x2; zð Þ ¼ Y s1; s2ð Þ ð4Þ

Here Y is the discrete sensor image and X is the 3D
distribution of the sample. The weight matrix H can be
sampled from Eq. (1) which records how the photons
emitted from the voxel ðx1; x2; zÞ separates and contri-
butes to the pixel ðs1; s2Þ. Further, the weight matrix H
could be simplified via periodicity introduced by the
MLA, which implies

H x1; x2; z; s1; s2ð Þ ¼ H x1 þ D; x2 þ D; z; s1 þ D; s2 þ Dð Þ
ð5Þ

where D is the pitch of microlens under the unit of pixel
size. We simplify Eq. (4) into Hfor Xð Þ ¼ Y to represent
the forward projection in LFM. On the other hand, if we
trace back each light ray that reaches the sensor, we can
rebuild the sample Xðx1; x2; zÞ via

X
s1;s2

H x1; x2; z; s1; s2ð ÞY s1; s2ð ÞP
w1;w2

H x1; x2; z;w1;w2ð Þ ¼ X x1; x2; zð Þ ð6Þ

We simplify Eq. (6) into Hback Yð Þ ¼ X to represent the
backward projection in LFM. It is popular to use RL
algorithm to refine X from Y and H. In each iteration, RL
tries to update X̂ tð Þ from the last iteration result X̂ t�1ð Þ via13

X̂ tð Þ  X̂ t�1ð Þ �Hback
Y

Hfor X̂ t�1ð Þð Þ
� �

ð7Þ
where � means element-wise multiplication. We denote
the running Eq. (7) once as one RL iteration. Usually to
reconstruct an LFM volume requires multiple RL itera-
tions37. On the other hand, running RL iterations too
much will cause severe edge ringing problems.

Fixing artifacts and improve contrast through dictionary
patching
In this section, we first show how to learn a dual dic-

tionary pair Dl;z;Dh;z
� �

with LFM model, where Dl;z is the
collection of most representative elements of raw LFM
reconstruction and Dh;z is the collection of corresponding
high-fidelity and artifact-reduced elements. The element
here means the local features of an image, e.g., corners for
edges. We then show how to apply the learned diction-
aries to achieve high-fidelity and artifact-reduced recon-
struction from raw RL reconstruction.
We prepare a set of high-fidelity and high SNR 3D

volume Irefj

n o
to learn the dictionary prior. For each

reference volume Irefj , we numerically feed it into LFM

forward projection built-in Eq. (4) to get an LFM capture
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both simulations and experiments, including imaging Dro-
sophila embryos and Drosophila brain. We further show
DiLFM can increase the cell-counting accuracy of flowing
blood cells in zebrafish in vivo even under extremely noisy
conditions to keep the animal safe in long-term recordings.
In the functional imaging experiment, we show DiLFM can
discover two times more neurons with improved ΔF/F and
reduced artifacts disturbance with low light dosage. We
hope the scheme can help LFM become a promising and
reliable tool for high-speed imaging biological tissues in 3D.
The proposed DiLFM achieves superior performance

compared to traditional LFM but with full advantages of
LFM in other aspects. For example, the volume acquisition
rate of DiLFM is independent of the size of the sample and
only limited by camera frame rate, compared to other 3D
imaging technology. Introducing the dictionary only affects
the downstream data processing speed without any sacrifice

of capturing rate. It is straightforward to extend DiLFM to a
larger FOV or a compact head-mounted LFM27. Further-
more, by introducing photon-scattering models into
dictionary priors34, it is possible to exceed the depth-
penetration limitation of DiLFM in in vivo mouse-brain
imaging23. Borrowing the thoughts from DiLFM of using the
versatile dictionary to adopt different imaging environments,
other deconvolution energized volumetric imaging meth-
ods22,35 can also use such a prior for better performance in
various applications.

