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Abstract
Quantum computing is seeking to realize hardware-optimized algorithms for application-related computational tasks.
NP (nondeterministic-polynomial-time) is a complexity class containing many important but intractable problems like
the satisfiability of potentially conflict constraints (SAT). According to the well-founded exponential time hypothesis,
verifying an SAT instance of size n requires generally the complete solution in an O(n)-bit proof. In contrast, quantum
verification algorithms, which encode the solution into quantum bits rather than classical bit strings, can perform the
verification task with quadratically reduced information about the solution in ~Oð ffiffiffi

n
p Þ qubits. Here we realize the

quantum verification machine of SAT with single photons and linear optics. By using tunable optical setups, we
efficiently verify satisfiable and unsatisfiable SAT instances and achieve a clear completeness-soundness gap even in
the presence of experimental imperfections. The protocol requires only unentangled photons, linear operations on
multiple modes and at most two-photon joint measurements. These features make the protocol suitable for photonic
realization and scalable to large problem sizes with the advances in high-dimensional quantum information
manipulation and large scale linear-optical systems. Our results open an essentially new route toward quantum
advantages and extend the computational capability of optical quantum computing.

Introduction
Quantum computing has been found to unprecedent-

edly speed-up classically intractable computational
tasks1–7. As building universal, error-corrected quantum
computers is still challenging, the community now seeks
practical uses of noisy intermediate-scale quantum
(NISQ) technologies in computational problems of
interest and importance5. Photonics has been a versatile
tool in quantum information tasks8–10 such as boson
sampling7,11–14, quantum walk9,15,16, and variational
quantum simulation17,18. By utilizing multi-degrees of

freedom of photons19,20 and well-developed linear
optics21–24, information can be encoded and processed in
a high-dimensional Hilbert space. These features make
photonics a suitable platform to realize quantum algo-
rithms involving high-dimensional encoding, low degree
of entanglement, and linear operations. Here we exploit
the advantages of photonics to realize a new regime of
quantum algorithm—the quantum verification machine
(QVM) of nondeterministic polynomial-time (NP)
problems.
The complexity class NP, which is the set of decision

problems verifiable in polynomial time by a deterministic
Turing machine, encompasses many natural decision and
optimization problems. By definition, NP can be
abstracted as a proof system which models computation
as exchange of messages between the prover and the
verifier. Verifying the correctness of a proof is a founda-
tional computational model underpinning both the
complexity theory and applications such as delegated
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computation. Specifically, we focus on the verification of
the first discovered and most extensively studied NP-
complete problem—the Boolean satisfiability problem
(SAT)25, that is, the problem of asking whether a given
Boolean formula with n variables has a satisfying assign-
ment. The NP-completeness signifies that any NP pro-
blem can be efficiently reduced to this problem.
Corresponding to the problem of satisfying potentially
conflict constraints, SAT has found numerous applica-
tions in circuit design, mode checking, automated proving
and artificial intelligence26. Under the widely believed
exponential time hypothesis (ETH)27, which asserts that
the best algorithm for solving 3-SAT (a representative
form of SAT) runs in time 2γn for some constant γ > 0,
verifying 3-SAT requires at least O(n) bits. Otherwise the
verifier can simply enumerate overall possible proofs,
which yield a sub-exponential algorithm for solving
3-SAT. Surprisingly, this bound on proof length no longer
applies if quantum bits are used in proofs and verified by
quantum computers. This perception rapidly aroused
substantial efforts on quantum verification of NP(-com-
plete) problems28–35. In this line, Aaronson et al. pro-
posed a protocol of proving 3-SAT with Oð ffiffiffi

n
p Þ

unentangled quantum states each of O(logn) qubits28 and
variants of the protocol have also been developed30,32.
However, to date a complete demonstration of quantum
verification algorithm is still missing.
In this work, we report the first experimental quantum

verification of SAT with single photons and linear optics,
by implementing a modified version of recent proposals34.
We present a scalable design of reconfigurable optical
circuits in which quantum proofs are mapped to single
photons distributed in optical modes. The experiment
demonstrates faithful verification of NP problems in
terms of a complete analysis on the satisfiable instance,
unsatisfiable instance and cheating prover cases. Our
work links the remarkable proof systems in computer
science to the manipulation and detection of photons,
which foreshadows further investigations of a variety of
computational models in the photonic regime.

Results
Quantum verification algorithm of the satisfiability
problem
An instance of SAT is formalized as the conjunction of a

set of clauses ϕ= c1 ∧ c2... ∧ cj, each of which is the
disjunction of a set of literals l1 ∨ l2... ∨ lm. A literal could
be a variable xi or a negation of a variable ¬xi. In 3-SAT
instances, each clause has exactly three literals. The
quantum verification of 3-SAT corresponds to the com-
plexity class Quantum Merlin-Arthur [QMA(K)], as the
quantum analogue of NP36–38. In this scheme, K non-
communicating, omniscient provers (called Merlins)
send K unentangled quantum proofs to a skeptical,

computationally bounded verifier Arthur to convince
Arthur the instance is satisfiable (see Fig. 1a). Arthur
checks the proof in his computing machines and decide
whether to accept or reject the proof. Two properties are
required in a QMA protocol: (i) Completeness: if the
instance is satisfiable, there exist a proof such that Arthur
accepts with at least some high probability c; (ii) Sound-
ness: if the instance is not satisfiable, for any proof Arthur
accepts with at most some probability s.
The protocol firstly reduces the 3-SAT instance to a 2-

out-of-4 SAT instance where each clause contains four
variables xi,xj,xk,xl and is satisfied if two of them are true,
i.e., xi+ xj+ xk_xl = 2. In the verification, Merlins are
supposed to send Arthur K ¼ Oð ffiffiffi

n
p Þ identical, unen-

tangled quantum states28, each of the form

jψi ¼ 1ffiffiffi
n

p
Xn

i¼1
ð�1Þxi jii ð1Þ

where jii ¼ âyi j0i and âyi is the creation operator on mode i.
Here x1,x2,...,xn ∈ {0,1}n is an assignment of the n variables.
A state of such form is called a proper state. The n-
dimensional quantum state can be equivalently described by
logn qubits revealing at most logn bits information by
measurements on the state. To check whether the assign-
ment x satisfies the clauses, Arthur can choose some clauses
(i,j,k,l) at random and measure the K copies of |ψ〉 in a basis
with a projection on |c〉= (|i〉+ |j〉+ |k〉+ |l〉)/2 for each
clause. For each copy Arthur will get a probability of
observing the outcome |c〉

pc ¼ jhcjψij2 ¼ ½ð�1Þxi þ ð�1Þxj þ ð�1Þxk þ ð�1Þxl �2=4n

Then Arthur rejects the proof if he gets the outcome |c〉
for at least one copy and accepts it otherwise. With this
Satisfiability Test, Arthur will have pc= 0 if xi+ xj+ xk+
xl= 2, and some constant nonzero probability otherwise.
An issue is that Merlins may cheat Arthur by sending him
improper state, for example concentrating the amplitude
in a subset of the basis {|i〉} such that the Satisfiability
Test passes even the instance is not satisfiable. To tackle
this problem Arthur can perform Uniformity Test: he
randomly chooses a matching M on the set {1,...,n} such
that the set is partitioned into n/2 groups of the form (i,j),
then measures each copy of the state |ψ〉 in the basis with
{|i〉+ |j〉, |i〉− |j〉} for each (i,j) ∈ M. Only if the state is
proper (i.e., the amplitudes are equal), one of the two
outcomes will never occur. With the statistics on the
outcomes, Arthur rejects the proof if two outcomes {|i〉
+ |j〉, |i〉− |j〉} both occur for a same (i,j) ∈ M. Here the K
copies are used to obtain sufficient statistics on the out-
comes to make a decision.
As the verification requires multiple copies of the state,

another possible way for Merlins to cheat is to send
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edly speed-up classically intractable computational
tasks1–7. As building universal, error-corrected quantum
computers is still challenging, the community now seeks
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(NISQ) technologies in computational problems of
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tool in quantum information tasks8–10 such as boson
sampling7,11–14, quantum walk9,15,16, and variational
quantum simulation17,18. By utilizing multi-degrees of

freedom of photons19,20 and well-developed linear
optics21–24, information can be encoded and processed in
a high-dimensional Hilbert space. These features make
photonics a suitable platform to realize quantum algo-
rithms involving high-dimensional encoding, low degree
of entanglement, and linear operations. Here we exploit
the advantages of photonics to realize a new regime of
quantum algorithm—the quantum verification machine
(QVM) of nondeterministic polynomial-time (NP)
problems.
The complexity class NP, which is the set of decision

