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Abstract
Volumetric imaging of samples using fluorescence microscopy plays an important role in various fields including
physical, medical and life sciences. Here we report a deep learning-based volumetric image inference framework that
uses 2D images that are sparsely captured by a standard wide-field fluorescence microscope at arbitrary axial positions
within the sample volume. Through a recurrent convolutional neural network, which we term as Recurrent-MZ, 2D
fluorescence information from a few axial planes within the sample is explicitly incorporated to digitally reconstruct
the sample volume over an extended depth-of-field. Using experiments on C. elegans and nanobead samples,
Recurrent-MZ is demonstrated to significantly increase the depth-of-field of a 63×/1.4NA objective lens, also providing
a 30-fold reduction in the number of axial scans required to image the same sample volume. We further illustrated the
generalization of this recurrent network for 3D imaging by showing its resilience to varying imaging conditions,
including e.g., different sequences of input images, covering various axial permutations and unknown axial positioning
errors. We also demonstrated wide-field to confocal cross-modality image transformations using Recurrent-MZ
framework and performed 3D image reconstruction of a sample using a few wide-field 2D fluorescence images as
input, matching confocal microscopy images of the same sample volume. Recurrent-MZ demonstrates the first
application of recurrent neural networks in microscopic image reconstruction and provides a flexible and rapid
volumetric imaging framework, overcoming the limitations of current 3D scanning microscopy tools.

Introduction
High-throughput imaging of 3D samples is of significant

importance for numerous fields. Volumetric imaging is
usually achieved through optical sectioning of samples
using various microscopy techniques. Generally, optical
sectioning can be categorized based on its dimension of
sectioning: (i) 0-dimensional point-wise sectioning,
including e.g., confocal1, two-photon2 and three-photon3

laser scanning microscopy, and time-domain optical
coherence tomography (TD-OCT)4; (ii) 1-dimensional
line-wise sectioning, including e.g., spectral domain
OCT5,6, (iii) 2-dimensional plane-wise sectioning,
including e.g., wide-field and light-sheet7 fluorescence

microscopy. In all of these modalities, serial scanning of
the sample volume is required, which limits the imaging
speed and throughput, reducing the temporal resolution,
also introducing potential photobleaching on the sample.
Different imaging methods have been proposed to
improve the throughput of scanning-based 3D micro-
scopy techniques, such as multifocal imaging8–13, light-
field microscopy14,15, microscopy with engineered point
spread functions (PSFs)16–18 and compressive sensing19–21.
Nevertheless, these solutions introduce trade-offs, either
by complicating the microscope system design, compro-
mising the image quality and/or resolution or prolonging
the image post-processing time. In addition to these,
iterative algorithms that aim to solve the inverse 3D
imaging problem from a lower dimensional projection of
the volumetric image data, such as the fast iterative
shrinkage and thresholding algorithm (FISTA)22 and
alternating direction method of multiplier (ADMM)23 are
relatively time-consuming and unstable, and further
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require user-defined regularization of the optimization
process as well as an accurate forward model of the
imaging system. Some of these limitations and perfor-
mance trade-offs have partially restricted the wide-scale
applicability of these computational methods for 3D
microscopy.
In recent years, emerging deep learning-based approa-

ches have enabled a new set of powerful tools to solve
various inverse problems in microscopy24,25, including
e.g., super-resolution imaging26,27, virtual labeling of
specimen28–32, holographic imaging33,34, Fourier ptycho-
graphy microscopy35, single-shot autofocusing36,37, three-
dimensional image propagation38, among many others39.
Benefiting from the recent advances in deep learning,
these methods require minimal modification to the
underlying microscopy hardware, and result in enhanced
imaging performance in comparison to conventional
image reconstruction and post-processing algorithms.
The majority of these neural networks applied in micro-

scopic imaging were designed to perform inference using a
single 2D input image. An alternative method to adapt a
deep network’s inference ability to utilize information that is
encoded over volumetric inputs (instead of a single 2D input
image) is to utilize 3D convolution kernels. However, this
approach requires a significant number of additional train-
able parameters and is therefore more susceptible to over-
fitting. Moreover, simply applying 3D convolution kernels
and representing the input data as a sequence of 2D images
would constrain the input sampling grid and introduce
practical challenges. As an alternative to 3D convolution
kernels, recurrent neural networks (RNNs) were originally
designed for sequential temporal inputs, and have been
successfully applied in various tasks in computer vision40–42.
Here, we introduce the first RNN-based volumetric

microscopy framework, which is also the first application
of RNNs in microscopic image reconstruction; we termed
this framework as Recurrent-MZ. Recurrent-MZ permits
the digital reconstruction of a sample volume over an
extended depth-of-field (DOF) using a few different 2D
images of the sample as inputs to a trained RNN (see
Fig. 1a). The input 2D images are sparsely sampled at
arbitrary axial positions within the sample volume and the
convolutional recurrent neural network (Recurrent-MZ)
takes these 2D microscopy images as its input, along with
a set of digital propagation matrices (DPMs) which indi-
cate the relative distances (dz) to the desired output plane
(s). Information from the input images is separately
extracted using sequential convolution blocks at different
scales, and then the recurrent block aggregates all these
features from the previous scans/images, allowing flex-
ibility in terms of the length of the input image sequence
as well as the axial positions of these input images, which
do not need to be regularly spaced or sampled; in fact, the
input 2D images can even be randomly permuted.

We demonstrate the efficacy of the Recurrent-MZ using
multiple fluorescent specimens. First, we demonstrate
Recurrent-MZ inference for 3D imaging of C. elegans
samples, and then quantify its performance using
fluorescence nanobeads. Our results demonstrate that
Recurrent-MZ significantly increases the depth-of-field of
a 63×/1.4NA objective lens, providing a 30-fold reduction
in the number of axial scans required to image a sample
volume. Furthermore, we demonstrate the robustness of
this framework and its inference to axial permutations of
the input images as well to uncontrolled errors and noise
terms in the axial positioning of different input image
scans. Finally, we report wide-field to confocal cross-
modality image transformation using the Recurrent-MZ
framework, which takes in e.g., three wide-field 2D fluor-
escence images of a sample as input in order to recon-
struct a 3D image stack, matching confocal microscopy
images of the same sample; we refer to this cross-modality
image transformation network as Recurrent-MZ+.

Results
We formulate the target sample volume V(x,y,z) as a

random field on the set of all discretized axial positions Z,
i.e., Iz 2 Rm ´ n; z 2 Z, where x,y are pixel indices on the
lateral plane, m, n are the lateral dimensions of the image,
and z is a certain axial position in Z. The distribution of such
random fields is defined by the 3D distribution of the sample
of interest, the PSF of the microscopy system, the aberra-
tions and random noise terms present in the image acqui-
sition system. Recurrent-MZ takes in a set of M 2D axial
images, i.e., Iz1 ; Iz2 ; � � � ; IzMf g; 1<M � jZj, where |Z| is the
cardinality of Z, defining the number of unique axial planes
in the target sample. The output inference of Recurrent-MZ
estimates (i.e., reconstructs) the volume of the sample and
will be denoted as VMðx; y; z; Iz1 ; Iz2 ; � � � ; IzM Þ. Starting with
the next sub-section we summarize Recurrent-MZ inference
results using different fluorescent samples.