Materials and methods
DiLFM optical setup
We set up the light field microscope based on a com-

mercial microscope (Zeiss, Observer Z1) and use a mercury
lamp as the illumination source. We use different objectives
for different imaging tasks (see Table S1) with the same
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f = 165mm tube lens. The MLA is put on the image plane
of the microscope. The specification of the MLA we use has
a 100 µm pitch size and a 2.1mm focal length to code the
3D information. We put a relay system between the camera
(Andor Zyla 4.2 Plus, Oxford Instruments) and the MLA,
which conjugates the back-pupil plane of the MLA to the
sensor plane. The sensor pixel size is 6.5 µm and the mag-
nification of the relay lens system is set to be 0.845.

DiLFM principle
The proposed DiLFM can be decomposed into two parts:

raw reconstructions through a few runs of RL iterations
and fine reconstructions through dictionary patching. In
the following sections, we first mathematically represent
the RL iteration of LFM, then describe the way that our
proposed dictionary patching fixes these artifacts and
improves the reconstruction resolution and contrast.

Light-field microscopy model and RL deconvolution
A common light-field microscope is composited by a

wide-field microscopy and an MLA put in the native ima-
ging plane, as shown in Fig. 1. We denote the sample space
coordinate as x1; x2; zð Þ and sensor space coordinate as
s1; s2ð Þ. The point spread function (PSF) of LFM can be
formulated by

h x1; x2; z; s1; s2ð Þ ¼ =fμ U x1; x2; z; s1; s2ð ÞΦ s1; s2ð Þf g�� ��2
ð1Þ

Here, U x1; x2; z; s1; s2ð Þ is the optical field in the NIP
generated by a point source in x1; x2; zð Þ, which is defined
by36

U x1; x2; z; s1; s2ð Þ
¼ M

f 2objλ
2 exp � iu

4 sin2 α=2ð Þ
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v � k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � s1ð Þ2þ x2 � s2ð Þ2

q
sin αð Þ

u � 4kz sin2 α=2ð Þ
ð2Þ

Φ s1; s2ð Þ is the modulation function of the MLA which
has pitch size d and focal length fμ

Φ s1; s2ð Þ ¼ RR rect t1
d

� �
rect t2

d

� �
exp � ik

2fμ
t21 þ t22
� �� �

s1�t1
d

� �
comb s2�t2

d

� �
dt1dt2

ð3Þ
=fμ �f g is the Fresnel propagation operator which carries a
light field as input and propagates a distance fμ along the
optical axis.
To reconstruct the 3D sample from the captured image,

we need to bin the continuous sample and sensor
space for voxelization and pixelization13. LFM can then be
modeled as a linear system H that maps the 3D sample

space into 2D sensor space

X
x1;x2;z

H x1; x2; z; s1; s2ð ÞX x1; x2; zð Þ ¼ Y s1; s2ð Þ ð4Þ

Here Y is the discrete sensor image and X is the 3D
distribution of the sample. The weight matrix H can be
sampled from Eq. (1) which records how the photons
emitted from the voxel ðx1; x2; zÞ separates and contri-
butes to the pixel ðs1; s2Þ. Further, the weight matrix H
could be simplified via periodicity introduced by the
MLA, which implies

H x1; x2; z; s1; s2ð Þ ¼ H x1 þ D; x2 þ D; z; s1 þ D; s2 þ Dð Þ
ð5Þ

where D is the pitch of microlens under the unit of pixel
size. We simplify Eq. (4) into Hfor Xð Þ ¼ Y to represent
the forward projection in LFM. On the other hand, if we
trace back each light ray that reaches the sensor, we can
rebuild the sample Xðx1; x2; zÞ via

X
s1;s2

H x1; x2; z; s1; s2ð ÞY s1; s2ð ÞP
w1;w2

H x1; x2; z;w1;w2ð Þ ¼ X x1; x2; zð Þ ð6Þ

We simplify Eq. (6) into Hback Yð Þ ¼ X to represent the
backward projection in LFM. It is popular to use RL
algorithm to refine X from Y and H. In each iteration, RL
tries to update X̂ tð Þ from the last iteration result X̂ t�1ð Þ via13

X̂ tð Þ  X̂ t�1ð Þ �Hback
Y

Hfor X̂ t�1ð Þð Þ
� �

ð7Þ
where � means element-wise multiplication. We denote
the running Eq. (7) once as one RL iteration. Usually to
reconstruct an LFM volume requires multiple RL itera-
tions37. On the other hand, running RL iterations too
much will cause severe edge ringing problems.