problems verifiable in polynomial time by a deterministic
Turing machine, encompasses many natural decision and
optimization problems. By definition, NP can be
abstracted as a proof system which models computation
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computation. Specifically, we focus on the verification of
the first discovered and most extensively studied NP-
complete problem—the Boolean satisfiability problem
(SAT)25, that is, the problem of asking whether a given
Boolean formula with n variables has a satisfying assign-
ment. The NP-completeness signifies that any NP pro-
blem can be efficiently reduced to this problem.
Corresponding to the problem of satisfying potentially
conflict constraints, SAT has found numerous applica-
tions in circuit design, mode checking, automated proving
and artificial intelligence26. Under the widely believed
exponential time hypothesis (ETH)27, which asserts that
the best algorithm for solving 3-SAT (a representative
form of SAT) runs in time 2γn for some constant γ > 0,
verifying 3-SAT requires at least O(n) bits. Otherwise the
verifier can simply enumerate overall possible proofs,
which yield a sub-exponential algorithm for solving
3-SAT. Surprisingly, this bound on proof length no longer
applies if quantum bits are used in proofs and verified by
quantum computers. This perception rapidly aroused
substantial efforts on quantum verification of NP(-com-
plete) problems28–35. In this line, Aaronson et al. pro-
posed a protocol of proving 3-SAT with Oð ffiffiffi

n
p Þ

unentangled quantum states each of O(logn) qubits28 and
variants of the protocol have also been developed30,32.
However, to date a complete demonstration of quantum
verification algorithm is still missing.
In this work, we report the first experimental quantum

verification of SAT with single photons and linear optics,
by implementing a modified version of recent proposals34.
We present a scalable design of reconfigurable optical
circuits in which quantum proofs are mapped to single
photons distributed in optical modes. The experiment
demonstrates faithful verification of NP problems in
terms of a complete analysis on the satisfiable instance,
unsatisfiable instance and cheating prover cases. Our
work links the remarkable proof systems in computer
science to the manipulation and detection of photons,
which foreshadows further investigations of a variety of
computational models in the photonic regime.

Results
Quantum verification algorithm of the satisfiability
problem
An instance of SAT is formalized as the conjunction of a

set of clauses ϕ= c1 ∧ c2... ∧ cj, each of which is the
disjunction of a set of literals l1 ∨ l2... ∨ lm. A literal could
be a variable xi or a negation of a variable ¬xi. In 3-SAT
instances, each clause has exactly three literals. The
quantum verification of 3-SAT corresponds to the com-
plexity class Quantum Merlin-Arthur [QMA(K)], as the
quantum analogue of NP36–38. In this scheme, K non-
communicating, omniscient provers (called Merlins)
send K unentangled quantum proofs to a skeptical,

computationally bounded verifier Arthur to convince
Arthur the instance is satisfiable (see Fig. 1a). Arthur
checks the proof in his computing machines and decide
whether to accept or reject the proof. Two properties are
required in a QMA protocol: (i) Completeness: if the
instance is satisfiable, there exist a proof such that Arthur
accepts with at least some high probability c; (ii) Sound-
ness: if the instance is not satisfiable, for any proof Arthur
accepts with at most some probability s.
The protocol firstly reduces the 3-SAT instance to a 2-

out-of-4 SAT instance where each clause contains four
variables xi,xj,xk,xl and is satisfied if two of them are true,
i.e., xi+ xj+ xk_xl = 2. In the verification, Merlins are
supposed to send Arthur K ¼ Oð ffiffiffi

n
p Þ identical, unen-

tangled quantum states28, each of the form

jψi ¼ 1ffiffiffi
n

p
Xn

i¼1
ð�1Þxi jii ð1Þ

where jii ¼ âyi j0i and âyi is the creation operator on mode i.
Here x1,x2,...,xn ∈ {0,1}n is an assignment of the n variables.
A state of such form is called a proper state. The n-
dimensional quantum state can be equivalently described by
logn qubits revealing at most logn bits information by
measurements on the state. To check whether the assign-
ment x satisfies the clauses, Arthur can choose some clauses
(i,j,k,l) at random and measure the K copies of |ψ〉 in a basis
with a projection on |c〉= (|i〉+ |j〉+ |k〉+ |l〉)/2 for each
clause. For each copy Arthur will get a probability of
observing the outcome |c〉

pc ¼ jhcjψij2 ¼ ½ð�1Þxi þ ð�1Þxj þ ð�1Þxk þ ð�1Þxl �2=4n

Then Arthur rejects the proof if he gets the outcome |c〉
for at least one copy and accepts it otherwise. With this
Satisfiability Test, Arthur will have pc= 0 if xi+ xj+ xk+
xl= 2, and some constant nonzero probability otherwise.
An issue is that Merlins may cheat Arthur by sending him
improper state, for example concentrating the amplitude
in a subset of the basis {|i〉} such that the Satisfiability
Test passes even the instance is not satisfiable. To tackle
this problem Arthur can perform Uniformity Test: he
randomly chooses a matching M on the set {1,...,n} such
that the set is partitioned into n/2 groups of the form (i,j),
then measures each copy of the state |ψ〉 in the basis with
{|i〉+ |j〉, |i〉− |j〉} for each (i,j) ∈ M. Only if the state is
proper (i.e., the amplitudes are equal), one of the two
outcomes will never occur. With the statistics on the
outcomes, Arthur rejects the proof if two outcomes {|i〉
+ |j〉, |i〉− |j〉} both occur for a same (i,j) ∈ M. Here the K
copies are used to obtain sufficient statistics on the out-
comes to make a decision.
As the verification requires multiple copies of the state,

another possible way for Merlins to cheat is to send
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different states rather than identical copies. For this rea-
son, Arthur performs Symmetry Test: a swap test between
two states, which accepts with certainty if the two states
are identical and has a constant probability to reject when
the two-state overlap is under a certain threshold. The
QMA(K) protocol may be significantly reduced by simu-
lating the K Merlins with a single Merlin who sends a
product state of the K copies |ψ〉⊗K, yet in this case
Arthur needs to guarantee the unentanglement among
the K subsystems. To this end Arthur can ask for the
proof state jψi�K 2 C�K

d from another Merlin and con-
duct a Product Test32, which applies the swap test to each
of the K pairs of corresponding subsystems of the two
states. The proof will be accepted if all the swap tests pass
and rejected otherwise. With the help of the product test,
we can simulate the K-prover protocol with only two
Merlins, which corresponds to the complexity result
QMA(K)=QMA(2) for K ≥ 2 32.
Overall, Arthur performs one of the four aforemen-

tioned tests with constant probability (e.g., 1/4 each). As a
consequence, we have an efficient quantum algorithm to
verify SAT with perfect completeness and constant
soundness, using two unentangled proofs of length

Oð ffiffiffi
n

p
lognÞ qubits (see Materials and methods for a

summary of the protocol).

Photonic implementation of the quantum verification
machine
To realize the verification algorithm in photonic regime,

we devise optical circuits for the four tests and experi-
mentally implement the circuit in the case n= 6. The
proofs from the two Merlins are unentangled photons
generated by a parametric down-conversion process while
the K copies of the state |ψ〉 correspond to photons gen-
erated sequentially at different time. In our experiment the
K copies sent by a same Merlin are identical due to the fact
that the apparatus to prepare the states is fixed within the
duration of the experiment. For each copy we encode the
n-dimensional quantum state in the polarization and path
degrees of freedom of the photon. The optical modes {|1〉,
|2〉,|3〉,|4〉,...,|n〉} are mapped to {|h1〉,|v1〉,|h2〉,|v2〉,...,|vn/2〉},
where |hj〉 (|vj〉) denotes the horizontal (vertical) polar-
ization in path j. In the following we use |x1 x2 x3 x4 x5 x6〉
to represent a proper state given in Eq. (1) encoding the
assignment x1 x2 x3 x4 x5 x6. When xi= 0 the phase on
mode i is 0, whereas xi= 1 the phase is π.
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Fig. 1 Quantum verification machine. a The two-prover Quantum Merlin-Arthur protocol [QMA(2)]. On the basis of the given SAT instance, the two
Merlins send unentangled, identical proof states to Arthur, who checks the proof on his quantum computer and makes an “accept” or “reject” decision.
b The architecture of quantum circuit for the satisfiability and uniformity test. The design comprises proof encoding, tunable permutations and
measurement on the modes. These operations are mainly based on tunable two-mode transformations u combined with mode splitting and routing.
With the input of single photons, the circuit can verify the satisfiability of a set of clauses or the uniformity on random matchings. c Experimental setup
for the satisfiability test and uniformity test. Merlins prepare single photons distributed in the polarization and path modes, encoding the assignment in
the single-photon states as quantum witnesses. Arthur then applies permutations and interferences on these modes with linear optics. Note only states
from one Merlin are required for the two tests. The output modes are detected by single-photon avalanche diodes (SPADs) and registered by a time
tagger. BBO β-barium borate crystal, BD calcite beam displacer, P polarizer, IF interference filter, SMF single mode fibre, PBS polarizing beam-splitter.
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Figure 1b depicts the circuit design for the satisfiability
test and uniformity test. The circuit comprises a sequence
of stages, each of which involves a set of two-mode con-
figurable transformations u combined with mode splitting
or routing (see Materials and methods for details). Start-
ing from proof encoding, Merlin firstly splits the input
single photon into an equal superposition over n modes
and encodes the assignment x into the K copies of the
state. Each state is then sent to successive tunable per-
mutation modules, which select the modes corresponding
to the chosen clause (i,j,k,l) or group the modes into a
random matching M. Finally, the measurement and
decision module performs either projection on the certain
state |c〉 or two-mode interferences on the certain
matching M. The two-mode transformations u are
implemented by half-wave plates (see Fig. 1c), of which
the optical axes can be set in different angles to perform
different two-mode sub-operations such as Pauli-X, Pauli-
Z and Hadamard gates