Recurrent-MZ based volumetric imaging of C. elegans
samples
A Recurrent-MZ network was trained and validated

using C. elegans samples, and then blindly tested on
new specimens that were not part of the training/vali-
dation dataset. This trained Recurrent-MZ was used to
reconstruct C. elegans samples with high fidelity over an
extended axial range of 18 μm based on three 2D input
images that were captured with an axial spacing of Δz=
6 μm; these three 2D images were fed into Recurrent-
MZ in groups of two, i.e., M= 2 (Fig. 2). The compar-
ison images of the same sample volume were obtained
by scanning a wide-field fluorescence microscope with a
63×/1.4NA objective lens and capturing |Z|= 91 images
with an axial spacing of Δz= 0.2 μm (see the Materials
and Methods section). The inference performance of
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Volumetric imaging of samples using fluorescence microscopy plays an important role in various fields including
physical, medical and life sciences. Here we report a deep learning-based volumetric image inference framework that
uses 2D images that are sparsely captured by a standard wide-field fluorescence microscope at arbitrary axial positions
within the sample volume. Through a recurrent convolutional neural network, which we term as Recurrent-MZ, 2D
fluorescence information from a few axial planes within the sample is explicitly incorporated to digitally reconstruct
the sample volume over an extended depth-of-field. Using experiments on C. elegans and nanobead samples,
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input, matching confocal microscopy images of the same sample volume. Recurrent-MZ demonstrates the first
application of recurrent neural networks in microscopic image reconstruction and provides a flexible and rapid
volumetric imaging framework, overcoming the limitations of current 3D scanning microscopy tools.

Introduction
High-throughput imaging of 3D samples is of significant

importance for numerous fields. Volumetric imaging is
usually achieved through optical sectioning of samples
using various microscopy techniques. Generally, optical
sectioning can be categorized based on its dimension of
sectioning: (i) 0-dimensional point-wise sectioning,
including e.g., confocal1, two-photon2 and three-photon3

laser scanning microscopy, and time-domain optical
coherence tomography (TD-OCT)4; (ii) 1-dimensional
line-wise sectioning, including e.g., spectral domain
OCT5,6, (iii) 2-dimensional plane-wise sectioning,
including e.g., wide-field and light-sheet7 fluorescence

microscopy. In all of these modalities, serial scanning of
the sample volume is required, which limits the imaging
speed and throughput, reducing the temporal resolution,
also introducing potential photobleaching on the sample.
Different imaging methods have been proposed to
improve the throughput of scanning-based 3D micro-
scopy techniques, such as multifocal imaging8–13, light-
field microscopy14,15, microscopy with engineered point
spread functions (PSFs)16–18 and compressive sensing19–21.
Nevertheless, these solutions introduce trade-offs, either
by complicating the microscope system design, compro-
mising the image quality and/or resolution or prolonging
the image post-processing time. In addition to these,
iterative algorithms that aim to solve the inverse 3D
imaging problem from a lower dimensional projection of
the volumetric image data, such as the fast iterative
shrinkage and thresholding algorithm (FISTA)22 and
alternating direction method of multiplier (ADMM)23 are
relatively time-consuming and unstable, and further
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require user-defined regularization of the optimization
process as well as an accurate forward model of the
imaging system. Some of these limitations and perfor-
mance trade-offs have partially restricted the wide-scale
applicability of these computational methods for 3D
microscopy.
In recent years, emerging deep learning-based approa-

ches have enabled a new set of powerful tools to solve
various inverse problems in microscopy24,25, including
e.g., super-resolution imaging26,27, virtual labeling of
specimen28–32, holographic imaging33,34, Fourier ptycho-
graphy microscopy35, single-shot autofocusing36,37, three-
dimensional image propagation38, among many others39.
Benefiting from the recent advances in deep learning,
these methods require minimal modification to the
underlying microscopy hardware, and result in enhanced
imaging performance in comparison to conventional
image reconstruction and post-processing algorithms.
The majority of these neural networks applied in micro-

scopic imaging were designed to perform inference using a
single 2D input image. An alternative method to adapt a
deep network’s inference ability to utilize information that is
encoded over volumetric inputs (instead of a single 2D input
image) is to utilize 3D convolution kernels. However, this
approach requires a significant number of additional train-
able parameters and is therefore more susceptible to over-
fitting. Moreover, simply applying 3D convolution kernels
and representing the input data as a sequence of 2D images
would constrain the input sampling grid and introduce
practical challenges. As an alternative to 3D convolution
kernels, recurrent neural networks (RNNs) were originally
designed for sequential temporal inputs, and have been
successfully applied in various tasks in computer vision40–42.
Here, we introduce the first RNN-based volumetric

microscopy framework, which is also the first application
of RNNs in microscopic image reconstruction; we termed
this framework as Recurrent-MZ. Recurrent-MZ permits
the digital reconstruction of a sample volume over an
extended depth-of-field (DOF) using a few different 2D
images of the sample as inputs to a trained RNN (see
Fig. 1a). The input 2D images are sparsely sampled at
arbitrary axial positions within the sample volume and the
convolutional recurrent neural network (Recurrent-MZ)
takes these 2D microscopy images as its input, along with
a set of digital propagation matrices (DPMs) which indi-
cate the relative distances (dz) to the desired output plane
(s). Information from the input images is separately
extracted using sequential convolution blocks at different
scales, and then the recurrent block aggregates all these
features from the previous scans/images, allowing flex-
ibility in terms of the length of the input image sequence
as well as the axial positions of these input images, which
do not need to be regularly spaced or sampled; in fact, the
input 2D images can even be randomly permuted.

We demonstrate the efficacy of the Recurrent-MZ using
multiple fluorescent specimens. First, we demonstrate
Recurrent-MZ inference for 3D imaging of C. elegans
samples, and then quantify its performance using
fluorescence nanobeads. Our results demonstrate that
Recurrent-MZ significantly increases the depth-of-field of
a 63×/1.4NA objective lens, providing a 30-fold reduction
in the number of axial scans required to image a sample
volume. Furthermore, we demonstrate the robustness of
this framework and its inference to axial permutations of
the input images as well to uncontrolled errors and noise
terms in the axial positioning of different input image
scans. Finally, we report wide-field to confocal cross-
modality image transformation using the Recurrent-MZ
framework, which takes in e.g., three wide-field 2D fluor-
escence images of a sample as input in order to recon-
struct a 3D image stack, matching confocal microscopy
images of the same sample; we refer to this cross-modality
image transformation network as Recurrent-MZ+.