Fixing artifacts and improve contrast through dictionary
patching
In this section, we first show how to learn a dual dic-

tionary pair Dl;z;Dh;z
� �

with LFM model, where Dl;z is the
collection of most representative elements of raw LFM
reconstruction and Dh;z is the collection of corresponding
high-fidelity and artifact-reduced elements. The element
here means the local features of an image, e.g., corners for
edges. We then show how to apply the learned diction-
aries to achieve high-fidelity and artifact-reduced recon-
struction from raw RL reconstruction.
We prepare a set of high-fidelity and high SNR 3D

volume Irefj

n o
to learn the dictionary prior. For each

reference volume Irefj , we numerically feed it into LFM

forward projection built-in Eq. (4) to get an LFM capture
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Y ref
j , then use the RL deconvolution in Eq. (7) to get a raw

reconstructed volume Î refj . In this way, we generate a set of

high and low-fidelity volume pairs Irefj ; Î refj

� �n o
, where

the resolution drops and artifacts in Î refj are generated

through the real LFM model. Since the LFM artifacts are
associated with depth z as discussed in Sec. 2.2, we split

the volume pair Irefj ; Î refj

� �n o
into different z-depth pairs

Irefj;z ; Î
ref
j;z

� �n o
and further generate a patch dataset Pz

regarding z-depth for the following training via

Pz ¼ Lk Irefj;z � Î refj;z

� �
; Lk FÎrefj;z

� �n o
¼Δ pkh; p

k
l

� � ð8Þ
where Lk �ð Þ is the linear image-to-patch mapping so that affiffiffi
n
p

´
ffiffiffi
n
p

-pixel patch can be extracted from an image and
k is the patch index. Patches are randomly selected from
the image with overlapping. Since some biological
samples are quite sparse, we select patches with enough
signal intensity to avoid null patches. F is a feature
extraction operator that provides a perceptually mean-
ingful representation of patch38. The common option of F
can be the first- and second-order gradients of patches.
The reason to use Irefj;z � Î refj;z is to let the later learning
process focus on high-frequency information30. We also
conduct a dimensionality reduction through Principal
Component Analysis (PCA) algorithm to pkl

� �
for

reducing superfluous computations30. After these pre-
parations, the low-fidelity dictionary Dl;z which is the
collection of most representative elements in zth depth of
LFM reconstructed biological tissue can be learned via

Dl;z; βk
� � ¼ argmin

X
k

kpkl �Dl;zβ
kk22; s:t:kβkk0 � κ;8k ð9Þ

where k � k2 is ‘2 norm which measures the data fidelity,
k � k0 is the ‘0 “norm” which measures the sparsity, βk is
the sparse representation coefficients for low-fidelity
patch pkl , and κ is maximum sparsity tolerance. Equation
(9) could be effectively solved by the well-known K-SVD
algorithm39. The corresponding high-fidelity dictionary
Dh;z is generated by solving the following quadratic
programming (QP)

Dh;z ¼ argmin
P
j

Irefj;z � Î refj;z �
P
k
LTk Lk

� ��1 P
k
LTk Dh;zβ

k

� ������

�����
2

2

ð10Þ
Note the library pair Dl;z;Dh;z

� �
is specific for different z

since the degradation of imaging quality is depth-
dependent. Here we assume the high- and low-fidelity

dictionaries share the same sparse representation βk
� �

based on the assumption that artifact contamination and

blur operation in LFM reconstructions are near-linear
(Note S1). The NIP artifact is covered by the dictionary
learned in the NIP layer. The defocus artifact is also
covered since the whole reconstructed volume is learned
instead of only learning single-image reconstructions, as a
comparison to the traditional dictionary learning
method38. The high-fidelity and artifact-free reference

volume Irefj

n o
are collected from broad bioimage bench-

mark collection Nos. 021, 027, 032, 03340, and SOCR 3D
Cell Morphometry Project Data41. The flowchart of the
LFM dictionary learning process is shown in Fig. S1a.