X ¼ 1ffiffiffi
n

p 0 1

1 0

� �
;Z ¼ 1ffiffiffi

n
p 1 0

0 �1

� �
;H ¼ 1ffiffiffiffiffi

2n
p 1 1

1 �1

� �

With appropriate configurations of these gates, the circuit
can perform different permutations and interferences on
the optical modes. The ability of the permutation stage is to
sort the modes into groups (2 or 4 modes each, without
regard to order). Configurations of the optical circuit are

designed to realize the
6
4

� �
¼ 15 projections and the

6
2

� �
´ 4

2

� �
� 3! ¼ 15 matchings. The measurement

outcome is read out by single-photon avalanche diodes and
we register the measurement outcome for each copy of the
proof state with a multi-channel time tagger. For a single
trial of the test, a decision on the proof (“reject” or “accept”)
is made based on the detector pattern of K copies: for the
satisfiability test, whether the detector corresponding to the
projector |c〉〈c| clicks; for the uniformity test, whether the
two detectors in a same group (i,j) both click.

Quantum verification of SAT instances with linear optics
Firstly we demonstrate the performance of the verifier in

the satisfiability and uniformity tests. By changing the set-
tings of the wave plates to prepare the 64 proper states and
verify the 15 clauses, we measure the probabilities pc for all
the 64 × 15 cases (Fig. 2a), which are consistent with the
theoretical satisfiability of the clauses (Fig. 2b). The satisfying
proofs manifest nearly zero outcome probabilities (0.28% in
average), whereas all the unsatisfying proofs manifest sig-
nificant outcome probabilities exceeding the probabilities of
the satisfying cases by two orders of magnitude (larger than
13.47%). Regarding the uniformity test, we show the rejec-
tion probabilities when testing the 64 proper states for the
15 matchings with K= 3 in Fig. 2c. The results exhibit a
high probability of 98.67% to accept in average. For the
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states of the form jψ imðθÞi ¼ ðcosθ; sinθ; cosθ; sinθ; cosθ; sinθÞ= ffiffiffi
3

p
. Here we take the results for the matching {(1,2),(3,4),(5,6)} under different

numbers of copies as an example. For each θ we run the test 5000 times and collect the measurement outcomes of 5000 × K photons to acquire the
rejection probability punir . The results given by numerical simulations are shown as solid lines. Error bars are uncertainties assuming Poisson count

statistics. e The statistical fidelities F c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pthec pexpc

p
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probabilities pexpc for the 64 × 15 cases of the satisfiability test.
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different states rather than identical copies. For this rea-
son, Arthur performs Symmetry Test: a swap test between
two states, which accepts with certainty if the two states
are identical and has a constant probability to reject when
the two-state overlap is under a certain threshold. The
QMA(K) protocol may be significantly reduced by simu-
lating the K Merlins with a single Merlin who sends a
product state of the K copies |ψ〉⊗K, yet in this case
Arthur needs to guarantee the unentanglement among
the K subsystems. To this end Arthur can ask for the
proof state jψi�K 2 C�K

d from another Merlin and con-
duct a Product Test32, which applies the swap test to each
of the K pairs of corresponding subsystems of the two
states. The proof will be accepted if all the swap tests pass
and rejected otherwise. With the help of the product test,
we can simulate the K-prover protocol with only two
Merlins, which corresponds to the complexity result
QMA(K)=QMA(2) for K ≥ 2 32.
Overall, Arthur performs one of the four aforemen-

tioned tests with constant probability (e.g., 1/4 each). As a
consequence, we have an efficient quantum algorithm to
verify SAT with perfect completeness and constant
soundness, using two unentangled proofs of length

Oð ffiffiffi
n

p
lognÞ qubits (see Materials and methods for a

summary of the protocol).

Photonic implementation of the quantum verification
machine
To realize the verification algorithm in photonic regime,

we devise optical circuits for the four tests and experi-
mentally implement the circuit in the case n= 6. The
proofs from the two Merlins are unentangled photons
generated by a parametric down-conversion process while
the K copies of the state |ψ〉 correspond to photons gen-
erated sequentially at different time. In our experiment the
K copies sent by a same Merlin are identical due to the fact
that the apparatus to prepare the states is fixed within the
duration of the experiment. For each copy we encode the
n-dimensional quantum state in the polarization and path
degrees of freedom of the photon. The optical modes {|1〉,
|2〉,|3〉,|4〉,...,|n〉} are mapped to {|h1〉,|v1〉,|h2〉,|v2〉,...,|vn/2〉},
where |hj〉 (|vj〉) denotes the horizontal (vertical) polar-
ization in path j. In the following we use |x1 x2 x3 x4 x5 x6〉
to represent a proper state given in Eq. (1) encoding the
assignment x1 x2 x3 x4 x5 x6. When xi= 0 the phase on
mode i is 0, whereas xi= 1 the phase is π.
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Figure 1b depicts the circuit design for the satisfiability
test and uniformity test. The circuit comprises a sequence
of stages, each of which involves a set of two-mode con-
figurable transformations u combined with mode splitting
or routing (see Materials and methods for details). Start-
ing from proof encoding, Merlin firstly splits the input
single photon into an equal superposition over n modes
and encodes the assignment x into the K copies of the
state. Each state is then sent to successive tunable per-
mutation modules, which select the modes corresponding
to the chosen clause (i,j,k,l) or group the modes into a
random matching M. Finally, the measurement and
decision module performs either projection on the certain
state |c〉 or two-mode interferences on the certain
matching M. The two-mode transformations u are
implemented by half-wave plates (see Fig. 1c), of which
the optical axes can be set in different angles to perform
different two-mode sub-operations such as Pauli-X, Pauli-
Z and Hadamard gates

X ¼ 1ffiffiffi
n

p 0 1

1 0

� �
;Z ¼ 1ffiffiffi

n
p 1 0

0 �1

� �
;H ¼ 1ffiffiffiffiffi

2n
p 1 1

1 �1

� �

With appropriate configurations of these gates, the circuit
can perform different permutations and interferences on
the optical modes. The ability of the permutation stage is to
sort the modes into groups (2 or 4 modes each, without
regard to order). Configurations of the optical circuit are

designed to realize the
6
4

� �
¼ 15 projections and the

6
2

� �
´ 4

2

� �
� 3! ¼ 15 matchings. The measurement

outcome is read out by single-photon avalanche diodes and
we register the measurement outcome for each copy of the
proof state with a multi-channel time tagger. For a single
trial of the test, a decision on the proof (“reject” or “accept”)
is made based on the detector pattern of K copies: for the
satisfiability test, whether the detector corresponding to the
projector |c〉〈c| clicks; for the uniformity test, whether the
two detectors in a same group (i,j) both click.

Quantum verification of SAT instances with linear optics
Firstly we demonstrate the performance of the verifier in

the satisfiability and uniformity tests. By changing the set-
tings of the wave plates to prepare the 64 proper states and
verify the 15 clauses, we measure the probabilities pc for all
the 64 × 15 cases (Fig. 2a), which are consistent with the
theoretical satisfiability of the clauses (Fig. 2b). The satisfying
proofs manifest nearly zero outcome probabilities (0.28% in
average), whereas all the unsatisfying proofs manifest sig-
nificant outcome probabilities exceeding the probabilities of
the satisfying cases by two orders of magnitude (larger than
13.47%). Regarding the uniformity test, we show the rejec-
tion probabilities when testing the 64 proper states for the
15 matchings with K= 3 in Fig. 2c. The results exhibit a
high probability of 98.67% to accept in average. For the

0

0.1

0.2

Assignments

200 400 600 800

0.96

0.98

1

a b

c d

64 proper states

e

p c

Satisfying Unsatisfying

0

0.02

0.04

0.06
1

0.8

0.6

0.4

0.2

–�/4 –�/6 –�/12 0 �/12

�

�/6 �/4
0

Assignments
0

0.2

0.4

0.6

K = 6

K = 5

K = 4

K = 3

(1,2,3,4)

(3,4,5,6)

