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Abstract
Array cameras removed the optical limitations of a single camera and paved the way for high-performance imaging
via the combination of micro-cameras and computation to fuse multiple aperture images. However, existing solutions
use dense arrays of cameras that require laborious calibration and lack flexibility and practicality. Inspired by the
cognition function principle of the human brain, we develop an unstructured array camera system that adopts a
hierarchical modular design with multiscale hybrid cameras composing different modules. Intelligent computations
are designed to collaboratively operate along both intra- and intermodule pathways. This system can adaptively
allocate imagery resources to dramatically reduce the hardware cost and possesses unprecedented flexibility,
robustness, and versatility. Large scenes of real-world data were acquired to perform human-centric studies for the
assessment of human behaviours at the individual level and crowd behaviours at the population level requiring high-
resolution long-term monitoring of dynamic wide-area scenes.

Introduction
Array cameras, which are an effective solution to increase

the aperture area and overcome the optical aberrations of
single-lens cameras, have been extensively studied for high-
performance imaging1–13, including wide-field high-reso-
lution imaging3–5, high dynamic range imaging5,14, and
high frame-rate imaging5. By strictly following the uniform
sensation principle in which each pixel has the same
instantaneous field of view, as in a single camera, a large
array camera was first proposed for high spatial/temporal
resolution and wide field-of-view (FoV) videography5.
However, the system was bulky, and the video stitching
algorithm was not robust enough to support a large
number of cameras and irregular arrangements. The recent
multiscale optical design3,4,15 adopted a customized
objective lens as the first-stage optical imaging system. The
secondary imaging system used multiple identical micro-
optics to divide the whole FOV into small overlapping
regions. It substantially reduced the size and weight of
gigapixel-scale optical systems. However, the volume and

weight of the camera electronics in video operation was
more than 10× greater than that of the optics3. Moreover,
this system required a delicate structured array camera
design, raising challenges with the complex optical, elec-
tronic, and mechanical designs. Laborious calibration and
massive data processing were also needed4,7.
Regardless of the improved imaging performance on a

single camera, existing array cameras still follow the
uniform sensation principle, which inherently limits their
scalability and practicability. More specifically, all the
information from micro-cameras with a homogeneous-
instantaneous FoV (IFoV) is processed on the assumption
that the information is uniformly distributed across the
whole FoV. However, this is not the case because the
information from natural scenes is distributed unevenly
and sparsely. This incorrect assumption dramatically
increases the data throughput and challenges data pro-
cessing. For example, in AWARE23 and RUSH4, a sig-
nificant fraction of the computational resources are
wasted on the futile acquisition, as the information within
the region of interest is minor against the background.
As such, existing array cameras mostly focus on the optical,

geometric, and algorithm design and use simple parallel
topology and homogeneous cameras, which limit their scal-
ability, flexibility, robustness, and practicability3–5,16–18. In
nature, the solution to an analogous task, such as the
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cognition of the human brain, adopts a hierarchical organi-
zation that comprises heterogeneous neural network mod-
ules and operates by collaborative signal transmission via
intracortex and intercortex node internets8,9,11 (Fig. 1a). The
human brain comprises multiple lobes that function differ-
ently and coordinately. Simple tasks such as tongue control
can be performed by a single module, while complex tasks
such as repeating a heard word require the collaboration of
multiple lobes. The human brain network can be described
as a rich-club organization8. The nodes integrate into the
rich-club hub through strong short-range edges (blue) first to
form modules, and the hubs/modules are interconnected via
long-range edges (red) for complex tasks.
This cognition principle inspired the invention of the

array camera with a modular hierarchical structure. The
array camera is easily scalable and adaptive to complex
scenarios. The system is composed of two layers. In the
local layer, the camera nodes focus on specific local tasks,
whereas in the global layer, the camera nodes are
responsible for high-level coordination. An example of
local integration is presented for unstructured gigapixel

videography (Fig. 1b). Flexibility is demonstrated by
investigating content-adaptive unstructured sampling. In
global integration, multiple unstructured array camera
modules are employed to investigate wider FoV imaging
and expanded depth perception. The topology design and
the coordination among the intra- and intermodule nodes
remain the key challenges, which this study has overcome
by designing intelligent computational algorithms designs.

Results
Unstructured array camera module
We first explored a single array camera module, named

UnstructuredCam, with hierarchical topology and flexible
structures. It was designed for high-performance imaging,
consisting of one global camera for capturing a large FoV
and multiple local cameras for capturing local high-
resolution details (Fig. 2a). Different from AWARE23 and
RUSH4, the imagery source of UnstructuredCam can be
adaptively allocated for various scenes. In particular, an
overlapping region between neighbouring cameras is no
longer required because the hierarchical topology enables
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Fig. 1 Principle of the modular hierarchical array camera. a Schematic of the modular hierarchical human brain network. The human brain
cerebral cortex is composed of multiple lobes functioning coordinately and collaboratively. Simple tasks, such as tongue control, are accomplished
by the motor cortex only, whereas complex tasks, such as speaking, need collaborative performance from multiple lobes. Rich-club organization is
widely used to describe the human brain network. The nodes integrate into rich-club hubs through strong short-range edges first, and the hubs are
interconnected via long-range edges. One hub and several nodes form a module through local integration, and multiple modules form a network
through global integration. b Modular hierarchical array camera inspired by the human brain network comprising heterogeneous camera nodes.
Local camera nodes capture objects sparsely under global node coordination, that is, intramodule collaboration. Multiple modules collaborate for
increased imaging performance or more functions, also known as intermodule collaboration. An example is presented in the middle column,
consisting of a global camera node (red circle) and several local camera nodes (blue circles). The global camera captures a broad view, while the local
cameras capture the local details. After local integration, the videos are merged and generate an enlarged video with a nonuniform spatial resolution.
Intermodule collaboration is sketched in the right column. Multiple modules cover different subregions of a crossroads. The local cameras acquire
subregional details; through global integration, a video possessing an enlarged FoV and greater depth perception is obtained.
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Introduction
Array cameras, which are an effective solution to increase