To achieve high-fidelity and artifact-reduced volume
~XðtÞ from raw RL reconstruction volume X̂ðtÞ, we run
sparse representation for each z depth of X̂ðtÞ with the
learned z-depth dictionary prior Dl;z;Dh;z

� �
. Firstly, we

estimate the sparse representation of each local patch of
X̂ðtÞz . We extract the local patch from X̂ðtÞz by the same
mapping Lk �ð Þ as above with the size of

ffiffiffi
n
p

´
ffiffiffi
n
p

-pixel,
then search a sparse coding vector αkz such that LkX̂

ðtÞ
z can

be sparsely represented as the weighted summation of a
few elements from Dl;z

minkαkzk0; s:t:
���FLkX̂ðtÞz �Dl;zαkz

���
2
�2 ð11Þ

where ϵ is the error tolerance. Eq. (11) can be solved via
orthogonal matching pursuit (OMP) algorithm42. Sec-
ondly, we use the found sparse coefficients αkz to recover
the high-fidelity and artifact-reduced patch pkh;z by pkh;z ¼
Dh;zαk , then accumulate pkh;z to form a high-fidelity image

~XðtÞz by solving the following minimization problem

~XðtÞz ¼ argmin
X
k

���Lk ~XðtÞz � X̂ tð Þ
� �

� pkh

���
2

2
ð12Þ

After concatenating ~XðtÞz into the whole volume ~XðtÞ, a
high-fidelity and artifact-reduced volume is recovered
from original RL reconstruction X̂ðtÞ. The flow-chart of
the reconstruction processing is shown in Fig. S1b. To
choose proper RL iterations before dictionary patching,
one can visually check the RL output. Once there is edge
ringing the RL iteration number should be reduced. For
samples with uniform intensity distribution, 1 RL iteration
is enough. All RL iteration numbers of experiments in the
manuscript can be found in Table S2.

Dictionary training with noise
We train the dictionary with mixed Poisson and Gaus-

sian noise contaminations. The dark noise and the photon
noise of fluorescent imaging follow a Poisson distribution
while the readout noise follows a Gaussian distribution.
Hence, we choose the mixed Poisson and Gaussian noise

Zhang et al. Light: Science & Applications ���������(2021)�10:152� Page 9 of 12

to mimic the real situation. The observed image under the
microscope thus can be modeled as43

Y ¼ αP Hfor Xð Þ
α

� �
þN 0; σ2ð Þ ð13Þ

where Y is observed image, Hfor is the forward propagator
of LFM, X is the noise-free sample, α is the scaling factor
that controls the strength of Poisson noise, Pð�Þ is the
realization of Poisson noise, and N 0; σ2ð Þ represents
Gaussian noise with 0 mean and σ2 variance. We fix σ2 to
be ~200 for 16-bit sCMOS image, and varying α to
generate captures with the different noise levels. The

high-fidelity and artifact-free reference volume Irefj

n o
are

firstly propagated to the sensor plane, then added Poisson
and Gaussian noise with MATLAB function imnoise to

form Î refj

n o
. Then, noise aware dictionary is learned

through Eqs. (9) and (10). Î refj

n o
contains multiple levels

of noise to accommodate different SNR conditions.
Trained low- and high-fidelity dictionaries have different
element numbers and patch sizes to accommodate
different modalities, see Table S2.