C
la

us
es

111111000000

C
la

us
es

|000000〉 |111111〉

64 × 15 cases15 matchings

F
c

p run
i p run

i

Fig. 2 Validation of the satisfiablity test and uniformity test. a The experimentally measured projection probabilities pc when verifying the 15
clauses (rows) with the 64 proper states (columns). Here the proof states from left to right are |000000〉,|100000〉...,|111111〉, while the verified clauses
from top to down are (1,2,3,4),(1,2,3,5)...,(3,4,5,6). (i,j,k,l) denotes the clause xi+ xj+ xk+ xl= 2. b The satisfiability of the 15 clauses for the 64
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test for the 64 proper states × 15 matchings when the number of copies K= 3. d The rejection probability punir of the uniformity test for improper

states of the form jψ imðθÞi ¼ ðcosθ; sinθ; cosθ; sinθ; cosθ; sinθÞ= ffiffiffi
3

p
. Here we take the results for the matching {(1,2),(3,4),(5,6)} under different

numbers of copies as an example. For each θ we run the test 5000 times and collect the measurement outcomes of 5000 × K photons to acquire the
rejection probability punir . The results given by numerical simulations are shown as solid lines. Error bars are uncertainties assuming Poisson count

statistics. e The statistical fidelities F c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pthec pexpc

p
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between the theoretical probabilities pthec and experimental

probabilities pexpc for the 64 × 15 cases of the satisfiability test.
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case that Merlins send improper states, we run the
uniformity test for proof states of the form jψimðθÞi ¼
ðcosθ; sinθ; cosθ; sinθ; cosθ; sinθÞ= ffiffiffi

3
p

with different num-
bers of copies K= 3,4,5,6 (Fig. 2d). Here (α1,α2,α3,α4,α5,α6)
denotes a state with complex amplitudes αi in mode |i〉, i.e.,Pn

i¼1 αijii. An increase in the rejection probability is
observed with the transition from proper states to highly
improper states, which fits the numerical simulations. On
the other hand, higher rejection probabilities are obtained
for improper states when increasing the number of copies K.
In addition, we determine the average statistical fidelity

F c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pthec pexpc

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� pthec

� �
1� pexpcð Þ

q� �2
between the

theoretical and experimental projection probabilities (pthec

and pexpc ) to be 0.9988 ± 0.0024 (see Fig. 2e), which justifies
the excellent agreements between experimental results and
theoretical calculations.

To demonstrate the verification of specific instances, we
concentrate on the instances including eight clauses, in

which there are
15
8

� �
¼ 6435 instances. According to

the satisfiability of the clauses (Fig. 2b), 90 instances are
satisfiable (each with two solutions) and 6345 instances
are unsatisfiable. Figure 3 visualizes the results of verifying

a satisfiable instance ϕ1 (illustrated in Fig. 3a) and an
unsatisfiable instance ϕ2 (illustrated in Fig. 3b). As Mer-
lins aim to make Arthur accept the proof, for the satisfi-
able instance ϕ1 Merlins will honestly send the proof
encoding one of the two satisfying assignments. In this
case the proof states successfully pass both tests with high
probabilities (psatr ¼ 0:64% and punir ¼ 1:31%, averaging
over the two states), as shown in Fig. 3c.

For the unsatisfiable instance ϕ2, we consider situations
where Merlins send different types of states (Fig. 3c). Firstly
we perform the two tests with all the 64 proper states. The
verifier attains rejection probabilities psatr larger than 11.50%
and up to 95.72% in the satisfiability test although these
proofs could probably pass the uniformity test (punir ¼ 1:30%
averaging over the 64 proper states). Secondly we realize
cheating Merlins by sending deliberately designed improper
states in order to pass the satisfiability test. As an example,
we construct the state jψch1i ¼ ð1;�3; 1; 1; 1; 1Þ= ffiffiffiffiffi

14
p

(as
well as jψch2i ¼ ð�3; 1; 1; 1; 1; 1Þ= ffiffiffiffiffi

14
p

for instances given
in the Supplementary Information), for which the projection
probability pc of verifying any of the eight clauses in ϕ2

theoretically equals zero. Consequently, |ψch1〉 reaches a
rejection probability psatr ¼ 0:44% of the same order of
magnitude as in the satisfiable case. Nevertheless, Arthur
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can detect the cheating with the help of the uniformity test,
in which a rejection probability of 31.90% is obtained. This
result justifies the necessity of the uniformity test. Finally the
verification is also executed by sending just improper states |
ψim(θ)〉 with θ= {−π/6,−π/12,0,π/12,π/6}, which exhibit
considerable rejection probabilities in both tests. We con-
clude from the results that for all the three cases, evident
rejection probabilities are observed in at least one of the two
tests. The typical realizations indicate close to perfect
completeness and constant soundness and thereby experi-
mentally achieve a clear completeness-soundness gap for the
quantum verification (see Supplementary Information for
more examples and results). Experimental imperfections,
including the limited interference visibilities, phase fluctua-
tions and errors in the operations, lead to deviations of the
outcome probabilities from ideal ones for the satisfying
proof states and thereby imperfect completeness for the
protocol. In real-world applications of the QVM, of parti-
cular importance is the amplification of the completeness-
soundness gap. For this reason we also demonstrate the
amplification of the success probability for the instances ϕ1

and ϕ2, of which the protocol and results are given in the
Supplementary Information.

The symmetry test and the product test require optical
swap test39, which can be implemented with a multi-mode
Hong–Ou–Mandel (HOM) interference (Fig. 4a)40. Our
experiment uses a non-polarizing beam-splitter (NPBS) to
perform the two-photon interferences on the six optical
modes distributed in both polarization and path degrees
of freedom. In the optical swap test, the probability of

rejection is pswapr ¼ ð1� jhψ1jψ2ij2Þ=2, where |ψ1〉 and
|ψ2〉 are the photonic states in the two input ports of the

NPBS. We register all the
6
2

� �
¼ 15 coincidence chan-

nels, in which the six one-side channels (the two photons
are detected in the same output port of the NPBS) cor-
respond to the “accept” outcome and the nine two-side
channels (the two photons are detected in different output
ports of the NPBS) correspond to the “reject” outcome.
We change the path difference between the two states
with a delay line and observe the high-dimensional
two-photon HOM interference. The HOM interference
of identical proper states (Fig. 4b) manifests peaks for the
“accept” outcomes and dips for the “reject” outcomes,
resulting in a high acceptance probability of (97.48 ±
0.56)%. This result guarantees a high probability to accept
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uncertainties assuming Poisson count statistics. c The results of the swap test for typical cases: the two states are proper and the same (the first
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and fifth panels). Each panel shows the experimental (red and blue bars) and theoretical (yellow and gray bars) outcome probabilities on the 15
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case that Merlins send improper states, we run the
uniformity test for proof states of the form jψimðθÞi ¼
ðcosθ; sinθ; cosθ; sinθ; cosθ; sinθÞ= ffiffiffi

3
p

with different num-
bers of copies K= 3,4,5,6 (Fig. 2d). Here (α1,α2,α3,α4,α5,α6)
denotes a state with complex amplitudes αi in mode |i〉, i.e.,Pn

i¼1 αijii. An increase in the rejection probability is
observed with the transition from proper states to highly
improper states, which fits the numerical simulations. On
the other hand, higher rejection probabilities are obtained
for improper states when increasing the number of copies K.
In addition, we determine the average statistical fidelity

F c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pthec pexpc

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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1� pexpcð Þ
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between the

theoretical and experimental projection probabilities (pthec

and pexpc ) to be 0.9988 ± 0.0024 (see Fig. 2e), which justifies
the excellent agreements between experimental results and
theoretical calculations.

To demonstrate the verification of specific instances, we
concentrate on the instances including eight clauses, in

which there are
15
8

� �
¼ 6435 instances. According to

the satisfiability of the clauses (Fig. 2b), 90 instances are
satisfiable (each with two solutions) and 6345 instances
are unsatisfiable. Figure 3 visualizes the results of verifying

a satisfiable instance ϕ1 (illustrated in Fig. 3a) and an
unsatisfiable instance ϕ2 (illustrated in Fig. 3b). As Mer-
lins aim to make Arthur accept the proof, for the satisfi-
able instance ϕ1 Merlins will honestly send the proof
encoding one of the two satisfying assignments. In this
case the proof states successfully pass both tests with high
probabilities (psatr ¼ 0:64% and punir ¼ 1:31%, averaging
over the two states), as shown in Fig. 3c.

For the unsatisfiable instance ϕ2, we consider situations
where Merlins send different types of states (Fig. 3c). Firstly
we perform the two tests with all the 64 proper states. The
verifier attains rejection probabilities psatr larger than 11.50%
and up to 95.72% in the satisfiability test although these
proofs could probably pass the uniformity test (punir ¼ 1:30%
averaging over the 64 proper states). Secondly we realize
cheating Merlins by sending deliberately designed improper
states in order to pass the satisfiability test. As an example,
we construct the state jψch1i ¼ ð1;�3; 1; 1; 1; 1Þ= ffiffiffiffiffi

14
p

(as
well as jψch2i ¼ ð�3; 1; 1; 1; 1; 1Þ= ffiffiffiffiffi

14
p

for instances given
in the Supplementary Information), for which the projection
probability pc of verifying any of the eight clauses in ϕ2

theoretically equals zero. Consequently, |ψch1〉 reaches a
rejection probability psatr ¼ 0:44% of the same order of
magnitude as in the satisfiable case. Nevertheless, Arthur
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copies K= 3 is adopted in the verification and the rejection probabilities are obtained by repeating each test 5000 times.
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can detect the cheating with the help of the uniformity test,
in which a rejection probability of 31.90% is obtained. This
result justifies the necessity of the uniformity test. Finally the
verification is also executed by sending just improper states |
ψim(θ)〉 with θ= {−π/6,−π/12,0,π/12,π/6}, which exhibit
considerable rejection probabilities in both tests. We con-
clude from the results that for all the three cases, evident
rejection probabilities are observed in at least one of the two
tests. The typical realizations indicate close to perfect
completeness and constant soundness and thereby experi-
mentally achieve a clear completeness-soundness gap for the
quantum verification (see Supplementary Information for
more examples and results). Experimental imperfections,
including the limited interference visibilities, phase fluctua-
tions and errors in the operations, lead to deviations of the
outcome probabilities from ideal ones for the satisfying
proof states and thereby imperfect completeness for the
protocol. In real-world applications of the QVM, of parti-
cular importance is the amplification of the completeness-
soundness gap. For this reason we also demonstrate the
amplification of the success probability for the instances ϕ1

and ϕ2, of which the protocol and results are given in the
Supplementary Information.