Results
We formulate the target sample volume V(x,y,z) as a

random field on the set of all discretized axial positions Z,
i.e., Iz 2 Rm ´ n; z 2 Z, where x,y are pixel indices on the
lateral plane, m, n are the lateral dimensions of the image,
and z is a certain axial position in Z. The distribution of such
random fields is defined by the 3D distribution of the sample
of interest, the PSF of the microscopy system, the aberra-
tions and random noise terms present in the image acqui-
sition system. Recurrent-MZ takes in a set of M 2D axial
images, i.e., Iz1 ; Iz2 ; � � � ; IzMf g; 1<M � jZj, where |Z| is the
cardinality of Z, defining the number of unique axial planes
in the target sample. The output inference of Recurrent-MZ
estimates (i.e., reconstructs) the volume of the sample and
will be denoted as VMðx; y; z; Iz1 ; Iz2 ; � � � ; IzM Þ. Starting with
the next sub-section we summarize Recurrent-MZ inference
results using different fluorescent samples.

Recurrent-MZ based volumetric imaging of C. elegans
samples
A Recurrent-MZ network was trained and validated

using C. elegans samples, and then blindly tested on
new specimens that were not part of the training/vali-
dation dataset. This trained Recurrent-MZ was used to
reconstruct C. elegans samples with high fidelity over an
extended axial range of 18 μm based on three 2D input
images that were captured with an axial spacing of Δz=
6 μm; these three 2D images were fed into Recurrent-
MZ in groups of two, i.e., M= 2 (Fig. 2). The compar-
ison images of the same sample volume were obtained
by scanning a wide-field fluorescence microscope with a
63×/1.4NA objective lens and capturing |Z|= 91 images
with an axial spacing of Δz= 0.2 μm (see the Materials
and Methods section). The inference performance of
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Recurrent-MZ is both qualitatively and quantitatively
demonstrated in Fig. 2 and Video S1. Even in the middle
of two adjacent input images (see the z= 11.4 μm row of
Fig. 2), Recurrent-MZ is able to output images with a
very good match to the ground truth image, achieving a
normalized root mean square error (NRMSE) of 6.45
and a peak signal-to-noise ratio (PSNR) of 33.96. As also
highlighted in Video S1, Recurrent-MZ is able to sig-
nificantly extend the axial range of the reconstructed
images using only three 2D input scans, each captured
with a 1.4NA objective lens that has a depth-of-field of
0.4 μm. In addition to these, Supplementary Note 1 and
Fig. S1 also compare the output images of Recurrent-
MZ with the results of various interpolation algorithms,
further demonstrating the advantages of Recurrent-MZ
framework for volumetric imaging.
It is worth noting that although Recurrent-MZ pre-

sented in Fig. 2 was trained with 2 input images (i.e., M=
2), it still can be fed with M ≥ 3 input images thanks to its

recurrent scheme. Regardless of the choice of M, all
Recurrent-MZ networks have the same number of para-
meters, where the only difference is the additional time
that is required during the training and inference phases;
for example the inference time of Recurrent-MZ with
M= 2 and M= 3 for a single output plane (1024 × 1024
pixels) is 0.18 s and 0.28 s, respectively. In practice, using
a larger M yields a better performance in terms of the
reconstruction fidelity (see e.g., Fig. S2a), at the cost of a
trade-off of imaging throughput and computation time.
The detailed discussion about this trade-off is provided in
the Discussion section.

Recurrent-MZ based volumetric imaging of fluorescence
nanobeads
Next, we demonstrated the performance of Recurrent-

MZ using 50 nm fluorescence nanobeads. These nano-
bead samples were imaged through the TxRed channel
using a 63×/1.4NA objective lens (see the Materials and
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Fig. 1 Volumetric imaging through Recurrent-MZ. a Recurrent-MZ volumetric imaging framework. M is the number of input scans (2D images),
and each input scan is paired with its corresponding DPM (Digital Propagation Matrix). b Recurrent-MZ network structure. The network and training
details are elucidated in the Materials and Methods section. Z is the set of all the discretized axial positions within the target sample volume,
composed of |Z| unique axial planes. Typically, M= 2 or 3 and |Z| ≫ M
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Methods section). The Recurrent-MZ model was trained
on a dataset with M= 3 input images, where the axial
spacing between the adjacent planes was Δz= 3 μm. The
ground truth images of the sample volume were captured
by mechanical scanning over an axial range of 10 μm, i.e.,
|Z|= 101 images with Δz= 0.1 μm were obtained. Figure 3
shows both the side views and the cross-sections of the
sample volume reconstructed by Recurrent-MZ (M= 3),
compared against the |Z|= 101 images captured through
the mechanical scanning of the same sample. The first
column of Fig. 3a presents the M= 3 input images and
their corresponding axial positions, which are also indi-
cated by the blue dashed lines. Through the quantitative
histogram comparison shown in Fig. 3b, we see that
the reconstructed volume by Recurrent-MZ matches the
ground truth volume with high fidelity. For example, the
full width at half maximum (FWHM) distribution of
individual nanobeads inferred by Recurrent-MZ (mean
FWHM= 0.4401 μm) matches the results of the ground
truth (mean FWHM= 0.4428 μm) very well. We also
showed the similarity of the ground truth histogram with

that of the Recurrent-MZ output by calculating the
Kullback–Leibler (KL) divergence, which is a distance
measure between two distributions; the resulting KL
divergence of 1.3373 further validates the high fidelity of
Recurrent-MZ reconstruction when compared to the
ground truth, acquired through |Z|= 101 images cap-
tured via mechanical scanning of the sample with
Δz= 0.1 μm.
Figure 3 also reports the comparison of Recurrent-MZ

inference results with respect to another fluorescence
image propagation network termed Deep-Z38. Deep-Z is
designed for taking a single 2D image as input, and
therefore there is an inherent trade-off between the pro-
pagation quality and the axial refocusing range (from a
given focal plane), which ultimately limits the effective
volumetric space-bandwidth-product (SBP) that can be
achieved using Deep-Z. In this comparison between
Recurrent-MZ and Deep-Z (Fig. 3), the nearest input
image is used for Deep-Z based propagation; in other
words, three non-overlapping volumes are separately
inferred using Deep-Z from the input scans at z= 3, 6 and
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an arbitrary axial position (z) within the sample volume. In this implementation, Recurrent-MZ takes in 2 input scans (M= 2) to infer the image of an
output plane, as indicated by the color of each output box. See Video S1 to compare the reconstructed sample volume inferred by Recurrent-MZ
against the ground truth, |Z|= 91 images captured with an axial step size of 0.2 μm
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Recurrent-MZ is both qualitatively and quantitatively
demonstrated in Fig. 2 and Video S1. Even in the middle
of two adjacent input images (see the z= 11.4 μm row of
Fig. 2), Recurrent-MZ is able to output images with a
very good match to the ground truth image, achieving a
normalized root mean square error (NRMSE) of 6.45
and a peak signal-to-noise ratio (PSNR) of 33.96. As also
highlighted in Video S1, Recurrent-MZ is able to sig-
nificantly extend the axial range of the reconstructed
images using only three 2D input scans, each captured
with a 1.4NA objective lens that has a depth-of-field of
0.4 μm. In addition to these, Supplementary Note 1 and
Fig. S1 also compare the output images of Recurrent-
MZ with the results of various interpolation algorithms,
further demonstrating the advantages of Recurrent-MZ
framework for volumetric imaging.
It is worth noting that although Recurrent-MZ pre-