the aperture area and overcome the optical aberrations of
single-lens cameras, have been extensively studied for high-
performance imaging1–13, including wide-field high-reso-
lution imaging3–5, high dynamic range imaging5,14, and
high frame-rate imaging5. By strictly following the uniform
sensation principle in which each pixel has the same
instantaneous field of view, as in a single camera, a large
array camera was first proposed for high spatial/temporal
resolution and wide field-of-view (FoV) videography5.
However, the system was bulky, and the video stitching
algorithm was not robust enough to support a large
number of cameras and irregular arrangements. The recent
multiscale optical design3,4,15 adopted a customized
objective lens as the first-stage optical imaging system. The
secondary imaging system used multiple identical micro-
optics to divide the whole FOV into small overlapping
regions. It substantially reduced the size and weight of
gigapixel-scale optical systems. However, the volume and

weight of the camera electronics in video operation was
more than 10× greater than that of the optics3. Moreover,
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design, raising challenges with the complex optical, elec-
tronic, and mechanical designs. Laborious calibration and
massive data processing were also needed4,7.
Regardless of the improved imaging performance on a

single camera, existing array cameras still follow the
uniform sensation principle, which inherently limits their
scalability and practicability. More specifically, all the
information from micro-cameras with a homogeneous-
instantaneous FoV (IFoV) is processed on the assumption
that the information is uniformly distributed across the
whole FoV. However, this is not the case because the
information from natural scenes is distributed unevenly
and sparsely. This incorrect assumption dramatically
increases the data throughput and challenges data pro-
cessing. For example, in AWARE23 and RUSH4, a sig-
nificant fraction of the computational resources are
wasted on the futile acquisition, as the information within
the region of interest is minor against the background.
As such, existing array cameras mostly focus on the optical,
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cognition of the human brain, adopts a hierarchical organi-
zation that comprises heterogeneous neural network mod-
ules and operates by collaborative signal transmission via
intracortex and intercortex node internets8,9,11 (Fig. 1a). The
human brain comprises multiple lobes that function differ-
ently and coordinately. Simple tasks such as tongue control
can be performed by a single module, while complex tasks
such as repeating a heard word require the collaboration of
multiple lobes. The human brain network can be described
as a rich-club organization8. The nodes integrate into the
rich-club hub through strong short-range edges (blue) first to
form modules, and the hubs/modules are interconnected via
long-range edges (red) for complex tasks.
This cognition principle inspired the invention of the

array camera with a modular hierarchical structure. The
array camera is easily scalable and adaptive to complex
scenarios. The system is composed of two layers. In the
local layer, the camera nodes focus on specific local tasks,
whereas in the global layer, the camera nodes are
responsible for high-level coordination. An example of
local integration is presented for unstructured gigapixel

videography (Fig. 1b). Flexibility is demonstrated by
investigating content-adaptive unstructured sampling. In
global integration, multiple unstructured array camera
modules are employed to investigate wider FoV imaging
and expanded depth perception. The topology design and
the coordination among the intra- and intermodule nodes
remain the key challenges, which this study has overcome
by designing intelligent computational algorithms designs.

Results
Unstructured array camera module
We first explored a single array camera module, named

UnstructuredCam, with hierarchical topology and flexible
structures. It was designed for high-performance imaging,
consisting of one global camera for capturing a large FoV
and multiple local cameras for capturing local high-
resolution details (Fig. 2a). Different from AWARE23 and
RUSH4, the imagery source of UnstructuredCam can be
adaptively allocated for various scenes. In particular, an
overlapping region between neighbouring cameras is no
longer required because the hierarchical topology enables
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Fig. 1 Principle of the modular hierarchical array camera. a Schematic of the modular hierarchical human brain network. The human brain
cerebral cortex is composed of multiple lobes functioning coordinately and collaboratively. Simple tasks, such as tongue control, are accomplished
by the motor cortex only, whereas complex tasks, such as speaking, need collaborative performance from multiple lobes. Rich-club organization is
widely used to describe the human brain network. The nodes integrate into rich-club hubs through strong short-range edges first, and the hubs are
interconnected via long-range edges. One hub and several nodes form a module through local integration, and multiple modules form a network
through global integration. b Modular hierarchical array camera inspired by the human brain network comprising heterogeneous camera nodes.
Local camera nodes capture objects sparsely under global node coordination, that is, intramodule collaboration. Multiple modules collaborate for
increased imaging performance or more functions, also known as intermodule collaboration. An example is presented in the middle column,
consisting of a global camera node (red circle) and several local camera nodes (blue circles). The global camera captures a broad view, while the local
cameras capture the local details. After local integration, the videos are merged and generate an enlarged video with a nonuniform spatial resolution.
Intermodule collaboration is sketched in the right column. Multiple modules cover different subregions of a crossroads. The local cameras acquire
subregional details; through global integration, a video possessing an enlarged FoV and greater depth perception is obtained.
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communication and information sharing among the local
cameras through the global camera. The coverage areas of
the local cameras are determined by maximizing the
covered temporal entropy of a scene, measured on the
global view (Fig. 2b).
Compared to the conventional uniform sensation prin-

ciple for the parallel array camera3–5,16,17, the proposed
sparse sensation principle can dramatically reduce the
hardware cost, for example, ~70% for the scenes illustrated
in Fig. 2c. The black dashed line shows that the informa-
tion covered by 20 cameras with an unstructured sampling
strategy (red) is equivalent to the capacity of 65 cameras
with conventionally structured sampling (blue). The
curves were plotted by counting and averaging all the real-
world video sequences in the PANDA dataset19. Two parts
contribute to the gain. First, a conventional array camera
needs large overlapping regions between neighbouring
cameras (~30% in AWARE2) for calibration, while our
hierarchical design removes this requirement. Second,
natural scene information is mostly distributed unevenly
and sparsely. Figure 2c shows four different unstructured
distributions of local cameras assigned by our unstruc-
tured sampling strategy; i.e., the local cameras mainly
focus on regions full of dynamic information, such as
roads, crowds, and other moving objects. The example