The symmetry test and the product test require optical
swap test39, which can be implemented with a multi-mode
Hong–Ou–Mandel (HOM) interference (Fig. 4a)40. Our
experiment uses a non-polarizing beam-splitter (NPBS) to
perform the two-photon interferences on the six optical
modes distributed in both polarization and path degrees
of freedom. In the optical swap test, the probability of

rejection is pswapr ¼ ð1� jhψ1jψ2ij2Þ=2, where |ψ1〉 and
|ψ2〉 are the photonic states in the two input ports of the

NPBS. We register all the
6
2

� �
¼ 15 coincidence chan-

nels, in which the six one-side channels (the two photons
are detected in the same output port of the NPBS) cor-
respond to the “accept” outcome and the nine two-side
channels (the two photons are detected in different output
ports of the NPBS) correspond to the “reject” outcome.
We change the path difference between the two states
with a delay line and observe the high-dimensional
two-photon HOM interference. The HOM interference
of identical proper states (Fig. 4b) manifests peaks for the
“accept” outcomes and dips for the “reject” outcomes,
resulting in a high acceptance probability of (97.48 ±
0.56)%. This result guarantees a high probability to accept
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Fig. 4 The optical swap test. a Experimental scheme. Two single photons are injected into the setup and prepared as two quantum proofs |ψ1〉 and
|ψ2〉. The two states |ψ1〉 and |ψ2〉 are interfered at a non-polarizing beam-splitter (NPBS), and the interference results are read out by detectors. A time
tagger registers single-shot events from all the twofold coincidence channels. The path difference between the two photons can be changed by a
delay line to observe the interference. b Multi-dimensional Hong–Ou–Mandel (HOM) interference. Solid lines are curve fittings of the data to a
Gaussian multiplied by a sinc function. A HOM interference dip (peak) is observed for the rejection (corrected acceptance) probabilities. Error bars are
uncertainties assuming Poisson count statistics. c The results of the swap test for typical cases: the two states are proper and the same (the first
panel); the two states are proper but not the same (the second and third panels), one of the state is proper and the another is improper (the fourth
and fifth panels). Each panel shows the experimental (red and blue bars) and theoretical (yellow and gray bars) outcome probabilities on the 15
coincidence channels. The percentage labelled in each panel denotes the rejection probability of the swap test pswapr
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in product test, as an experimental demonstration of the
reduction from QMA(K) to QMA(2). To demonstrate the
performance of the symmetry test, we apply the optical
swap test to different combinations of states, as shown in
Fig. 4c. On the basis of the outcome probabilities over the
detector patterns, it can be concluded that considerable
probabilities are obtained in the “reject” outcomes if the
two states are not the same. The theoretical predictions
also agree with the experimental results.

Discussion
The results of the four tests, which constitute a com-

plete quantum verification of SAT, highlight the capability
of photonic machines to realize a new type of quantum
advantage on the computational space41. Through the
lens of computational complexity, the quantum provers
reveal Oð ffiffiffi

n
p

lognÞ-bit information, whereas classical pro-
vers in the best algorithm need to reveal O(n) bits, not
better than simply writing down the complete solution.
The QVMs driven by ~Oð ffiffiffi

n
p Þ qubits can efficiently carry

out the classically impossible computation, breaking
through the O(n)-bit limit for classical algorithms
imposed by ETH. If we in turn focus on the task of NP
verification with limited information, a classical computer
with an Oð ffiffiffi

n
p

lognÞ-bit message runs in exponential time
2Oðn�

ffiffi
n

p
lognÞ just assuming ETH, whereas the quantum

algorithm runs in a polynomial-time overhead34. Conse-
quently, QVMs will show an exponential speed-up over
classical computers with limited information. Develop-
ments on quantum computation pursue provable
quantum-classical separation. As ETH is a well-founded
complexity-theoretic conjecture in computer science, our
result foreshadows a desirable route toward realizing
quantum advantages in an useful problem under a “fine-
grained” complexity assumption4.
We have demonstrated the quantum verification

algorithm of the satisfiability problem with two unen-
tangled quantum witnesses, using single photons and
tunable optical circuits. By combining algorithmic
designs and experimental realizations, we optimize the
whole architecture of the optical circuit and realize
faithful verification of instances with high accuracies and
scalability. Our demonstration extends the capability of
optical quantum computing into the significant com-
putational model of proof verification. Scaling up the
scheme, which requires large scale programmable linear-
optical systems and precise control of experimental
imperfections, is an appealing route toward quantum
advantage. With current advances in photonic technol-
ogies8–10,42, we expect this scheme can be scaled to
larger problem sizes in the near future. Among sub-
stantial prospects, we envision QVMs can stimulate

experimental studies of various proof systems (QMA,
QAM, QIP, MIP* etc36–38,43,44), inspire future develop-
ments of verifier-based quantum algorithms, and find
applications in cloud-based quantum computing45–48.
Our work opens a new avenue in the utility of photonic
NISQ devices and adds a key ingredient to the investi-
gation toward answering valuable questions on both
computational complexity and quantum physics.

Materials and methods
Quantum verification algorithm
The class QMA(K) consists of the set of decision pro-

blems having K unentangled polynomial-size quantum
proofs that can be verified on a quantum computer in
polynomial time. As the quantum analogue of the com-
plexity class nondeterministic-polynomial-time (NP),
QMA(K) has received extensive interests and many natural
problems are proven to be in the class, such as N-repre-
sentability49 in quantum chemistry. Formally, a language L
is in QMA(K)c,s if there exists a polynomial-time quantum
algorithm V such that, for all inputs x ∈ {0,1}n:
(i) Completeness. If x ∈ L, there exists K witnesses with

poly(n) qubits each, such that V outputs “accept” with
probability at least c.
(ii) Soundness. If x ∉ L, V outputs “accept” with prob-

ability at most s for all proof states.
Our quantum verification algorithm is a modified ver-

sion of the recent proposals28,32,34. The protocol proceeds
as follows.
Given a 2-out-of-4 SAT instance ϕ, each of the two

Merlins sends to Arthur a quantum state in C�K
n (with K

subsystems). The two quantum states are denoted as
|φ1〉 and |φ2〉 respectively. Arthur performs one of the
following four tests, each with probability 1/4.
(1) Satisfiability Test. Arthur randomly chooses a block

containing a set of clauses such that no variable appears
more than once. Then Arthur measures each of the K
subsystems from Merlin 1 in a basis corresponding to the
clauses in the block. For each clause (i,j,k,l), Arthur per-
forms the projection on |c〉= (|i〉+ |j〉+ |k〉+ |l〉)/2. If
the outcome |c〉 is obtained for at least one subsystem,
reject. Otherwise, accept.
(2) Uniformity Test. Arthur randomly chooses a

matching M on the set {1,2,...,n}, and measures each of the
K subsystems from Merlin 1 in a basis containing fðjii þ
jjiÞ= ffiffiffi

2
p

; ðjii � jjiÞ= ffiffiffi
2

p g for every edge (i,j) ∈ M. If for
some edge (i,j), the two outcomes ðjii þ jjiÞ= ffiffiffi

2
p

and
ðjii � jjiÞ= ffiffiffi

2
p

both occur, reject. Otherwise, accept.
(3) Symmetry Test. Arthur chooses the subsystem 1 and

another randomly chosen subsystem from Merlin 1, and
performs a swap test on the two states. If the swap test
passes, accept. Otherwise, reject.
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(4) Product Test. Arthur performs swap test on each of
the K pairs of corresponding subsystems of |ψ1〉 and |ψ2〉,
and accepts if all of the swap tests pass. Otherwise, reject.