sented in Fig. 2 was trained with 2 input images (i.e., M=
2), it still can be fed with M ≥ 3 input images thanks to its

recurrent scheme. Regardless of the choice of M, all
Recurrent-MZ networks have the same number of para-
meters, where the only difference is the additional time
that is required during the training and inference phases;
for example the inference time of Recurrent-MZ with
M= 2 and M= 3 for a single output plane (1024 × 1024
pixels) is 0.18 s and 0.28 s, respectively. In practice, using
a larger M yields a better performance in terms of the
reconstruction fidelity (see e.g., Fig. S2a), at the cost of a
trade-off of imaging throughput and computation time.
The detailed discussion about this trade-off is provided in
the Discussion section.

Recurrent-MZ based volumetric imaging of fluorescence
nanobeads
Next, we demonstrated the performance of Recurrent-
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bead samples were imaged through the TxRed channel
using a 63×/1.4NA objective lens (see the Materials and
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details are elucidated in the Materials and Methods section. Z is the set of all the discretized axial positions within the target sample volume,
composed of |Z| unique axial planes. Typically, M= 2 or 3 and |Z| ≫ M
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Methods section). The Recurrent-MZ model was trained
on a dataset with M= 3 input images, where the axial
spacing between the adjacent planes was Δz= 3 μm. The
ground truth images of the sample volume were captured
by mechanical scanning over an axial range of 10 μm, i.e.,
|Z|= 101 images with Δz= 0.1 μm were obtained. Figure 3
shows both the side views and the cross-sections of the
sample volume reconstructed by Recurrent-MZ (M= 3),
compared against the |Z|= 101 images captured through
the mechanical scanning of the same sample. The first
column of Fig. 3a presents the M= 3 input images and
their corresponding axial positions, which are also indi-
cated by the blue dashed lines. Through the quantitative
histogram comparison shown in Fig. 3b, we see that
the reconstructed volume by Recurrent-MZ matches the
ground truth volume with high fidelity. For example, the
full width at half maximum (FWHM) distribution of
individual nanobeads inferred by Recurrent-MZ (mean
FWHM= 0.4401 μm) matches the results of the ground
truth (mean FWHM= 0.4428 μm) very well. We also
showed the similarity of the ground truth histogram with

that of the Recurrent-MZ output by calculating the
Kullback–Leibler (KL) divergence, which is a distance
measure between two distributions; the resulting KL
divergence of 1.3373 further validates the high fidelity of
Recurrent-MZ reconstruction when compared to the
ground truth, acquired through |Z|= 101 images cap-
tured via mechanical scanning of the sample with
Δz= 0.1 μm.
Figure 3 also reports the comparison of Recurrent-MZ

inference results with respect to another fluorescence
image propagation network termed Deep-Z38. Deep-Z is
designed for taking a single 2D image as input, and
therefore there is an inherent trade-off between the pro-
pagation quality and the axial refocusing range (from a
given focal plane), which ultimately limits the effective
volumetric space-bandwidth-product (SBP) that can be
achieved using Deep-Z. In this comparison between
Recurrent-MZ and Deep-Z (Fig. 3), the nearest input
image is used for Deep-Z based propagation; in other
words, three non-overlapping volumes are separately
inferred using Deep-Z from the input scans at z= 3, 6 and
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9 μm, respectively (this provides a fair comparison against
Recurrent-MZ with M= 3 input images). As illustrated in
Fig. 3b, Deep-Z inference resulted in a mean FWHM of
0.4185 μm and a KL divergence of 2.3334, which illustrate
the inferiority of single-image-based volumetric propa-
gation, when compared to the results of Recurrent-MZ.
The same conclusion regarding the performance com-
parison of Recurrent-MZ and Deep-Z inference is further
supported using the C. elegans imaging data reported in
Fig. 2 (Recurrent-MZ) and in Fig. S3 (Deep-Z). For
example, Deep-Z inference results in an NRMSE of 8.02
and a PSNR of 32.08, while Recurrent-MZ (M= 2)
improves the inference accuracy, achieving an NRMSE of
6.45 and a PSNR of 33.96.

Generalization of Recurrent-MZ to non-uniformly sampled
input images
Next, we demonstrated, through a series of experiments,

the generalization performance of Recurrent-MZ on non-
uniformly sampled input images, in contrast to the
training regiment, which only included uniformly spaced
inputs. These non-uniformly spaced input image planes
were randomly selected from the same testing volume as
shown in Fig. 2, with the distance between two adjacent
input planes made smaller than the uniform axial spacing
used in the training dataset (Δz= 6 μm). Although the
Recurrent-MZ was solely trained with equidistant input

scans, it generalized to successfully perform volumetric
image propagation using non-uniformly sampled input
images. For example, as shown in Fig. 4a, the input images
of Recurrent-MZ were randomly selected at (z1, z2, z3)=
(3, 7.8, 13.6) μm, respectively, and the output inference at
z= 6.8 μm and z= 12.8 μm very well match the output of
Recurrent-MZ that used uniformly sampled inputs
acquired at (z1, z2, z3)= (3, 9, 15) μm, respectively. Figure
4b further demonstrates the inference performance of
Recurrent-MZ using non-uniformly sampled inputs
throughout the specimen volume. The blue (uniform
inputs) and the red curves (non-uniform inputs) in Fig. 4b
have very similar trends, illustrating the generalization of
Recurrent-MZ, despite being only trained with uniformly-
sampled input images with a fixed Δz. Figure S3 further
presents another successful blind inference of Recurrent-
MZ on non-uniformly sampled input images. On the
other hand, the gray curve in Fig. 4b (3D U-Net with the
same non-uniform inputs) clearly illustrates the general-
ization failure of a non-recurrent convolutional neural
network (CNN) on non-uniformly sampled input images.
We further investigated the effect of the hyperpara-

meter Δz on the performance of Recurrent-MZ. For this,
three different Recurrent-MZ networks were trained
using Δz= 4, 6, and 8 μm, respectively, and then blindly
tested on a new input sequence with Δz= 6 μm. Figure 4c,
d show the trade-off between the peak performance and
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9 μm, respectively (this provides a fair comparison against
Recurrent-MZ with M= 3 input images). As illustrated in
Fig. 3b, Deep-Z inference resulted in a mean FWHM of
0.4185 μm and a KL divergence of 2.3334, which illustrate
the inferiority of single-image-based volumetric propa-
gation, when compared to the results of Recurrent-MZ.
The same conclusion regarding the performance com-
parison of Recurrent-MZ and Deep-Z inference is further
supported using the C. elegans imaging data reported in
Fig. 2 (Recurrent-MZ) and in Fig. S3 (Deep-Z). For
example, Deep-Z inference results in an NRMSE of 8.02
and a PSNR of 32.08, while Recurrent-MZ (M= 2)
improves the inference accuracy, achieving an NRMSE of
6.45 and a PSNR of 33.96.