Sample preparation
Drosophila embryo imaging
The Drosophila embryo used in this study (Fig. 2)

expressed histone tagged with EGFP (w; His2Av::eGFP;
Bloomington stock #23560). The embryos were collected
by putting adult flies on a grape-juice agar plate for
45min–1 h. After incubation at 25 °C for 1 h, the embryos
were attached to a glass slide with double-sided tape. We
use forceps to carefully roll an embryo on the tape until
the embryo dechorionated. The Dechorionated embryos
were embedded in 2% low-melting-temperature agarose
in a Glass Bottom Dish (35 mm Dish with 20mm Bottom
Well, Cellvis). We put the Glass Bottom Dish on the
microscope stage and scan the embryo along the z-axis 4
times with a 30 µm stride, then concatenate 4 recon-
structed stacks to form the volume.

Drosophila brain imaging
The Drosophila Adult Brain (w1118) used in this study

(Fig. S5) was dissected at 4–5 days after eclosion in
phosphate buffer saline (PBS) and fixed with 4% paraf-
ormaldehyde in PBST (PBS with 0.3%Triton X-100) for
30min. After washing in PBST, the brain was blocked in
5% normal mouse serum in PBST for 2 h in RT (room
temperature) and then immunostained using commercial
antibodies. The brain was incubated in primary antibodies
(Mouse anti nc82, 1:20, Hybridoma Bank) and secondary
antibodies (Goat anti-mouse Alexa-488,1:200, Invitrogen)
for 48–72 h at 4 °C, with a 2 h wash at 4 °C between the

primary and secondary antibody incubations. After that,
the brain was washed 3–4 times in PBST. The brain is cut
into ~60 µm thickness slices. The slice was mounted and
was further observed by the LFM in epifluorescence
mode. No concatenation is made. No further deconvo-
lution is applied.

Zebrafish blood cell imaging
Zebrafish from the transgenic line Tg(gata1:DsRed)

were used in this study for blood cell imaging (Fig. 4,
Fig. S6). For two-color recordings (Fig. 4), zebrafish from
the transgenic line Tg(gata1:DsRed) were crossed with
zebrafish from the transgenic line Tg(flk: EGFP). The
embryos were raised at 28.5 °C until 4 dpf. Larval zeb-
rafish were paralyzed by short immersion in 1mgml�1 α
-bungarotoxin solution (Invitrogen). After paralyzed, the
larval were embedded in 1% low-melting-temperature
agarose in a Glass Bottom Dish (35 mm Dish with 20 mm
Bottom Well, Cellvis). We maintained the specimen at
room temperature and imaged the zebrafish larval at
100 Hz.

Zebrafish functional imaging
Zebrafish from the transgenic line Tg(HUC:

GCaMP6s) expressing the calcium indicator GCaMP6s
was raised at 28.5°C until 4 dpf for short-term functional
imaging (Fig. 1b and Fig. 5). Larval zebrafish were
paralyzed by short immersion in 1 mg ml−1 α-bungar-
otoxin solution (Invitrogen). After paralyzed, the larval
were embedded in 1% low-melting-temperature agarose
in a Glass Bottom Dish (35 mm Dish with 20 mm Bot-
tom Well, Cellvis). For imaging, the dorsal side of the
head of the larval zebrafish was facing the objective. We
maintained the specimen at room temperature and
imaged the zebrafish larval at 1 Hz. Assume the recon-
structed volume by DiLFM is ~Xðx; y; z; tÞ where x; y; zð Þ
is the 3D spatial coordinate of the voxel and t labels the
time, the temporal summarized volume was calculated
through the following procedures. In the first step, we
calculate the rank-1 background components of
~Xðx; y; z; tÞ via

b; f½ � ¼ argmin
b;f

X
t

~Xðx; y; z; tÞ � bðx; y; zÞ � f tð Þ�� ��2
2

ð14Þ

where bðx; y; zÞ is the spatial background and f tð Þ is
the temporal background. b and f can be calculated
through normal non-negative matrix factorization
techniques44. The background-subtracted image is
then calculated by ~X1ðx; y; z; tÞ ¼ ~Xðx; y; z; tÞ �
bðx; y; zÞ � f tð Þ. Then, we calculate the standard devia-
tion volume of all the background-subtracted volumes
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Y ref
j , then use the RL deconvolution in Eq. (7) to get a raw