Photon source
Frequency-doubled light pulses (~150 fs duration, 415 nm

central wavelength) originating from a Ti:Sapphire laser
(76MHz repetition rate; Coherent Mira-HP) pump a beta
barium borate (β-BBO) crystal phase-matched for type-II
beamlike spontaneous parametric downconversion (SPDC)
to produce degenerate photon pairs (830 nm central wave-
length). The photon pairs are spectrally filtered by inter-
ference filters (IF) with 3 nm full-width at half-maximum
and collected into single mode fibres (SMF). The pump
power is set to ~150mW to ensure a low probability of
emitting two-photon pairs. By detecting one of the pair via a
single-photon avalanche diode, we characterize the second
order correlation function of heralded single photons to be
g(2) (0)= 0.041 ± 0.008. A HOM interference visibility V=
0.969 ± 0.004 is observed, indicating a great indistinguish-
ability between the two photons. The high indistinguish-
ability guarantees a good performance of the optical swap
test. See Supplementary Information for details about the
g(2) (0) measurements and the HOM interference.

Optical circuit
In the satisfiability test and uniformity test, Arthur

merely needs to measure the quantum proof |ψ〉⊗K from
one Merlin (Merlin 1 in the experiments), therefore the
optical circuit shown in Fig. 1b is designed to perform local
operations with the input of a single photon in each
measurement. The single photons generated in the SPDC
source are firstly delivered to polarization controllers and
polarizers to prepare horizontally polarized states and then
directed toward the optical circuit. The circuit is divided
into three stages: (i) proof encoding; (ii) a sequence of
tunable permutations; (iii) measurement and decision.
In Stage (i), firstly the input single photon passes the

splitting module and evolves to an equal superposition on
n/2 optical modes

ây1j0i7!
ffiffiffi
2
n

r Xn=2�1

j¼1
ây2j�1 þ âyn

� �
j0i ð2Þ

Here |0〉 denotes the vacuum state. This evolution is
experimentally realized by a sequence of wave plates and
calcite beam displacers. The following operation is a
combination of n/2 two-mode transformations {uj(θj)},
which constitute an n-mode transformation

U ¼ �
n=2

j¼1
uj θj
� � ð3Þ

Each two-mode transformation uj(θj) can be written as

ujðθjÞ ¼
cosθj sinθj
sinθj �cosθj

� �
ð4Þ

where the angle of the optical axis of the corresponding half-
wave plate is θj/2. Each wave plate can be configured into
one of the four different angles to prepare equal super-
position encoding the assignment of the two variables (x2j−1,
x2j) as 00,01,10 or 11. As a result, the overall transformation
U can prepare arbitrary proper states. For the cheating
Merlins, the wave plates are set into angles differing from
the honest case to implement an unequal splitting and (or) a
different transformation U. The details on proof encoding
are given in the Supplementary Information.
Stage (ii) comprises a sequence of tunable permutations,

each consisting of a transformation U and a mode routing.
In this case the two-mode transformations {uj(θj)} are set
to two-mode X or Z operations to permutate the two
modes or not. The operation of the mode routing is
equivalent to a fixed permutation. For example, one of the
permutation matrix for mode routing in our experiment
can be described as

P0 ¼

0 1 0 0 0 0

0 0 0 1 0 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 0 1 0

0
BBBBBBBB@

1
CCCCCCCCA

The combination of the aforementioned two operations
enables programmable permutation P · U on the n optical
modes. With a sequence of O(n) tunable permutation
modules, the circuit can be programmed to perform all
the permutations required for the two tests (See Supple-
mentary Information for details).
In Stage (iii), the first layer of two-mode transforma-

tions {uj(θj)} are all configured as two-mode Hadamard

operations H ¼ 1ffiffiffiffi
2n

p 1 1
1 �1

� �
to interfere each of the n/

2 pairs of the two optical modes (2j − 1,2j). The following
mode routing rearranges the optical modes to enable
possible further interferences required by the satisfiability
test. This routing is realized by a high extinction-ratio
polarizing beam-splitter (PBS). Two different types of
configurations are adopted for the second layer of {uj(θj)}
depending on which of the satisfiability test and uni-
formity test is applied. If the uniformity test is chosen, all
the transformations in this layer are set to Z gates or
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in product test, as an experimental demonstration of the
reduction from QMA(K) to QMA(2). To demonstrate the
performance of the symmetry test, we apply the optical
swap test to different combinations of states, as shown in
Fig. 4c. On the basis of the outcome probabilities over the
detector patterns, it can be concluded that considerable
probabilities are obtained in the “reject” outcomes if the
two states are not the same. The theoretical predictions
also agree with the experimental results.

Discussion
The results of the four tests, which constitute a com-

plete quantum verification of SAT, highlight the capability
of photonic machines to realize a new type of quantum
advantage on the computational space41. Through the
lens of computational complexity, the quantum provers
reveal Oð ffiffiffi

n
p

lognÞ-bit information, whereas classical pro-
vers in the best algorithm need to reveal O(n) bits, not
better than simply writing down the complete solution.
The QVMs driven by ~Oð ffiffiffi

n
p Þ qubits can efficiently carry

out the classically impossible computation, breaking
through the O(n)-bit limit for classical algorithms
imposed by ETH. If we in turn focus on the task of NP
verification with limited information, a classical computer
with an Oð ffiffiffi

n
p

lognÞ-bit message runs in exponential time
2Oðn�

ffiffi
n

p
lognÞ just assuming ETH, whereas the quantum

algorithm runs in a polynomial-time overhead34. Conse-
quently, QVMs will show an exponential speed-up over
classical computers with limited information. Develop-
ments on quantum computation pursue provable
quantum-classical separation. As ETH is a well-founded
complexity-theoretic conjecture in computer science, our
result foreshadows a desirable route toward realizing
quantum advantages in an useful problem under a “fine-
grained” complexity assumption4.
We have demonstrated the quantum verification

algorithm of the satisfiability problem with two unen-
tangled quantum witnesses, using single photons and
tunable optical circuits. By combining algorithmic
designs and experimental realizations, we optimize the
whole architecture of the optical circuit and realize
faithful verification of instances with high accuracies and
scalability. Our demonstration extends the capability of
optical quantum computing into the significant com-
putational model of proof verification. Scaling up the
scheme, which requires large scale programmable linear-
optical systems and precise control of experimental
imperfections, is an appealing route toward quantum
advantage. With current advances in photonic technol-
ogies8–10,42, we expect this scheme can be scaled to
larger problem sizes in the near future. Among sub-
stantial prospects, we envision QVMs can stimulate

experimental studies of various proof systems (QMA,
QAM, QIP, MIP* etc36–38,43,44), inspire future develop-
ments of verifier-based quantum algorithms, and find
applications in cloud-based quantum computing45–48.
Our work opens a new avenue in the utility of photonic
NISQ devices and adds a key ingredient to the investi-
gation toward answering valuable questions on both
computational complexity and quantum physics.

Materials and methods
Quantum verification algorithm
The class QMA(K) consists of the set of decision pro-

blems having K unentangled polynomial-size quantum
proofs that can be verified on a quantum computer in
polynomial time. As the quantum analogue of the com-
plexity class nondeterministic-polynomial-time (NP),
QMA(K) has received extensive interests and many natural
problems are proven to be in the class, such as N-repre-
sentability49 in quantum chemistry. Formally, a language L
is in QMA(K)c,s if there exists a polynomial-time quantum
algorithm V such that, for all inputs x ∈ {0,1}n:
(i) Completeness. If x ∈ L, there exists K witnesses with

poly(n) qubits each, such that V outputs “accept” with
probability at least c.
(ii) Soundness. If x ∉ L, V outputs “accept” with prob-

ability at most s for all proof states.
Our quantum verification algorithm is a modified ver-

sion of the recent proposals28,32,34. The protocol proceeds
as follows.
Given a 2-out-of-4 SAT instance ϕ, each of the two

Merlins sends to Arthur a quantum state in C�K
n (with K

subsystems). The two quantum states are denoted as
|φ1〉 and |φ2〉 respectively. Arthur performs one of the
following four tests, each with probability 1/4.
(1) Satisfiability Test. Arthur randomly chooses a block

containing a set of clauses such that no variable appears
more than once. Then Arthur measures each of the K
subsystems from Merlin 1 in a basis corresponding to the
clauses in the block. For each clause (i,j,k,l), Arthur per-
forms the projection on |c〉= (|i〉+ |j〉+ |k〉+ |l〉)/2. If
the outcome |c〉 is obtained for at least one subsystem,
reject. Otherwise, accept.
(2) Uniformity Test. Arthur randomly chooses a

matching M on the set {1,2,...,n}, and measures each of the
K subsystems from Merlin 1 in a basis containing fðjii þ
jjiÞ= ffiffiffi

2
p

; ðjii � jjiÞ= ffiffiffi
2

p g for every edge (i,j) ∈ M. If for
some edge (i,j), the two outcomes ðjii þ jjiÞ= ffiffiffi

2
p

and
ðjii � jjiÞ= ffiffiffi

2
p

both occur, reject. Otherwise, accept.
(3) Symmetry Test. Arthur chooses the subsystem 1 and

another randomly chosen subsystem from Merlin 1, and
performs a swap test on the two states. If the swap test
passes, accept. Otherwise, reject.
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(4) Product Test. Arthur performs swap test on each of
the K pairs of corresponding subsystems of |ψ1〉 and |ψ2〉,
and accepts if all of the swap tests pass. Otherwise, reject.