Generalization of Recurrent-MZ to non-uniformly sampled
input images
Next, we demonstrated, through a series of experiments,

the generalization performance of Recurrent-MZ on non-
uniformly sampled input images, in contrast to the
training regiment, which only included uniformly spaced
inputs. These non-uniformly spaced input image planes
were randomly selected from the same testing volume as
shown in Fig. 2, with the distance between two adjacent
input planes made smaller than the uniform axial spacing
used in the training dataset (Δz= 6 μm). Although the
Recurrent-MZ was solely trained with equidistant input

scans, it generalized to successfully perform volumetric
image propagation using non-uniformly sampled input
images. For example, as shown in Fig. 4a, the input images
of Recurrent-MZ were randomly selected at (z1, z2, z3)=
(3, 7.8, 13.6) μm, respectively, and the output inference at
z= 6.8 μm and z= 12.8 μm very well match the output of
Recurrent-MZ that used uniformly sampled inputs
acquired at (z1, z2, z3)= (3, 9, 15) μm, respectively. Figure
4b further demonstrates the inference performance of
Recurrent-MZ using non-uniformly sampled inputs
throughout the specimen volume. The blue (uniform
inputs) and the red curves (non-uniform inputs) in Fig. 4b
have very similar trends, illustrating the generalization of
Recurrent-MZ, despite being only trained with uniformly-
sampled input images with a fixed Δz. Figure S3 further
presents another successful blind inference of Recurrent-
MZ on non-uniformly sampled input images. On the
other hand, the gray curve in Fig. 4b (3D U-Net with the
same non-uniform inputs) clearly illustrates the general-
ization failure of a non-recurrent convolutional neural
network (CNN) on non-uniformly sampled input images.
We further investigated the effect of the hyperpara-

meter Δz on the performance of Recurrent-MZ. For this,
three different Recurrent-MZ networks were trained
using Δz= 4, 6, and 8 μm, respectively, and then blindly
tested on a new input sequence with Δz= 6 μm. Figure 4c,
d show the trade-off between the peak performance and
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the performance consistency over the inference axial
range: by decreasing Δz, Recurrent-MZ demonstrates a
better peak inference performance, indicating that more
accurate propagation has been learned from smaller Δz,
whereas the variance of PSNR, corresponding to the
performance consistency over a larger axial range, is
degraded for smaller Δz.

Inference stability of Recurrent-MZ
During the acquisition of the input scans, inevitable

measurement errors are introduced by e.g., PSF dis-
tortions and focus drift42, which jeopardize both the
precision and accuracy of the axial positioning mea-
surements. Hence, it is necessary to take these effects
into consideration and examine the stability of the
Recurrent-MZ inference. For this, Recurrent-MZ was
tested on the same image test set as in Fig. 2, only this
time, independent and identically distributed (i.i.d.)
Gaussian noise was injected into the DPM of each input
image, mimicking the measurement uncertainty when
acquiring the axial scans. The noise was added to the
DPM as follows:

Zi;noised ¼ Zi þ zd;i J ; i ¼ 1; 2; � � � ;M

where Zi is the DPM (m × n matrix) of the i-th input
image, zd,i ~ N(0,σ2), i= 1, 2, ..., M and J is an all-one m ×
n matrix.
The results of this noise analysis reveal that, as illu-

strated in Fig. 5b, the output images of Recurrent-MZ
(M= 2) at z= 4.6 μm degrade as the variance of the
injected noise increases, as expected. However, even at
a relatively significant noise level, where the micro-
scope stage or sample drift is represented with a stan-
dard variation of σ= 1 μm (i.e., 2.5-fold of the objective
lens depth-of-field, 0.4 μm), Recurrent-MZ inference
successfully matches the ground truth with an NRMSE
of 5.94; for comparison, the baseline inference (with
σ= 0 μm) has an NRMSE of 5.03. The same conclusion
also holds for output images at z= 6.8 μm, which
highlights the resilience of Recurrent-MZ framework
against axial scanning errors and/or uncontrolled drifts
in the sample/stage.

Permutation invariance of Recurrent-MZ
Next, we focused on post hoc interpretation43,44 of the

Recurrent-MZ framework, without any modifications to
its design or the training process. For this, we explored to
see if Recurrent-MZ framework exhibits permutation
invariance, i.e.,

VM I1; I2; � � � ; IMð Þ ¼ VM Ii1 ; Ii2 ; � � � ; IiMð Þ; 8 i1; i2; � � � ; iMð Þ 2 SM

where SM is the permutation group of M. To explore the
permutation invariance of Recurrent-MZ (see Fig. 6),
the test set’s input images were randomly permuted,
and fed into the Recurrent-MZ (M= 3), which was
solely trained with input images sorted by z. We then
quantified Recurrent-MZ outputs over all the 6 permu-
tations of the M= 3 input images, using the average
RMSE (μRMSE) and the standard deviation of the RMSE
(σRMSE), calculated with respect to the ground truth
image I:

μRMSE ¼ 1
6

X
i1;i2;i3ð Þ2S3

RMSE Viii Ii1 ; Ii2 ; Ii3ð Þ; Ið Þ

σRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
6

X
i1;i2;i3ð Þ2S3

RMSE Viii Ii1 ; Ii2 ; Ii3ð Þ; Ið Þ � μRMSEð Þ2
s

where RMSE(I, J) gives the RMSE between image I and
J. In Fig. 6e, the red line indicates the average RMSE
over 6 permutations and the pink shaded region
indicates the standard deviation of RMSE over these
6 permutations. RMSE and RMS values were calculated
based on the yellow highlighted regions of interest
(ROIs) in Fig. 6. Compared with the blue line in Fig. 6e,
which corresponds to the output of the Recurrent-MZ
with the inputs sorted by z, the input image permuta-
tion results highlight the success of Recurrent-MZ with
different input image sequences, despite being trained
solely by depth sorted inputs. In contrast, non-
recurrent CNN architectures, such as 3D U-Net45,
inevitably lead to input permutation instability as they
require a fixed length and sorted input sequences; this