reconstructed volume Î refj . In this way, we generate a set of

high and low-fidelity volume pairs Irefj ; Î refj

� �n o
, where

the resolution drops and artifacts in Î refj are generated

through the real LFM model. Since the LFM artifacts are
associated with depth z as discussed in Sec. 2.2, we split

the volume pair Irefj ; Î refj

� �n o
into different z-depth pairs

Irefj;z ; Î
ref
j;z

� �n o
and further generate a patch dataset Pz

regarding z-depth for the following training via

Pz ¼ Lk Irefj;z � Î refj;z

� �
; Lk FÎrefj;z

� �n o
¼Δ pkh; p

k
l

� � ð8Þ
where Lk �ð Þ is the linear image-to-patch mapping so that affiffiffi
n
p

´
ffiffiffi
n
p

-pixel patch can be extracted from an image and
k is the patch index. Patches are randomly selected from
the image with overlapping. Since some biological
samples are quite sparse, we select patches with enough
signal intensity to avoid null patches. F is a feature
extraction operator that provides a perceptually mean-
ingful representation of patch38. The common option of F
can be the first- and second-order gradients of patches.
The reason to use Irefj;z � Î refj;z is to let the later learning
process focus on high-frequency information30. We also
conduct a dimensionality reduction through Principal
Component Analysis (PCA) algorithm to pkl

� �
for

reducing superfluous computations30. After these pre-
parations, the low-fidelity dictionary Dl;z which is the
collection of most representative elements in zth depth of
LFM reconstructed biological tissue can be learned via

Dl;z; βk
� � ¼ argmin

X
k

kpkl �Dl;zβ
kk22; s:t:kβkk0 � κ;8k ð9Þ

where k � k2 is ‘2 norm which measures the data fidelity,
k � k0 is the ‘0 “norm” which measures the sparsity, βk is
the sparse representation coefficients for low-fidelity
patch pkl , and κ is maximum sparsity tolerance. Equation
(9) could be effectively solved by the well-known K-SVD
algorithm39. The corresponding high-fidelity dictionary
Dh;z is generated by solving the following quadratic
programming (QP)

Dh;z ¼ argmin
P
j

Irefj;z � Î refj;z �
P
k
LTk Lk

� ��1 P
k
LTk Dh;zβ

k

� ������

�����
2

2

ð10Þ
Note the library pair Dl;z;Dh;z

� �
is specific for different z

since the degradation of imaging quality is depth-
dependent. Here we assume the high- and low-fidelity

dictionaries share the same sparse representation βk
� �

based on the assumption that artifact contamination and

blur operation in LFM reconstructions are near-linear
(Note S1). The NIP artifact is covered by the dictionary
learned in the NIP layer. The defocus artifact is also
covered since the whole reconstructed volume is learned
instead of only learning single-image reconstructions, as a
comparison to the traditional dictionary learning
method38. The high-fidelity and artifact-free reference

volume Irefj

n o
are collected from broad bioimage bench-

mark collection Nos. 021, 027, 032, 03340, and SOCR 3D
Cell Morphometry Project Data41. The flowchart of the
LFM dictionary learning process is shown in Fig. S1a.