Photon source
Frequency-doubled light pulses (~150 fs duration, 415 nm

central wavelength) originating from a Ti:Sapphire laser
(76MHz repetition rate; Coherent Mira-HP) pump a beta
barium borate (β-BBO) crystal phase-matched for type-II
beamlike spontaneous parametric downconversion (SPDC)
to produce degenerate photon pairs (830 nm central wave-
length). The photon pairs are spectrally filtered by inter-
ference filters (IF) with 3 nm full-width at half-maximum
and collected into single mode fibres (SMF). The pump
power is set to ~150mW to ensure a low probability of
emitting two-photon pairs. By detecting one of the pair via a
single-photon avalanche diode, we characterize the second
order correlation function of heralded single photons to be
g(2) (0)= 0.041 ± 0.008. A HOM interference visibility V=
0.969 ± 0.004 is observed, indicating a great indistinguish-
ability between the two photons. The high indistinguish-
ability guarantees a good performance of the optical swap
test. See Supplementary Information for details about the
g(2) (0) measurements and the HOM interference.

Optical circuit
In the satisfiability test and uniformity test, Arthur

merely needs to measure the quantum proof |ψ〉⊗K from
one Merlin (Merlin 1 in the experiments), therefore the
optical circuit shown in Fig. 1b is designed to perform local
operations with the input of a single photon in each
measurement. The single photons generated in the SPDC
source are firstly delivered to polarization controllers and
polarizers to prepare horizontally polarized states and then
directed toward the optical circuit. The circuit is divided
into three stages: (i) proof encoding; (ii) a sequence of
tunable permutations; (iii) measurement and decision.
In Stage (i), firstly the input single photon passes the

splitting module and evolves to an equal superposition on
n/2 optical modes

ây1j0i7!
ffiffiffi
2
n

r Xn=2�1

j¼1
ây2j�1 þ âyn

� �
j0i ð2Þ

Here |0〉 denotes the vacuum state. This evolution is
experimentally realized by a sequence of wave plates and
calcite beam displacers. The following operation is a
combination of n/2 two-mode transformations {uj(θj)},
which constitute an n-mode transformation

U ¼ �
n=2

j¼1
uj θj
� � ð3Þ

Each two-mode transformation uj(θj) can be written as

ujðθjÞ ¼
cosθj sinθj
sinθj �cosθj

� �
ð4Þ

where the angle of the optical axis of the corresponding half-
wave plate is θj/2. Each wave plate can be configured into
one of the four different angles to prepare equal super-
position encoding the assignment of the two variables (x2j−1,
x2j) as 00,01,10 or 11. As a result, the overall transformation
U can prepare arbitrary proper states. For the cheating
Merlins, the wave plates are set into angles differing from
the honest case to implement an unequal splitting and (or) a
different transformation U. The details on proof encoding
are given in the Supplementary Information.
Stage (ii) comprises a sequence of tunable permutations,

each consisting of a transformation U and a mode routing.
In this case the two-mode transformations {uj(θj)} are set
to two-mode X or Z operations to permutate the two
modes or not. The operation of the mode routing is
equivalent to a fixed permutation. For example, one of the
permutation matrix for mode routing in our experiment
can be described as

P0 ¼

0 1 0 0 0 0

0 0 0 1 0 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 0 1 0

0
BBBBBBBB@

1
CCCCCCCCA

The combination of the aforementioned two operations
enables programmable permutation P · U on the n optical
modes. With a sequence of O(n) tunable permutation
modules, the circuit can be programmed to perform all
the permutations required for the two tests (See Supple-
mentary Information for details).
In Stage (iii), the first layer of two-mode transforma-

tions {uj(θj)} are all configured as two-mode Hadamard

operations H ¼ 1ffiffiffiffi
2n

p 1 1
1 �1

� �
to interfere each of the n/

2 pairs of the two optical modes (2j − 1,2j). The following
mode routing rearranges the optical modes to enable
possible further interferences required by the satisfiability
test. This routing is realized by a high extinction-ratio
polarizing beam-splitter (PBS). Two different types of
configurations are adopted for the second layer of {uj(θj)}
depending on which of the satisfiability test and uni-
formity test is applied. If the uniformity test is chosen, all
the transformations in this layer are set to Z gates or
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identity operators I ¼ 1ffiffi
n

p 1 0
0 1

� �
(without placing any

operation on the two modes), which do not perform any
interference. Therefore each mode corresponds to an
outcome of the form |i〉 ± |j〉 for a certain matching M in
terms of the permutation. Arthur will reject the proof
when the outcomes {|i〉+ |j〉, |i〉− |j〉} both occur, that is,
the two detectors (1,4),(2,5) or (3,6) labelled in Fig. 1c
both click among the measurements on K copies. For the
satisfiability test, part of transformations in the last layer
of {uj(θj)} are set into two-mode Hadamard operations to
further interfere two adjacent modes after the aforemen-
tioned mode routing. Finally, one of the output modes
(the “rejection mode”) for a group (i,j,k,l) corresponds to
the outcome |i〉+ |j〉+ |k〉+ |l〉, thus Arthur can decide
to reject or accept the proof based on whether the
detector coupled to the rejection mode clicks (see Sup-
plementary Information for details).

The whole experimental set-up can form various
Jamin–Lebedeff interferometers for different permuta-
tions and transformations. The beam displacers are
strictly aligned and calibrated in order to maintain high
interference visibilities for the interferometers when
altering the permutations and transformations. The
interference visibility for this type of interferometers is
measured to be 99.4%. Each of the six output modes of
the circuit is coupled to a single-photon avalanche
diode (Excelitas Technologies, SPCM-800-FC). Detec-
tion events are recorded by a time-correlated single-
photon counting system (Swabian Instruments, Time
Tagger Ultra) with a coincidence window of 4 ns. We
register the measurement results of 5000 × K photons
for each test to provide the rejection probabilities
shown in the figures.

Optical swap test
Two single photons are injected into two proof encoding

modules respectively to prepare the two quantum states
|ψ1〉 and |ψ2〉, which yield the input field

jψini ¼ jψ1ijψ2i ¼ Pn
i¼1 α1;iâ

y
1;ij0i1

� � Pn
j¼1 α2;jâ

y
2;jj0i2

� �

¼Pn
i;j α1;iα2;jâ

y
1;iâ

y
2;jj0i1j0i2

ð5Þ

Here |0〉1 and |0〉2 represent the vacuum state for the
two input sides. Then the two single-photon states
interfere at the 50:50 NPBS for a multi-mode HOM
interference. To observe the HOM interference, the
fibre coupler labelled in Fig. 4a is moved by an elec-
tronically controlled translation stage (Thorlabs PT1-
Z8) to change the relative delay between the wave
packets of the two photons. The relationships between
the creation operators for the input fields and output

fields of the NPBS can be written as

ây1;i ¼ 1ffiffi
2

p ây3;i þ ây4;i
� �

ây2;i ¼ 1ffiffi
2

p ây3;i � ây4;i
� � ð6Þ

By substituting Eq. (6) into Eq. (5), we obtain the output
field

jψouti ¼
Pn

i;j
α1;iα2;j

2 ây3;i þ ây4;i
� �

ây3;j � ây4;j
� �

j0i3j0i4

¼Pi
α1;iα2;i

2 ây3;i
� �2

� ây4;i
� �2� �

j0i3j0i4

þPi≠j
i;j

α1;iα2;j
2 ây3;iâ

y
3;j � ây4;iâ

y
4;j

� �
j0i3j0i4

þPi≠j
i;j

α1;iα2;j
2 ây4;iâ

y
3;j � ây3;iâ

y
4;j

� �
j0i3j0i4

ð7Þ

For indistinguishable photons, the resulting output state
can be represented as

jψouti ¼
P

i
α1;iα2;iffiffi

2
p j2ii3j0i4 � j0i3j2ii4

� �

þPi<j
i;j

α1;iα2;jþα1;jα2;i
2 j1i; 1ji3j0i4 � j0i3j1i; 1ji4

� �

þPi;j
α1;iα2;j�α1;jα2;i

2 j1ji3j1ii4
ð8Þ

Here |1i,1j〉3 denotes the state with one photon in mode
i and another photon in mode j for the output port 3.
The right side of Eq. (8) contains three terms, where
the first two correspond to the one-side terms (two
photons are in the same output port) and the last one
corresponds to the two-side terms (one photon in the
output port 3 and another photon in the output port 4).
The probability of finding a “two-side” outcome is

pswapr ¼ 1
4

P
i;j α1;iα2;j � α1;jα2;i
�� ��2

¼ 1
2

P
i;j jα1;ij2jα2;jj2 � 1

2

P
i;j α

�
1;iα1;jα2;iα

�
2;j

¼ 1
2 1� jhψ1jψ2ij2
� �

ð9Þ

considering the overlap between the two states is
hψ1jψ2i ¼

P
i α

�
1;iα2;i. The probability pswapr is consistent

with the probability of finding a “reject” outcome in a
swap test. In the experiment, each path mode of the
output is attached to a SPAD, therefore the two
polarization modes in the same path are detected by the
same detector. This reduces the number of outcomes