scenario in Fig. 2d was captured in downtown Shenzhen,
covering ~1 ×1 km2. The right side shows the local details
from 400, 450, and 700m away, where the car licence
plates can be recognized and the details of human activ-
ities can be seen clearly. Benefiting from the reduced
number of cameras, our system can reach real-time giga-
pixel streaming and storage without noticeable latency on
ordinary PC platforms (Supplementary Movie S5).
It is worth noting that, by proposing the unstructured

embedding algorithm, our UnstructuredCam is robust to
local camera movement, loss, and addition because it
could react and recover quickly with online recalibration.
Benefitting from the hierarchical structure, each local
camera is independent of the others, and adding, replacing,
or displacing a local camera does not affect the others.
Therefore, online calibration computational complexity is
significantly reduced with a high degree of parallelism
(Supplementary Figs. S1–S3 and Movie S1). Moreover, this
algorithm is quite robust even if the global camera is off-
line. We can use previously captured global data to cali-
brate current-time local cameras regardless of inconsistent
global contents (Supplementary Fig. S6).
In addition to its robustness, the unstructured embed-

ding strategy also makes the output gigapixel frame looks
like a superresolution version of the global camera. Such a
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Fig. 2 Schematic and performance of our UnstructuredCam module. a The UnstructuredCam module, consisting of a global camera node and
multiple local camera nodes. All the local camera nodes are mounted on ball gimbals to maximize flexibility. The cameras and lenses are selected
heterogeneously based on the nature of the targets. b Computed temporal entropy map from the captured image sequences of the global camera
node. Unstructured sampling can be applied under the temporal entropy map coordination. c Illustration of the unstructured sampling results. Left,
plots of the covered information (%) vs. the number of camera nodes. The red and blue curves represent the performance of the UnstructuredCam
and the conventional structured array camera. The shadows denote the standard deviation (SD) across the whole dataset. Right, the positions of
assigned local cameras by the unstructured sampling algorithm. Four representative scenes are shown. d Gigapixel-level videography captured using
the UnstructuredCam. The red and blue frames on the top left represent the distributions of the global and local cameras. The zoom-in details of
three regions at approximately 400, 450, and 700m away are shown in the right column.
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characteristic is critical for an array camera, as it not only
assures that the whole array camera will work robustly as
a unified module but also delivers the scalability and
flexibility. More details of the unstructured embedding
strategy and unstructured embedding algorithm are dis-
cussed in the “Materials and methods” section.

Panoramic 3D videography
In the human brain, multiple cortical areas collaborate

to complete complex tasks; similarly, multiple unstruc-
tured array camera modules can also collaborate to enrich
more functions in our system. The collaboration of mul-
tiple modules is also unstructured and hierarchical, con-
sisting of intra- and intermodule collaborations similar to
the short- and long-range edge in the brain network.
We demonstrate the capture of panoramic 3D videography

through the collaboration of multiple modules in Fig. 3a. The
whole array camera consists of multiple unstructured sub-
arrays. Each subarray is composed of two unstructured
camera array modules, within which the local camera nodes

remain unstructured for distant high-resolution details, while
the two global cameras are precalibrated. This setup provides
a variety of collaboration methods, including depth percep-
tion and panorama generation.
The example scenario presented in Fig. 3b was captured

using 5 subarrays (10 unstructured array camera modules)
covering a 180-degree FoV. For convenience, two sub-
arrays are highlighted as 1+ 2 and 3+ 4. Each of 1–4 can
work independently as an UnstructuredCam module.
Moreover, intermodule collaboration leads to new fea-
tures. For example, 1 and 3 can collaborate for a wider
FOV, and eventually, the intermodule collaboration
among different subarrays can generate a colour panor-
ama, as shown in the top row of Fig. 3b. Moreover, 1+ 2
(or 3+ 4) can work collaboratively towards 3D sensation.
Such intermodule collaboration of the same subarray
succeeded in estimating a high-quality depth map, as
shown in the middle row of Fig. 3b.
Our array camera preserves the high-resolution details

for distant scenes, which distinguishes it from the existing
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Fig. 3 Illustration of 3D panoramic recordings. a Schematic of our system consisting of multiple columns of subarrays. Each subarray comprises
two UnstructuredCam modules. The local camera nodes are also flexible (mounted on ball gimbals), but the global camera nodes in the same
subarray are fixed and precalibrated for depth perception. Both intra- and intermodule collaborations are employed in this system. Numbers 1, 2 and
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cameras, and our modular hierarchical array camera.
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the local cameras are determined by maximizing the
covered temporal entropy of a scene, measured on the
global view (Fig. 2b).
Compared to the conventional uniform sensation prin-

ciple for the parallel array camera3–5,16,17, the proposed
sparse sensation principle can dramatically reduce the
hardware cost, for example, ~70% for the scenes illustrated
in Fig. 2c. The black dashed line shows that the informa-
tion covered by 20 cameras with an unstructured sampling
strategy (red) is equivalent to the capacity of 65 cameras
with conventionally structured sampling (blue). The
curves were plotted by counting and averaging all the real-
world video sequences in the PANDA dataset19. Two parts
contribute to the gain. First, a conventional array camera
needs large overlapping regions between neighbouring
cameras (~30% in AWARE2) for calibration, while our
hierarchical design removes this requirement. Second,
natural scene information is mostly distributed unevenly
and sparsely. Figure 2c shows four different unstructured
distributions of local cameras assigned by our unstruc-
tured sampling strategy; i.e., the local cameras mainly
focus on regions full of dynamic information, such as
roads, crowds, and other moving objects. The example

scenario in Fig. 2d was captured in downtown Shenzhen,
covering ~1 ×1 km2. The right side shows the local details
from 400, 450, and 700m away, where the car licence
plates can be recognized and the details of human activ-
ities can be seen clearly. Benefiting from the reduced
number of cameras, our system can reach real-time giga-
pixel streaming and storage without noticeable latency on
ordinary PC platforms (Supplementary Movie S5).
It is worth noting that, by proposing the unstructured

embedding algorithm, our UnstructuredCam is robust to
local camera movement, loss, and addition because it
could react and recover quickly with online recalibration.
Benefitting from the hierarchical structure, each local
camera is independent of the others, and adding, replacing,
or displacing a local camera does not affect the others.
Therefore, online calibration computational complexity is
significantly reduced with a high degree of parallelism
(Supplementary Figs. S1–S3 and Movie S1). Moreover, this
algorithm is quite robust even if the global camera is off-
line. We can use previously captured global data to cali-
brate current-time local cameras regardless of inconsistent
global contents (Supplementary Fig. S6).
In addition to its robustness, the unstructured embed-

ding strategy also makes the output gigapixel frame looks
like a superresolution version of the global camera. Such a
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characteristic is critical for an array camera, as it not only
assures that the whole array camera will work robustly as
a unified module but also delivers the scalability and
flexibility. More details of the unstructured embedding
strategy and unstructured embedding algorithm are dis-
cussed in the “Materials and methods” section.