To achieve high-fidelity and artifact-reduced volume
~XðtÞ from raw RL reconstruction volume X̂ðtÞ, we run
sparse representation for each z depth of X̂ðtÞ with the
learned z-depth dictionary prior Dl;z;Dh;z

� �
. Firstly, we

estimate the sparse representation of each local patch of
X̂ðtÞz . We extract the local patch from X̂ðtÞz by the same
mapping Lk �ð Þ as above with the size of

ffiffiffi
n
p

´
ffiffiffi
n
p

-pixel,
then search a sparse coding vector αkz such that LkX̂

ðtÞ
z can

be sparsely represented as the weighted summation of a
few elements from Dl;z

minkαkzk0; s:t:
���FLkX̂ðtÞz �Dl;zαkz

���
2
�2 ð11Þ

where ϵ is the error tolerance. Eq. (11) can be solved via
orthogonal matching pursuit (OMP) algorithm42. Sec-
ondly, we use the found sparse coefficients αkz to recover
the high-fidelity and artifact-reduced patch pkh;z by pkh;z ¼
Dh;zαk , then accumulate pkh;z to form a high-fidelity image

~XðtÞz by solving the following minimization problem

~XðtÞz ¼ argmin
X
k

���Lk ~XðtÞz � X̂ tð Þ
� �

� pkh

���
2

2
ð12Þ

After concatenating ~XðtÞz into the whole volume ~XðtÞ, a
high-fidelity and artifact-reduced volume is recovered
from original RL reconstruction X̂ðtÞ. The flow-chart of
the reconstruction processing is shown in Fig. S1b. To
choose proper RL iterations before dictionary patching,
one can visually check the RL output. Once there is edge
ringing the RL iteration number should be reduced. For
samples with uniform intensity distribution, 1 RL iteration
is enough. All RL iteration numbers of experiments in the
manuscript can be found in Table S2.

Dictionary training with noise
We train the dictionary with mixed Poisson and Gaus-

sian noise contaminations. The dark noise and the photon
noise of fluorescent imaging follow a Poisson distribution
while the readout noise follows a Gaussian distribution.
Hence, we choose the mixed Poisson and Gaussian noise
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to mimic the real situation. The observed image under the
microscope thus can be modeled as43

Y ¼ αP Hfor Xð Þ
α

� �
þN 0; σ2ð Þ ð13Þ

where Y is observed image, Hfor is the forward propagator
of LFM, X is the noise-free sample, α is the scaling factor
that controls the strength of Poisson noise, Pð�Þ is the
realization of Poisson noise, and N 0; σ2ð Þ represents
Gaussian noise with 0 mean and σ2 variance. We fix σ2 to
be ~200 for 16-bit sCMOS image, and varying α to
generate captures with the different noise levels. The

high-fidelity and artifact-free reference volume Irefj

n o
are

firstly propagated to the sensor plane, then added Poisson
and Gaussian noise with MATLAB function imnoise to

form Î refj

n o
. Then, noise aware dictionary is learned

through Eqs. (9) and (10). Î refj

n o
contains multiple levels

of noise to accommodate different SNR conditions.
Trained low- and high-fidelity dictionaries have different
element numbers and patch sizes to accommodate
different modalities, see Table S2.

Sample preparation
Drosophila embryo imaging
The Drosophila embryo used in this study (Fig. 2)

expressed histone tagged with EGFP (w; His2Av::eGFP;
Bloomington stock #23560). The embryos were collected
by putting adult flies on a grape-juice agar plate for
45min–1 h. After incubation at 25 °C for 1 h, the embryos
were attached to a glass slide with double-sided tape. We
use forceps to carefully roll an embryo on the tape until
the embryo dechorionated. The Dechorionated embryos
were embedded in 2% low-melting-temperature agarose
in a Glass Bottom Dish (35 mm Dish with 20mm Bottom
Well, Cellvis). We put the Glass Bottom Dish on the
microscope stage and scan the embryo along the z-axis 4
times with a 30 µm stride, then concatenate 4 recon-
structed stacks to form the volume.