(see figure on previous page)
Fig. 4 Generalization of Recurrent-MZ to non-uniformly spaced input images. a Recurrent-MZ was trained on C. elegans samples with
equidistant inputs (M= 3, Δz= 6 μm), and blindly tested on both uniformly sampled and non-uniformly sampled input images of new samples.
b The PSNR values of the output images of Recurrent-MZ with uniformly spaced and non-uniformly spaced input images, as well as the output
images of 3D U-Net with non-uniformly spaced input images are all calculated with respect to the ground truth, corresponding image. Blue: Outputs
of Recurrent-MZ (M= 3) for uniformly spaced inputs, Red: Outputs of Recurrent-MZ (M= 3) for non-uniformly spaced inputs, Gray: Outputs of
3D U-Net for non-uniformly spaced inputs (lower PSNR values are omitted). Dashed lines indicate the axial positions of the input 2D images.
c Influence of hyperparameter Δz on Recurrent-MZ inference performance. We report the PSNR values of the output images of Recurrent-MZ (M= 3)
models that were trained using different Δz= 4, 6, and 8 μm, but blindly tested on new samples imaged with Δz= 6 μm. The input images are
captured at z= 3, 6, and 9 μm. d The boxplot of the PSNR values of the 3 networks (trained using Δz= 4, 6 and 8 μm)
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failure of non-recurrent CNN architectures is illu-
strated in Fig. S5.
We also explored different training schemes to further

improve the permutation invariance of Recurrent-MZ,
including training with input images sorted in des-
cending order by the relative distance (dz) to the output
plane as well as randomly sorted input images. As
shown in Fig. S6, the Recurrent-MZ trained with input
images that are sorted by depth, z, achieves the best
inference performance, indicated by an NRMSE of
4.03, whereas incorporating randomly ordered inputs
in the training phase results in the best generalization
for different input image permutations. The analyses
reported in Fig. S6 further highlight the impact of dif-
ferent training schemes on the inference quality and the
permutation invariance feature of the resulting trained
Recurrent-MZ network.

Repetition invariance of Recurrent-MZ
Next, we explored to see if Recurrent-MZ framework

exhibits repetition invariance. Figure 7 demonstrates the
repetition invariance of Recurrent-MZ when it was
repeatedly fed with input image I1. The output images of
Recurrent-MZ in Fig. 7b show its consistency for 2, 4 and
6 repetitions of I1, i.e., Vii(I1, I1), Vii (I1, I1, I1, I1) and Vii(I1,
I1, I1, I1, I1, I1), which resulted in an RMSE of 12.30, 11.26,
and 11.73, respectively. Although Recurrent-MZ was
never trained with repeated input images, its recurrent
scheme still demonstrates the correct propagation under
repeated inputs of the same 2D plane. When compared
with the output of Deep-Z (i.e., Deep-Z(I1)) shown in
Fig. 7c, Recurrent-MZ, with a single input image or its
repetitions, exhibits comparable reconstruction quality.
Figure S7 also presents a similar comparison when M= 3,
further supporting the same conclusion.
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the performance consistency over the inference axial
range: by decreasing Δz, Recurrent-MZ demonstrates a
better peak inference performance, indicating that more
accurate propagation has been learned from smaller Δz,
whereas the variance of PSNR, corresponding to the
performance consistency over a larger axial range, is
degraded for smaller Δz.

Inference stability of Recurrent-MZ
During the acquisition of the input scans, inevitable

measurement errors are introduced by e.g., PSF dis-
tortions and focus drift42, which jeopardize both the
precision and accuracy of the axial positioning mea-
surements. Hence, it is necessary to take these effects
into consideration and examine the stability of the
Recurrent-MZ inference. For this, Recurrent-MZ was
tested on the same image test set as in Fig. 2, only this
time, independent and identically distributed (i.i.d.)
Gaussian noise was injected into the DPM of each input
image, mimicking the measurement uncertainty when
acquiring the axial scans. The noise was added to the
DPM as follows:

Zi;noised ¼ Zi þ zd;i J ; i ¼ 1; 2; � � � ;M

where Zi is the DPM (m × n matrix) of the i-th input
image, zd,i ~ N(0,σ2), i= 1, 2, ..., M and J is an all-one m ×
n matrix.
The results of this noise analysis reveal that, as illu-

strated in Fig. 5b, the output images of Recurrent-MZ
(M= 2) at z= 4.6 μm degrade as the variance of the
injected noise increases, as expected. However, even at
a relatively significant noise level, where the micro-
scope stage or sample drift is represented with a stan-
dard variation of σ= 1 μm (i.e., 2.5-fold of the objective
lens depth-of-field, 0.4 μm), Recurrent-MZ inference
successfully matches the ground truth with an NRMSE
of 5.94; for comparison, the baseline inference (with
σ= 0 μm) has an NRMSE of 5.03. The same conclusion
also holds for output images at z= 6.8 μm, which
highlights the resilience of Recurrent-MZ framework
against axial scanning errors and/or uncontrolled drifts
in the sample/stage.

Permutation invariance of Recurrent-MZ
Next, we focused on post hoc interpretation43,44 of the

Recurrent-MZ framework, without any modifications to
its design or the training process. For this, we explored to
see if Recurrent-MZ framework exhibits permutation
invariance, i.e.,

VM I1; I2; � � � ; IMð Þ ¼ VM Ii1 ; Ii2 ; � � � ; IiMð Þ; 8 i1; i2; � � � ; iMð Þ 2 SM

where SM is the permutation group of M. To explore the
permutation invariance of Recurrent-MZ (see Fig. 6),
the test set’s input images were randomly permuted,
and fed into the Recurrent-MZ (M= 3), which was
solely trained with input images sorted by z. We then
quantified Recurrent-MZ outputs over all the 6 permu-
tations of the M= 3 input images, using the average
RMSE (μRMSE) and the standard deviation of the RMSE
(σRMSE), calculated with respect to the ground truth
image I:

μRMSE ¼ 1
6

X
i1;i2;i3ð Þ2S3

RMSE Viii Ii1 ; Ii2 ; Ii3ð Þ; Ið Þ

σRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
6

X
i1;i2;i3ð Þ2S3

RMSE Viii Ii1 ; Ii2 ; Ii3ð Þ; Ið Þ � μRMSEð Þ2
s

where RMSE(I, J) gives the RMSE between image I and
J. In Fig. 6e, the red line indicates the average RMSE
over 6 permutations and the pink shaded region
indicates the standard deviation of RMSE over these
6 permutations. RMSE and RMS values were calculated
based on the yellow highlighted regions of interest
(ROIs) in Fig. 6. Compared with the blue line in Fig. 6e,
which corresponds to the output of the Recurrent-MZ
with the inputs sorted by z, the input image permuta-
tion results highlight the success of Recurrent-MZ with
different input image sequences, despite being trained
solely by depth sorted inputs. In contrast, non-
recurrent CNN architectures, such as 3D U-Net45,
inevitably lead to input permutation instability as they
require a fixed length and sorted input sequences; this