Panoramic 3D videography
In the human brain, multiple cortical areas collaborate

to complete complex tasks; similarly, multiple unstruc-
tured array camera modules can also collaborate to enrich
more functions in our system. The collaboration of mul-
tiple modules is also unstructured and hierarchical, con-
sisting of intra- and intermodule collaborations similar to
the short- and long-range edge in the brain network.
We demonstrate the capture of panoramic 3D videography

through the collaboration of multiple modules in Fig. 3a. The
whole array camera consists of multiple unstructured sub-
arrays. Each subarray is composed of two unstructured
camera array modules, within which the local camera nodes

remain unstructured for distant high-resolution details, while
the two global cameras are precalibrated. This setup provides
a variety of collaboration methods, including depth percep-
tion and panorama generation.
The example scenario presented in Fig. 3b was captured

using 5 subarrays (10 unstructured array camera modules)
covering a 180-degree FoV. For convenience, two sub-
arrays are highlighted as 1+ 2 and 3+ 4. Each of 1–4 can
work independently as an UnstructuredCam module.
Moreover, intermodule collaboration leads to new fea-
tures. For example, 1 and 3 can collaborate for a wider
FOV, and eventually, the intermodule collaboration
among different subarrays can generate a colour panor-
ama, as shown in the top row of Fig. 3b. Moreover, 1+ 2
(or 3+ 4) can work collaboratively towards 3D sensation.
Such intermodule collaboration of the same subarray
succeeded in estimating a high-quality depth map, as
shown in the middle row of Fig. 3b.
Our array camera preserves the high-resolution details
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solutions for panoramas or 3D sensation. This ability is
predominantly attributed to intramodule collaboration
(i.e., unstructured local cameras). The high-resolution
RGB information provided by intramodule collaboration
further improves the quality of the depth map. The bot-
tom row of Fig. 3b highlights the high-resolution details
(green board 100m away) as well as the high-quality
depth map of distant scenes (pedestrians 80 m away). The
depth estimation details are presented in the Materials
and Methods and Supplementary Method S2. More
panoramic 3D videography results are shown in Supple-
mentary Fig. S4 and Movie S2.
Figure 3c compares the performance of various array

cameras, including the AWARE2 camera3, virtual reality
cameras20,21, light field camera6,15, and our array camera.
The chart compares the spatial resolution, FoV, and depth
information under the same constraints of a limited
number of cameras and limited space. AWARE2 (red)
achieves both a high spatial resolution and a wide FoV but
lacks depth perception. Current virtual reality cameras
usually have a 360° FoV, but the spatial resolution is
reduced, and the estimated depth map is limited to a small
depth range. In contrast, light field cameras focus on
improving depth perception, but the spatial resolution
and FoV are sacrificed. Our modular hierarchical array
camera offers a solution to gain competitive performance
in all three aspects. It can obtain a high spatial resolution,
a wide FoV (up to 360°), and long-range depth estimation.

Multiscale human-centric analysis
Video data are indispensable in the retrospective ana-

lysis of human presence, behaviour, interactions, and
distributions. Wide-FoV video data with high-resolution
local details have immense potential for addressing
sociological and psychological questions that require the
dynamic monitoring of wide scenes without interference,
such as abnormal social behaviour assessment and
recognition. However, conventional human-centric ana-
lysis is limited by the difficulty of performing quantitative
measurements on pedestrians in a large area due to the
lack of both large-FoV global observations and high-
resolution local details22. Further, data exploration and
assessment are highly dependent on human expertise and
manpower.
Modern human-centric analysis demands a system to

automatically perform quantitative measurements based
on the long-term observation of large-scale dynamic
scenes. Such multiscale analysis can model individuals,
groups, and crowds by simultaneously detecting and
tracking thousands of targets in parallel and over long
distances (e.g., 100–1000m), characterizing social inter-
actions, and modelling human crowd dynamics. Psycho-
logically, as the density of people in the surrounding
environment increases, the human-centric features

transferred from individualized to grouped or colonized.
Therefore, two typical scenarios, i.e., group-scale social
interaction analysis and crowd-scale dynamics modelling,
are presented below to illustrate the potential of our
multiscale human-centric analysis system enabled by the
proposed array camera.
First, our system can present multiscale and multi-

dimensional pedestrian features, including interpersonal
angles, face orientations, postures, body language, and
long-term trajectories. Previous studies have shown that
human information is critical to judge people’s interac-
tions and groups23,24. Figure 4 illustrates a gigapixel video
sequence captured by our array camera covering a 120 ×
150m2 scene on the campus of Tsinghua University. For
illustration, the long-term trajectories of individuals are
bundled into groups and rendered with cool tones from
purple to blue in Fig. 4b. Two typical groups are high-
lighted in red and yellow with orientation markers at four
selected time points. Figure 4c depicts the analysed
socially meaningful information of these two groups at
each time point, namely the speed and face orientation
curves over time, instantaneous human pose changes, and
the corresponding interpersonal distance graphs. The
interaction field24 representing the relative position dis-
tribution of the other persons when an interpersonal
interaction occurs is shown in Fig. 4e, computed from
3018 individuals in 12 dynamic scenes from the PANDA
dataset19. This field quantifies the operational principles
of real-world social groups for the analysis of human
interactions and activities inside each group.
Compared to existing results computed from artificially

simulated data, our interaction field was computed from
real-world large-scale scenes reflecting natural and social
activities. Figure 4f provides sociological and psychologi-
cal analyses. The left subfigure reveals that the group
tends to move slowly as the group size increases, while the
right subfigure reveals that the males in social groups tend
to have a lower interaction frequency.
Modelling crowd dynamics quantitatively plays a vital

role in risk prevention for mass events and vivid crowd
simulation studies. Conventional strategies22 can only
count on global-level crowd information without invol-
ving individual interactions that affect crowd activities as
well25,26. Given the high-quality details of each pedestrian
in a large-scale scene, the proposed array camera supports
the joint analysis of single-person activities and crowd
behaviours, leading to a more comprehensive and accu-
rate characterization of crowd dynamics.
Figure 5a illustrates a marathon race captured by our