Drosophila brain imaging
The Drosophila Adult Brain (w1118) used in this study

(Fig. S5) was dissected at 4–5 days after eclosion in
phosphate buffer saline (PBS) and fixed with 4% paraf-
ormaldehyde in PBST (PBS with 0.3%Triton X-100) for
30min. After washing in PBST, the brain was blocked in
5% normal mouse serum in PBST for 2 h in RT (room
temperature) and then immunostained using commercial
antibodies. The brain was incubated in primary antibodies
(Mouse anti nc82, 1:20, Hybridoma Bank) and secondary
antibodies (Goat anti-mouse Alexa-488,1:200, Invitrogen)
for 48–72 h at 4 °C, with a 2 h wash at 4 °C between the

primary and secondary antibody incubations. After that,
the brain was washed 3–4 times in PBST. The brain is cut
into ~60 µm thickness slices. The slice was mounted and
was further observed by the LFM in epifluorescence
mode. No concatenation is made. No further deconvo-
lution is applied.

Zebrafish blood cell imaging
Zebrafish from the transgenic line Tg(gata1:DsRed)

were used in this study for blood cell imaging (Fig. 4,
Fig. S6). For two-color recordings (Fig. 4), zebrafish from
the transgenic line Tg(gata1:DsRed) were crossed with
zebrafish from the transgenic line Tg(flk: EGFP). The
embryos were raised at 28.5 °C until 4 dpf. Larval zeb-
rafish were paralyzed by short immersion in 1mgml�1 α
-bungarotoxin solution (Invitrogen). After paralyzed, the
larval were embedded in 1% low-melting-temperature
agarose in a Glass Bottom Dish (35 mm Dish with 20 mm
Bottom Well, Cellvis). We maintained the specimen at
room temperature and imaged the zebrafish larval at
100 Hz.

Zebrafish functional imaging
Zebrafish from the transgenic line Tg(HUC:

GCaMP6s) expressing the calcium indicator GCaMP6s
was raised at 28.5°C until 4 dpf for short-term functional
imaging (Fig. 1b and Fig. 5). Larval zebrafish were
paralyzed by short immersion in 1 mg ml−1 α-bungar-
otoxin solution (Invitrogen). After paralyzed, the larval
were embedded in 1% low-melting-temperature agarose
in a Glass Bottom Dish (35 mm Dish with 20 mm Bot-
tom Well, Cellvis). For imaging, the dorsal side of the
head of the larval zebrafish was facing the objective. We
maintained the specimen at room temperature and
imaged the zebrafish larval at 1 Hz. Assume the recon-
structed volume by DiLFM is ~Xðx; y; z; tÞ where x; y; zð Þ
is the 3D spatial coordinate of the voxel and t labels the
time, the temporal summarized volume was calculated
through the following procedures. In the first step, we
calculate the rank-1 background components of
~Xðx; y; z; tÞ via

b; f½ � ¼ argmin
b;f

X
t

~Xðx; y; z; tÞ � bðx; y; zÞ � f tð Þ�� ��2
2

ð14Þ

where bðx; y; zÞ is the spatial background and f tð Þ is
the temporal background. b and f can be calculated
through normal non-negative matrix factorization
techniques44. The background-subtracted image is
then calculated by ~X1ðx; y; z; tÞ ¼ ~Xðx; y; z; tÞ �
bðx; y; zÞ � f tð Þ. Then, we calculate the standard devia-
tion volume of all the background-subtracted volumes
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across the time domain via

~X2 x; y; zð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
t

~X1 x;y;z;tð Þ�
P

s
~X1 x;y;z;sð Þ
T

� �2

T

s
ð15Þ

where T is the total frame number. In Fig. 5a, we plot the
maximum intensity projections of ~X2 x; y; zð Þ along x-, y-,
and z-axis to show fired neuron distributions in zebrafish
larvae. All captured frames are used for the above
calculation.
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across the time domain via

~X2 x; y; zð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
t

~X1 x;y;z;tð Þ�
P

s
~X1 x;y;z;sð Þ
T

� �2

T

s
ð15Þ

where T is the total frame number. In Fig. 5a, we plot the
maximum intensity projections of ~X2 x; y; zð Þ along x-, y-,
and z-axis to show fired neuron distributions in zebrafish
larvae. All captured frames are used for the above
calculation.
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