(see figure on previous page)
Fig. 4 Generalization of Recurrent-MZ to non-uniformly spaced input images. a Recurrent-MZ was trained on C. elegans samples with
equidistant inputs (M= 3, Δz= 6 μm), and blindly tested on both uniformly sampled and non-uniformly sampled input images of new samples.
b The PSNR values of the output images of Recurrent-MZ with uniformly spaced and non-uniformly spaced input images, as well as the output
images of 3D U-Net with non-uniformly spaced input images are all calculated with respect to the ground truth, corresponding image. Blue: Outputs
of Recurrent-MZ (M= 3) for uniformly spaced inputs, Red: Outputs of Recurrent-MZ (M= 3) for non-uniformly spaced inputs, Gray: Outputs of
3D U-Net for non-uniformly spaced inputs (lower PSNR values are omitted). Dashed lines indicate the axial positions of the input 2D images.
c Influence of hyperparameter Δz on Recurrent-MZ inference performance. We report the PSNR values of the output images of Recurrent-MZ (M= 3)
models that were trained using different Δz= 4, 6, and 8 μm, but blindly tested on new samples imaged with Δz= 6 μm. The input images are
captured at z= 3, 6, and 9 μm. d The boxplot of the PSNR values of the 3 networks (trained using Δz= 4, 6 and 8 μm)
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failure of non-recurrent CNN architectures is illu-
strated in Fig. S5.
We also explored different training schemes to further

improve the permutation invariance of Recurrent-MZ,
including training with input images sorted in des-
cending order by the relative distance (dz) to the output
plane as well as randomly sorted input images. As
shown in Fig. S6, the Recurrent-MZ trained with input
images that are sorted by depth, z, achieves the best
inference performance, indicated by an NRMSE of
4.03, whereas incorporating randomly ordered inputs
in the training phase results in the best generalization
for different input image permutations. The analyses
reported in Fig. S6 further highlight the impact of dif-
ferent training schemes on the inference quality and the
permutation invariance feature of the resulting trained
Recurrent-MZ network.

Repetition invariance of Recurrent-MZ
Next, we explored to see if Recurrent-MZ framework

exhibits repetition invariance. Figure 7 demonstrates the
repetition invariance of Recurrent-MZ when it was
repeatedly fed with input image I1. The output images of
Recurrent-MZ in Fig. 7b show its consistency for 2, 4 and
6 repetitions of I1, i.e., Vii(I1, I1), Vii (I1, I1, I1, I1) and Vii(I1,
I1, I1, I1, I1, I1), which resulted in an RMSE of 12.30, 11.26,
and 11.73, respectively. Although Recurrent-MZ was
never trained with repeated input images, its recurrent
scheme still demonstrates the correct propagation under
repeated inputs of the same 2D plane. When compared
with the output of Deep-Z (i.e., Deep-Z(I1)) shown in
Fig. 7c, Recurrent-MZ, with a single input image or its
repetitions, exhibits comparable reconstruction quality.
Figure S7 also presents a similar comparison when M= 3,
further supporting the same conclusion.
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While for a single input image (I1 or its repeats) the
blind inference performance of Recurrent-MZ is on par
with Deep-Z(I1), the incorporation of multiple input
planes gives a superior performance to Recurrent-MZ
over Deep-Z. As shown in the last two columns of
Fig. 7b, by adding another depth image, I2, the output of
Recurrent-MZ is significantly improved, where the RMSE
decreased to 8.78; this represents a better inference per-
formance compared to Deep-Z(I1) and Deep-Z(I2) as well
as the average of these two Deep-Z outputs (see Fig. 7b, c).
The same conclusion is further supported in Fig. S7b, c
for M= 3, demonstrating that Recurrent-MZ is able to
outperform Deep-Z even if all of its M input images are

individually processed by Deep-Z and averaged, showing
the superiority of the presented recurrent inference
framework.

Demonstration of cross-modality volumetric imaging:
wide-field to confocal
The presented Recurrent-MZ framework can also be

applied to perform cross-modality volumetric imaging,
e.g., from wide-field to confocal, where the network takes
in a few wide-field 2D fluorescence images (input) to infer
at its output a volumetric image stack, matching the
fluorescence images of the same sample obtained by a
confocal microscope; we termed this cross-modality
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standard deviation over all the 6 random permutations, d the ground truth images obtained by mechanical scanning through the same sample,
acquired with an axial spacing of 0.2 μm, e red solid line: the average RMSE of the outputs of randomly permuted input images; pink shadow: the
standard deviation RMSE of the outputs of randomly permuted input images; blue solid line: the RMSE of the output of input images sorted by z; gray
solid line: the RMSE value of the nearest interpolation using the input images, calculated with respect to the ground truth images. Gray dashed lines
(vertical) indicate the axial positions of input images. RMSE and RMS values were calculated based on the yellow highlighted ROIs. The range of
grayscale images is 255, while that of the standard variance images is 31
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image transformation framework as Recurrent-MZ+. To
experimentally demonstrate this unique capability,
Recurrent-MZ+ was trained using wide-field (input) and

confocal (ground truth) image pairs corresponding to
C. elegans samples (see the Materials and Methods section
for details). Figure 8 and Movie S3 report blind-testing
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While for a single input image (I1 or its repeats) the
blind inference performance of Recurrent-MZ is on par
with Deep-Z(I1), the incorporation of multiple input
planes gives a superior performance to Recurrent-MZ
over Deep-Z. As shown in the last two columns of
Fig. 7b, by adding another depth image, I2, the output of
Recurrent-MZ is significantly improved, where the RMSE
decreased to 8.78; this represents a better inference per-
formance compared to Deep-Z(I1) and Deep-Z(I2) as well
as the average of these two Deep-Z outputs (see Fig. 7b, c).
The same conclusion is further supported in Fig. S7b, c
for M= 3, demonstrating that Recurrent-MZ is able to
outperform Deep-Z even if all of its M input images are

individually processed by Deep-Z and averaged, showing
the superiority of the presented recurrent inference
framework.