UnstructuredCam with over 4000 people. Human faces
were captured over a 60 × 90 resolution from 10 to 100
metres, thereby ensuring successful face detection and
recognition27. Quantitative statistics on such real-world
data are exploited to characterize the movement of the
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crowd by assuming each person is a particle with both
mass and velocity. The particle density is defined as the
number of people per unit area, where individuals are
standing still, walking, or running. The dynamics
(including the changing trend and fluctuation) of the
whole crowd at five different intervals are visualized as the
heat map in Fig. 5b. More detailed crowd dynamics along
the depth direction can be accumulated and stacked over
time to visualize the density and velocity changes (Fig. 5c).
These quantitative crowd motion feature maps have great
potential for characterizing crowd dynamics. The speed
consistency increases in the area with a denser population,
as depicted in the scatter diagram (right column). This is

consistent with the psychological hypothesis that when
the density of people increases, their movement tends to
be more conforming. More results are presented in Sup-
plementary Movies S3 and S4.

Discussion
This paper studied the principle and the impact of a

modular hierarchical array camera. The imaging system
was inspired by the fact that brain function or cognition
can be described as the global integration of local neuronal
operations that underlies the sharing of information
among cortical areas, which is precisely facilitated by
modular hierarchical network architecture. A group of
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solutions for panoramas or 3D sensation. This ability is
predominantly attributed to intramodule collaboration
(i.e., unstructured local cameras). The high-resolution
RGB information provided by intramodule collaboration
further improves the quality of the depth map. The bot-
tom row of Fig. 3b highlights the high-resolution details
(green board 100m away) as well as the high-quality
depth map of distant scenes (pedestrians 80 m away). The
depth estimation details are presented in the Materials
and Methods and Supplementary Method S2. More
panoramic 3D videography results are shown in Supple-
mentary Fig. S4 and Movie S2.
Figure 3c compares the performance of various array

cameras, including the AWARE2 camera3, virtual reality
cameras20,21, light field camera6,15, and our array camera.
The chart compares the spatial resolution, FoV, and depth
information under the same constraints of a limited
number of cameras and limited space. AWARE2 (red)
achieves both a high spatial resolution and a wide FoV but
lacks depth perception. Current virtual reality cameras
usually have a 360° FoV, but the spatial resolution is
reduced, and the estimated depth map is limited to a small
depth range. In contrast, light field cameras focus on
improving depth perception, but the spatial resolution
and FoV are sacrificed. Our modular hierarchical array
camera offers a solution to gain competitive performance
in all three aspects. It can obtain a high spatial resolution,
a wide FoV (up to 360°), and long-range depth estimation.

Multiscale human-centric analysis
Video data are indispensable in the retrospective ana-

lysis of human presence, behaviour, interactions, and
distributions. Wide-FoV video data with high-resolution
local details have immense potential for addressing
sociological and psychological questions that require the
dynamic monitoring of wide scenes without interference,
such as abnormal social behaviour assessment and
recognition. However, conventional human-centric ana-
lysis is limited by the difficulty of performing quantitative
measurements on pedestrians in a large area due to the
lack of both large-FoV global observations and high-
resolution local details22. Further, data exploration and
assessment are highly dependent on human expertise and
manpower.
Modern human-centric analysis demands a system to

automatically perform quantitative measurements based
on the long-term observation of large-scale dynamic
scenes. Such multiscale analysis can model individuals,
groups, and crowds by simultaneously detecting and
tracking thousands of targets in parallel and over long
distances (e.g., 100–1000m), characterizing social inter-
actions, and modelling human crowd dynamics. Psycho-
logically, as the density of people in the surrounding
environment increases, the human-centric features

transferred from individualized to grouped or colonized.
Therefore, two typical scenarios, i.e., group-scale social
interaction analysis and crowd-scale dynamics modelling,
are presented below to illustrate the potential of our
multiscale human-centric analysis system enabled by the
proposed array camera.
First, our system can present multiscale and multi-

dimensional pedestrian features, including interpersonal
angles, face orientations, postures, body language, and
long-term trajectories. Previous studies have shown that
human information is critical to judge people’s interac-
tions and groups23,24. Figure 4 illustrates a gigapixel video
sequence captured by our array camera covering a 120 ×
150m2 scene on the campus of Tsinghua University. For
illustration, the long-term trajectories of individuals are
bundled into groups and rendered with cool tones from
purple to blue in Fig. 4b. Two typical groups are high-
lighted in red and yellow with orientation markers at four
selected time points. Figure 4c depicts the analysed
socially meaningful information of these two groups at
each time point, namely the speed and face orientation
curves over time, instantaneous human pose changes, and
the corresponding interpersonal distance graphs. The
interaction field24 representing the relative position dis-
tribution of the other persons when an interpersonal
interaction occurs is shown in Fig. 4e, computed from
3018 individuals in 12 dynamic scenes from the PANDA
dataset19. This field quantifies the operational principles
of real-world social groups for the analysis of human
interactions and activities inside each group.
Compared to existing results computed from artificially

simulated data, our interaction field was computed from
real-world large-scale scenes reflecting natural and social
activities. Figure 4f provides sociological and psychologi-
cal analyses. The left subfigure reveals that the group
tends to move slowly as the group size increases, while the
right subfigure reveals that the males in social groups tend
to have a lower interaction frequency.
Modelling crowd dynamics quantitatively plays a vital

role in risk prevention for mass events and vivid crowd
simulation studies. Conventional strategies22 can only
count on global-level crowd information without invol-
ving individual interactions that affect crowd activities as
well25,26. Given the high-quality details of each pedestrian
in a large-scale scene, the proposed array camera supports
the joint analysis of single-person activities and crowd
behaviours, leading to a more comprehensive and accu-
rate characterization of crowd dynamics.
Figure 5a illustrates a marathon race captured by our