from
n
2

� �
to

n=2
2

� �
. The coincidence channels {1,2},

{1,3},{2,3},{4,5},{4,6},{5,6} correspond to the “accept” out-
come (here {i,j} denotes a coincidence channel between
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detectors i and j as labelled in Fig. 4a). We also add
photon number resolving detection by attaching a fiber
beam-splitter (Thorlabs TN830R5F2) and an additional
SPAD to two path modes. This scheme is capable of
detecting more events on the “accept” outcome (see
Supplementary Information for detailed results).
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identity operators I ¼ 1ffiffi
n

p 1 0
0 1

� �
(without placing any

operation on the two modes), which do not perform any
interference. Therefore each mode corresponds to an
outcome of the form |i〉 ± |j〉 for a certain matching M in
terms of the permutation. Arthur will reject the proof
when the outcomes {|i〉+ |j〉, |i〉− |j〉} both occur, that is,
the two detectors (1,4),(2,5) or (3,6) labelled in Fig. 1c
both click among the measurements on K copies. For the
satisfiability test, part of transformations in the last layer
of {uj(θj)} are set into two-mode Hadamard operations to
further interfere two adjacent modes after the aforemen-
tioned mode routing. Finally, one of the output modes
(the “rejection mode”) for a group (i,j,k,l) corresponds to
the outcome |i〉+ |j〉+ |k〉+ |l〉, thus Arthur can decide
to reject or accept the proof based on whether the
detector coupled to the rejection mode clicks (see Sup-
plementary Information for details).

The whole experimental set-up can form various
Jamin–Lebedeff interferometers for different permuta-
tions and transformations. The beam displacers are
strictly aligned and calibrated in order to maintain high
interference visibilities for the interferometers when
altering the permutations and transformations. The
interference visibility for this type of interferometers is
measured to be 99.4%. Each of the six output modes of
the circuit is coupled to a single-photon avalanche
diode (Excelitas Technologies, SPCM-800-FC). Detec-
tion events are recorded by a time-correlated single-
photon counting system (Swabian Instruments, Time
Tagger Ultra) with a coincidence window of 4 ns. We
register the measurement results of 5000 × K photons
for each test to provide the rejection probabilities
shown in the figures.

Optical swap test
Two single photons are injected into two proof encoding

modules respectively to prepare the two quantum states
|ψ1〉 and |ψ2〉, which yield the input field

jψini ¼ jψ1ijψ2i ¼ Pn
i¼1 α1;iâ

y
1;ij0i1

� � Pn
j¼1 α2;jâ

y
2;jj0i2

� �

¼Pn
i;j α1;iα2;jâ

y
1;iâ

y
2;jj0i1j0i2

ð5Þ

Here |0〉1 and |0〉2 represent the vacuum state for the
two input sides. Then the two single-photon states
interfere at the 50:50 NPBS for a multi-mode HOM
interference. To observe the HOM interference, the
fibre coupler labelled in Fig. 4a is moved by an elec-
tronically controlled translation stage (Thorlabs PT1-
Z8) to change the relative delay between the wave
packets of the two photons. The relationships between
the creation operators for the input fields and output

fields of the NPBS can be written as

ây1;i ¼ 1ffiffi
2

p ây3;i þ ây4;i
� �

ây2;i ¼ 1ffiffi
2

p ây3;i � ây4;i
� � ð6Þ

By substituting Eq. (6) into Eq. (5), we obtain the output
field

jψouti ¼
Pn

i;j
α1;iα2;j

2 ây3;i þ ây4;i
� �

ây3;j � ây4;j
� �

j0i3j0i4

¼Pi
α1;iα2;i

2 ây3;i
� �2

� ây4;i
� �2� �

j0i3j0i4

þPi≠j
i;j

α1;iα2;j
2 ây3;iâ

y
3;j � ây4;iâ

y
4;j

� �
j0i3j0i4

þPi≠j
i;j

α1;iα2;j
2 ây4;iâ

y
3;j � ây3;iâ

y
4;j

� �
j0i3j0i4

ð7Þ

For indistinguishable photons, the resulting output state
can be represented as

jψouti ¼
P

i
α1;iα2;iffiffi

2
p j2ii3j0i4 � j0i3j2ii4

� �

þPi<j
i;j

α1;iα2;jþα1;jα2;i
2 j1i; 1ji3j0i4 � j0i3j1i; 1ji4

� �

þPi;j
α1;iα2;j�α1;jα2;i

2 j1ji3j1ii4
ð8Þ

Here |1i,1j〉3 denotes the state with one photon in mode
i and another photon in mode j for the output port 3.
The right side of Eq. (8) contains three terms, where
the first two correspond to the one-side terms (two
photons are in the same output port) and the last one
corresponds to the two-side terms (one photon in the
output port 3 and another photon in the output port 4).
The probability of finding a “two-side” outcome is

pswapr ¼ 1
4

P
i;j α1;iα2;j � α1;jα2;i
�� ��2

¼ 1
2

P
i;j jα1;ij2jα2;jj2 � 1

2

P
i;j α

�
1;iα1;jα2;iα

�
2;j

¼ 1
2 1� jhψ1jψ2ij2
� �

ð9Þ

considering the overlap between the two states is
hψ1jψ2i ¼

P
i α

�
1;iα2;i. The probability pswapr is consistent

with the probability of finding a “reject” outcome in a
swap test. In the experiment, each path mode of the
output is attached to a SPAD, therefore the two
polarization modes in the same path are detected by the
same detector. This reduces the number of outcomes

from
n
2

� �
to

n=2
2

� �
. The coincidence channels {1,2},

{1,3},{2,3},{4,5},{4,6},{5,6} correspond to the “accept” out-
come (here {i,j} denotes a coincidence channel between
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detectors i and j as labelled in Fig. 4a). We also add
photon number resolving detection by attaching a fiber
beam-splitter (Thorlabs TN830R5F2) and an additional
SPAD to two path modes. This scheme is capable of
detecting more events on the “accept” outcome (see
Supplementary Information for detailed results).
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Double-bowl state in photonic Dirac nodal line
semimetal
Mengying Hu1, Ye Zhang1, Xi Jiang1, Tong Qiao 1, Qiang Wang 2, Shining Zhu 1, Meng Xiao 3✉ and Hui Liu 1✉

Abstract
The past decade has seen a proliferation of topological materials for both insulators and semimetals in electronic
systems and classical waves. Topological semimetals exhibit topologically protected band degeneracies, such as nodal
points and nodal lines. Dirac nodal line semimetals (DNLS), which own four-fold line degeneracy, have drawn
particular attention. DNLSs have been studied in electronic systems but there is no photonic DNLS. Here in this work,
we provide a new mechanism, which is unique for photonic systems to investigate a stringent photonic DNLS. When
truncated, the photonic DNLS exhibits double-bowl states (DBS), which comprise two sets of perpendicularly polarized
surface states. In sharp contrast to nondegenerate surface states in other photonic systems, here the two sets of
surface states are almost degenerate over the whole-spectrum range. The DBS and the bulk Dirac nodal ring (DNR)
dispersion along the relevant directions, are experimentally resolved.

Introduction
Discovering new topological phases of matter is of sig-

nificant importance for both fundamental physics and
materials science1–7. Theory of symmetry indicators is
successful in identifying electronic topological materials8.
With mature algorithm developed, extensive efforts have
been taken to diagnose topological characters of electro-
nic materials in the crystal structure database exhaus-
tively9–11. The topological classification of the photonic
systems was originally thought to be a trivial extension of
the electronic counterpart and described by spinless space
groups. However, detailed analyses reveal that photonic
systems are distinct from the electronic counterparts, and
connectivity at zero frequency in dielectric materials and
hidden symmetry enforced nexus points are latter found
to be unique to photonic systems12,13. Here in this work,
we provide a stringent photonic realization of Dirac nodal

line semimetal (DNLS), which is not a spinless version of
the electronic DNLS. More intriguingly, such a photonic
DNLS exhibits perpendicularly polarized double-bowl
surface states (DBS), which are degenerately pinned at
the bowl center and bowl edge and are almost degenerate
over the entire spectrum range. This is in sharp contrast
to other photonic systems, where the two perpendicularly
polarized states are in general nondegenerate.
DNLSs14–18 and three-dimensional (3D) Dirac semi-

metals19 with four-fold band degeneracy stand as impor-
tant members of the topological semimetal family14–24.
They exhibit various unique properties such as giant
diamagnetism25, flat Landau levels26, and long-range
Coulomb interaction27, among others28. In addition,
they are neighbors to many novel topological phases and
thus serve as ideal platforms for investigating topological
phase transitions19. Three-dimensional Dirac semimetals
have been observed in both electronic systems and clas-
sical waves19,29–31. In electronic systems, DNLSs are
possible in the absence of spin-orbital couplings16–18.
Meanwhile, they can also be protected by nonsymmorphic
symmetries in the presence of spin-orbital couplings14,15.
However, there is NO photonic DNLS in all
previous works.
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