UnstructuredCam with over 4000 people. Human faces
were captured over a 60 × 90 resolution from 10 to 100
metres, thereby ensuring successful face detection and
recognition27. Quantitative statistics on such real-world
data are exploited to characterize the movement of the
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crowd by assuming each person is a particle with both
mass and velocity. The particle density is defined as the
number of people per unit area, where individuals are
standing still, walking, or running. The dynamics
(including the changing trend and fluctuation) of the
whole crowd at five different intervals are visualized as the
heat map in Fig. 5b. More detailed crowd dynamics along
the depth direction can be accumulated and stacked over
time to visualize the density and velocity changes (Fig. 5c).
These quantitative crowd motion feature maps have great
potential for characterizing crowd dynamics. The speed
consistency increases in the area with a denser population,
as depicted in the scatter diagram (right column). This is

consistent with the psychological hypothesis that when
the density of people increases, their movement tends to
be more conforming. More results are presented in Sup-
plementary Movies S3 and S4.

Discussion
This paper studied the principle and the impact of a

modular hierarchical array camera. The imaging system
was inspired by the fact that brain function or cognition
can be described as the global integration of local neuronal
operations that underlies the sharing of information
among cortical areas, which is precisely facilitated by
modular hierarchical network architecture. A group of
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Fig. 4 Multiscale human-centric visual portraits for social behaviour analysis. a A large dynamic scene (120 m × 150m) imaged by our
UnstructuredCam imagery module. b Top view of the scene with pedestrian trajectories bundled into groups, two of which are highlighted. c–e The
corresponding multiscale human-centric visual portraits, consisting of face orientation, body languages, long-range trajectories, interpersonal
distance graph, and social interaction field. Orient. the orientation of the face. f Left, the speed of groups vs. group size. The error bars represent the
SD. Right, sex difference in interaction ratio. The interaction ratio (x-axis) is defined as the ratio of time with interactions over the total time. The y-axis
of the female curve denotes the normalized female-male ratio under each interaction ratio (male curve is normalized to 1). The result shows that
males in social groups tend to have a lower interaction frequency.
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heterogeneous cameras can work as an array camera
module, named UnstructuredCam, for high-resolution/
gigapixel imaging with flexibility, robustness, and scal-
ability. The information shared between cameras in the
UnstructuredCam is also highly compact and efficient. For
the unstructured embedding scheme, the exchanged
information includes (1) resized small local images from
the local camera to the global camera and (2) detected
key points and small image blocks on the detected key
points from the global camera to the local camera. There
is no need to exchange the high-resolution images,
reducing the bandwidth burden. Compared to the con-
ventional structured array camera, the proposed colla-
boration under a hierarchical topology endows the array
camera with the nonuniform sensation capability to only
focus on sparsely distributed regions of interest, such as
crowds and other moving objects, leading to significantly
reduced bandwidth and computational requirements for
real-time gigapixel videography. As the computations
associated with local cameras are independent, in the
future, we may adopt a neuromorphic/brain-inspired

computing approach by integrating the computational
units into the cameras. Thus, each camera may operate
similar to many neurons that receive, process, and
exchange information without a powerful central com-
putational server. Our work offers valuable ideas for a
decentralized brain-inspired array camera with in-
memory sensing and computing.
Our modular hierarchical array camera design is scal-

able to other high-performance imaging tasks as well,
such as 3D panoramic videography, high dynamic ima-
ging, and hyperspectral imaging. The critical algorithm
task is to collaboratively operate along both intra- and
intermodule pathways. Notably, in 3D panoramic video-
graphy, intermodule collaboration works to estimate
rough global depth information, which is further refined
by the complimentary high-resolution local semantic
information based on the intramodule collaboration in
the UnstructuredCam module. As a result, our array
camera is capable of preserving high-resolution RGB
details and estimating high-quality depth information for
distant scenes.

t = 0 s t = 20 s t = 40 s t = 400 s

a

c

t = 600 sb

300 m 300 m 300 m 300 m 300 m

Density (1/m2)
Sp

ee
d 

(m
/s

)

50 m 50 m 50 m 50 m 50 m

0

260

D
ep

th
 (m

)

0

260

D
ep

th
 (m

)

0

260

D
ep

th
 (m

)

0

260

D
ep

th
 (m

)
0

260

D
ep

th
 (m

)

2/m2

0

Ti
m

e 
(s

)

Density (/m2) Speed (m/s)

Depth (m)

0

0 260

2 5

00

Depth (m)0 260

10

20
100
300
500

Ti
m

e 
(s

)

0

18
15
12
9
6
3
0

0.4 0.8 1.2 1.6 2.0 2.2

10

20
100
300
500

Fig. 5 Dynamic crowd motion modelling. a High-resolution imaging of a dynamic marathon race with more than 4000 people, over 2582 faces of
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a long time. The scatter diagram shows the relationship between the crowd density and moving speed. The error bars denote the SD.
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We demonstrated an unprecedented application,
namely, multiscale human-centric analysis. Both local
individual activities and global crowd dynamics, as well as
the associated interactions, can be quantitatively analysed
and modelled, which has not been previously accom-
plished. Such multiscale statistics based on the long-term
observation of large-scale dynamic scenes can be useful
for risk prevention and crowd management.
The proposed modular hierarchical array camera is a

breakthrough for high-performance imaging. This array
camera overcomes the deep-rooted uniform sensation
principle and thus reduces the hardware burden of the
structured array camera. It is adaptive to versatile imaging
performance by the collaboration of multiple functional
modules, e.g., panoramic 3D videography. Our array
camera will likely provide new strategies for sociological
and psychological studies, such as large-scale human-
centric analysis, social activity studies, and crowd
dynamics characterization.

Materials and methods
Unstructured sampling strategy
The temporal entropy map was first computed from the

global camera image sequence. Specifically, each pixel in
the global video is viewed as a 1-D signal X, and its
entropy is calculated as follows:

E Xð Þ ¼ �
X255

v¼0
p vð Þ log pðvÞ

where v ¼ 0; 1; 2; ¼ ; 255 are all the possible intensity
values of pixel X. P(v) is the possibility that its intensity
value is v. Such a criterion highlights the regions with a
large number of dynamic objects and can be computed
efficiently. It is worth noting that the criteria used in
our experiments merely illustrate a general method to
calculate the temporal entropy map. The temporal
entropy map definition can vary under different appli-
cations. More details are presented in Supplementary
Fig. S5.
With the temporal entropy map, the unstructured

sampling strategy can be formulated into an optimization
problem. The objective is to maximize the covered
information for n given local cameras:

max
x;y;w;h

X[n

i¼1
Eðxi; yi;wi; hiÞ

where i denotes the index of a local camera, and E is the
computed entropy map. For simplicity, the FoV of local
cameras can be represented using rectangles. The width
wi and height hi are determined by the CMOS sensor size
and the focal length of the ith camera. xi and yi are the
centre position of its FoV. E(xi,yi,wi,hi) represents the
entropy covered by the ith local camera. The objective is
to maximize the entropy covered by all the local cameras.

An acceptable solution can be found using a greedy
searching algorithm.

Unstructured embedding algorithm
The unstructured embedding scheme aims to share

information between global and local cameras in the
UnstructuredCam module. This sharing is realized by
finding a mapping field between the global camera and
local cameras. To avoid visual artefacts and to handle the
parallax, a mesh-based multiple homography model is
used to represent the mapping, and an improved coarse-
to-fine pipeline is adopted to enable online calibration28.
More details are presented in Supplementary Fig. S2 and
Method S1.

Depth estimation in panoramic 3D videography
A novel trinocular algorithm making full use of both

global and local cameras is used to estimate the depth
information. The disparity and depth map of each sub-
array are first estimated from the two global cameras
through intermodule (intra-subarray) collaboration. The
colour panorama is then generated by intermodule (inter-
subarray) collaboration, and the estimated parameters are
used to generate the panoramic depth map. Similarly,
high-resolution local videos are embedded in a colour
panorama using an unstructured embedding algorithm.
After that, intramodule collaboration is applied to refine
the local depth map by merging the high-resolution RGB
image and low-resolution depth image. Please refer to
Supplementary Fig. S4 and Method S2 for more details.

Multiscale human-centric analysis
Twenty-one real-world outdoor scenes were captured

and analysed to verify our array camera, and we are
continuously collecting more videos to enrich our data-
set19. The captured videos were labelled by a professional
team, including the headboxes, body boxes, visual boxes,
face orientations, trajectories, and group status for all the
persons. To estimate the interpersonal distance, a pro-
jective transformation matrix was estimated to project the
images to the top view. The scale bar was estimated from
the satellite map. For the crowd scene, a face detection
algorithm27 is used to locate the faces. The algorithm
worked quite well here because nearly all the marathon
runners were facing the camera. After that, kernelized
correlation filter (KCF)29 was used to generate the tra-
jectories of each runner with speed and acceleration
measurements.
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heterogeneous cameras can work as an array camera
module, named UnstructuredCam, for high-resolution/
gigapixel imaging with flexibility, robustness, and scal-
ability. The information shared between cameras in the
UnstructuredCam is also highly compact and efficient. For
the unstructured embedding scheme, the exchanged
information includes (1) resized small local images from
the local camera to the global camera and (2) detected
key points and small image blocks on the detected key
points from the global camera to the local camera. There
is no need to exchange the high-resolution images,
reducing the bandwidth burden. Compared to the con-
ventional structured array camera, the proposed colla-
boration under a hierarchical topology endows the array
camera with the nonuniform sensation capability to only
focus on sparsely distributed regions of interest, such as
crowds and other moving objects, leading to significantly
reduced bandwidth and computational requirements for
real-time gigapixel videography. As the computations
associated with local cameras are independent, in the
future, we may adopt a neuromorphic/brain-inspired

computing approach by integrating the computational
units into the cameras. Thus, each camera may operate
similar to many neurons that receive, process, and
exchange information without a powerful central com-
putational server. Our work offers valuable ideas for a
decentralized brain-inspired array camera with in-
memory sensing and computing.
Our modular hierarchical array camera design is scal-

able to other high-performance imaging tasks as well,
such as 3D panoramic videography, high dynamic ima-
ging, and hyperspectral imaging. The critical algorithm
task is to collaboratively operate along both intra- and
intermodule pathways. Notably, in 3D panoramic video-
graphy, intermodule collaboration works to estimate
rough global depth information, which is further refined
by the complimentary high-resolution local semantic
information based on the intramodule collaboration in
the UnstructuredCam module. As a result, our array
camera is capable of preserving high-resolution RGB
details and estimating high-quality depth information for
distant scenes.
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Fig. 5 Dynamic crowd motion modelling. a High-resolution imaging of a dynamic marathon race with more than 4000 people, over 2582 faces of
which can achieve 60 × 90-pixel resolution. b Crowd density map from a top view with marginal distributions along two axes. The snapshots at the
corresponding moments illustrate the crowd motion in front of the second starting line. t, time. c The density and speed heat maps with depth over
a long time. The scatter diagram shows the relationship between the crowd density and moving speed. The error bars denote the SD.
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We demonstrated an unprecedented application,
namely, multiscale human-centric analysis. Both local
individual activities and global crowd dynamics, as well as
the associated interactions, can be quantitatively analysed
and modelled, which has not been previously accom-
plished. Such multiscale statistics based on the long-term
observation of large-scale dynamic scenes can be useful
for risk prevention and crowd management.
The proposed modular hierarchical array camera is a

breakthrough for high-performance imaging. This array
camera overcomes the deep-rooted uniform sensation
principle and thus reduces the hardware burden of the
structured array camera. It is adaptive to versatile imaging
performance by the collaboration of multiple functional
modules, e.g., panoramic 3D videography. Our array
camera will likely provide new strategies for sociological
and psychological studies, such as large-scale human-
centric analysis, social activity studies, and crowd
dynamics characterization.

Materials and methods
Unstructured sampling strategy
The temporal entropy map was first computed from the

global camera image sequence. Specifically, each pixel in
the global video is viewed as a 1-D signal X, and its
entropy is calculated as follows:

E Xð Þ ¼ �
X255

v¼0
p vð Þ log pðvÞ

where v ¼ 0; 1; 2; ¼ ; 255 are all the possible intensity
values of pixel X. P(v) is the possibility that its intensity
value is v. Such a criterion highlights the regions with a
large number of dynamic objects and can be computed
efficiently. It is worth noting that the criteria used in
our experiments merely illustrate a general method to
calculate the temporal entropy map. The temporal
entropy map definition can vary under different appli-
cations. More details are presented in Supplementary
Fig. S5.
With the temporal entropy map, the unstructured

sampling strategy can be formulated into an optimization
problem. The objective is to maximize the covered
information for n given local cameras:

max
x;y;w;h

X[n

i¼1
Eðxi; yi;wi; hiÞ

where i denotes the index of a local camera, and E is the
computed entropy map. For simplicity, the FoV of local
cameras can be represented using rectangles. The width
wi and height hi are determined by the CMOS sensor size
and the focal length of the ith camera. xi and yi are the
centre position of its FoV. E(xi,yi,wi,hi) represents the
entropy covered by the ith local camera. The objective is
to maximize the entropy covered by all the local cameras.

An acceptable solution can be found using a greedy
searching algorithm.

Unstructured embedding algorithm
The unstructured embedding scheme aims to share

information between global and local cameras in the
UnstructuredCam module. This sharing is realized by
finding a mapping field between the global camera and
local cameras. To avoid visual artefacts and to handle the
parallax, a mesh-based multiple homography model is
used to represent the mapping, and an improved coarse-
to-fine pipeline is adopted to enable online calibration28.
More details are presented in Supplementary Fig. S2 and
Method S1.

Depth estimation in panoramic 3D videography
A novel trinocular algorithm making full use of both

global and local cameras is used to estimate the depth
information. The disparity and depth map of each sub-
array are first estimated from the two global cameras
through intermodule (intra-subarray) collaboration. The
colour panorama is then generated by intermodule (inter-
subarray) collaboration, and the estimated parameters are
used to generate the panoramic depth map. Similarly,
high-resolution local videos are embedded in a colour
panorama using an unstructured embedding algorithm.
After that, intramodule collaboration is applied to refine
the local depth map by merging the high-resolution RGB
image and low-resolution depth image. Please refer to
Supplementary Fig. S4 and Method S2 for more details.

Multiscale human-centric analysis
Twenty-one real-world outdoor scenes were captured

and analysed to verify our array camera, and we are
continuously collecting more videos to enrich our data-
set19. The captured videos were labelled by a professional
team, including the headboxes, body boxes, visual boxes,
face orientations, trajectories, and group status for all the
persons. To estimate the interpersonal distance, a pro-
jective transformation matrix was estimated to project the
images to the top view. The scale bar was estimated from
the satellite map. For the crowd scene, a face detection
algorithm27 is used to locate the faces. The algorithm
worked quite well here because nearly all the marathon
runners were facing the camera. After that, kernelized
correlation filter (KCF)29 was used to generate the tra-
jectories of each runner with speed and acceleration
measurements.
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Phase characterisation of metalenses
Maoxiong Zhao1, Mu Ku Chen2, Ze-Peng Zhuang3, Yiwen Zhang1, Ang Chen4, Qinmiao Chen5, Wenzhe Liu 1,
Jiajun Wang 1, Ze-Ming Chen3, Bo Wang1, Xiaohan Liu1, Haiwei Yin4, Shumin Xiao 5, Lei Shi 1,4, Jian-Wen Dong 3,
Jian Zi 1 and Din Ping Tsai 2

Abstract
Metalenses have emerged as a new optical element or system in recent years, showing superior performance and
abundant applications. However, the phase distribution of a metalens has not been measured directly up to now,
hindering further quantitative evaluation of its performance. We have developed an interferometric imaging phase
measurement system to measure the phase distribution of a metalens by taking only one photo of the interference
pattern. Based on the measured phase distribution, we analyse the negative chromatic aberration effect of
monochromatic metalenses and propose a feature size of metalenses. Different sensitivities of the phase response to
wavelength between the Pancharatnam-Berry phase-based metalens and propagation phase-reliant metalens are
directly observed in the experiment. Furthermore, through phase distribution analysis, it is found that the distance
between the measured metalens and the brightest spot of focusing will deviate from the focal length when the
metalens has a low nominal numerical aperture, even though the metalens is ideal without any fabrication error. We
also use the measured phase distribution to quantitatively characterise the imaging performance of the metalens. Our
phase measurement system will help not only designers optimise the designs of metalenses but also fabricants
distinguish defects to improve the fabrication process, which will pave the way for metalenses in industrial
applications.

Introduction
Metalenses, as emergent metasurfaces1–8, have attracted

increasing interest for their possible applications in
advanced imaging and focusing. On-demand phase
manipulation is one of the essential abilities of a meta-
lens9,10. In general, three main methods have been applied
to manipulate the phase distribution of metalenses,
including use of the propagation phase11,12, resonance
phase13–17 and geometric phase18–25. The phase distribu-
tion regulated by a metalens determines its function. The

hyperboloidal phase distribution metalens can realise
diffraction-limited focusing26,27. The chromatic aberration
is eliminated by integrated resonance units28–30, which are
employed to provide targeted continuous phase compen-
sation for broadband light. Moreover, by advanced phase
engineering, various optical metalens applications have
been implemented, such as light-field imaging31,32, depth
sensing33,34, entangled quantum light35, colour routing36–39,
spectral tomography40, varied focusing41,42, polarisation
analysis and generation43,44 and augmented reality45.
Although the designed phase distribution can be opti-

mised perfectly in theory, the actual regulated phase dis-
tribution of fabricated metalenses will be limited by the
materials and manufacturing processes46,47. The deviation
of the actual phase distribution from the ideal phase dis-
tribution will be reflected in the functional performance of
the optical metalens device. Measuring the actual con-
trolled phase distribution46,47 is of great significance to the
connection between the design and manufacturing
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