Demonstration of cross-modality volumetric imaging:
wide-field to confocal
The presented Recurrent-MZ framework can also be

applied to perform cross-modality volumetric imaging,
e.g., from wide-field to confocal, where the network takes
in a few wide-field 2D fluorescence images (input) to infer
at its output a volumetric image stack, matching the
fluorescence images of the same sample obtained by a
confocal microscope; we termed this cross-modality
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Fig. 6 Permutation invariance of Recurrent-MZ to the input images. Recurrent-MZ was trained with inputs (M= 3) sorted by z and tested on
new samples with both inputs sorted by z as well as 6 random permutations of the same inputs to test its permutation invariance. a The input
images sorted by z, and the RMSE values between the ground truth image and the corresponding nearest input image are shown. b The Recurrent-
MZ outputs of the input sequence (I1, I2, I3), c the test outputs with input sequence (I2, I1, I3), the corresponding difference maps and the pixel-wise
standard deviation over all the 6 random permutations, d the ground truth images obtained by mechanical scanning through the same sample,
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solid line: the RMSE value of the nearest interpolation using the input images, calculated with respect to the ground truth images. Gray dashed lines
(vertical) indicate the axial positions of input images. RMSE and RMS values were calculated based on the yellow highlighted ROIs. The range of
grayscale images is 255, while that of the standard variance images is 31
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image transformation framework as Recurrent-MZ+. To
experimentally demonstrate this unique capability,
Recurrent-MZ+ was trained using wide-field (input) and

confocal (ground truth) image pairs corresponding to
C. elegans samples (see the Materials and Methods section
for details). Figure 8 and Movie S3 report blind-testing
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results on new images never used in the training phase. In
Fig. 8, M= 3 wide-field images captured at z= 2.8, 4.8,
and 6.8 μm were fed into Recurrent-MZ+ as input images
and were virtually propagated onto axial planes from 0 to
9 μm with 0.2 μm spacing; the resulting Recurrent-MZ+
output images provided a very good match to the corre-
sponding confocal 3D image stack obtained by mechan-
ical scanning (also see Movie S3). Figure 8b further
illustrates the maximum intensity projection (MIP) side
views (x-z and y-z), showing the high fidelity of the
reconstructed image stack by Recurrent-MZ+ with
respect to the mechanical confocal scans. In contrast to
the wide-field image stack of the same sample (with 46

image scans), where only a few neurons can be recognized
in the MIP views with deformed shapes, the reconstructed
image stack by Recurrent-MZ+ shows substantially
sharper MIP views using only M= 3 input images,
and also mitigates the neuron deformation caused by
the elongated wide-field PSF, providing a comparable
image quality with respect to the confocal microscopy
image stack (Fig. 8b).

Discussion
We demonstrated a new deep learning-based volu-

metric imaging framework termed Recurrent-MZ enabled
by a convolutional recurrent neural network, which
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significantly extends the DOF of the microscopy system
from sparse 2D scanning, providing a 30-fold reduction in
the number of required mechanical scans. Another
advantage of Recurrent-MZ is that it does not require
special optical components in the microscopy set-up or an
optimized scanning strategy. Despite being trained with
equidistant input scans, Recurrent-MZ successfully gen-
eralized to use input images acquired with a non-uniform
axial spacing as well as unknown axial positioning errors,
all of which demonstrate its robustness.
In a practical application, the users of Recurrent-MZ

should select an optimumM to provide a balance between
the inference image quality of the reconstructed sample
volume and the imaging throughput. For example, it is
possible to set a stopping threshold, ϵ, for the volumetric
reconstruction improvement that is provided by adding
another image/scan to Recurrent-MZ, in terms of the
Euclidean distance from the volume which was recon-
structed from previous images; stated differently, the
scanning can stop when e.g., ‖VM(I1, ..,IM) − VM−1(I1,...,
IM−1)‖F ≤ ϵ, where ‖·‖F defines the Frobenius norm.
Importantly, this study shows the first application of

convolutional recurrent neural networks in microscopic
image reconstruction, and also reveals the potential of
RNNs in microscopic imaging when sequential image
data are acquired. With regards to solving inverse pro-
blems in microscopic imaging, most existing deep
learning-based methods are optimized for a single shot/
image, whereas sequential shots are generally convenient
to obtain and substantial sample information hides in
their 3D distribution. Through the incorporation of
sequential 2D scans, the presented Recurrent-MZ inte-
grates the information of different input images from
different depths to gain considerable improvement in the
volumetric image quality and the output DOF. Further-
more, the success of cross-modality image transforma-
tions using Recurrent-MZ+ reveals its potential for a
wide spectrum of biomedical and biological applications,
where confocal microscopy is frequently utilized. Using
just a few wide-field 2D input images corresponding to a
volumetric sample, Recurrent-MZ+ is able to rapidly
provide a 3D image stack that is comparable to confocal
microscopic imaging of the same sample volume (see
Fig. 8 and Movie S3), potentially avoiding time-
consuming scanning and substantially increasing the 3D
imaging throughput.
In contrast to 3D CNNs that generally require a fixed

sampling grid (see e.g., the failure of 3D U-Net with non-
uniform axial sampling in Fig. 4), the presented recurrent
scheme is compatible with (1) input sequences of variable
lengths, as shown in Fig. 7, and (2) input images at vari-
able, non-uniform axial sampling, as shown in Figs. 4 and
S4. In various imaging applications, where the 3D dis-
tribution of the fluorescent samples has a large axial

variation, exhibiting significant spatial non-uniformity,
Recurrent-MZ’s compatibility with variable sampling
grids provides us significant flexibility and performance
advantage over conventional 3D CNNs that demand a
fixed sampling grid. Another interesting property that we
demonstrated is the robustness of Recurrent-MZ infer-
ence to input image permutations (Fig. 6), which could
lead to catastrophic failure modes for standard convolu-
tional networks, as also illustrated in Fig. S5. For 3D
microscopy modalities under random, interlaced or other
specific scanning modes, where the captured images can
hardly be sorted, this unique permutation invariance
could empower the Recurrent-MZ framework to correctly
utilize the information of the input image sequence
regardless of its order. One potential future application
that might benefit from the above discussed unique
advantages of the Recurrent-MZ framework is 3D
microscopic imaging with an isotropic PSF. In general, 3D
imaging with isotropic resolution can be achieved through
e.g., image fusion and deconvolution from multiple
views46–49, during which several image stacks from dif-
ferent viewing angles are acquired to improve 3D image
resolution. The presented Recurrent-MZ framework and
the underlying core principles could potentially be applied
to incorporate 2D images that are sparsely captured at a
variable sampling grid under the spherical coordinate
system, i.e., sampling the 3D object at variable depths
from variable viewing angles. Such a learning approach
that is based on Recurrent-MZ framework might sig-
nificantly reduce the number of axial scans and viewing
angles needed to achieve an isotropic 3D resolution.
In summary, Recurrent-MZ provides a rapid and flex-

ible volumetric imaging framework with reduced number
of axial scans, and opens up new opportunities in machine
learning-based 3D microscopic imaging. The presented
recurrent neural network structure could also be widely
applicable to process sequential data resulting from var-
ious other 3D imaging modalities such as OCT, Fourier
ptychographic microscopy, holography, structured illu-
mination microscopy, among others.

Materials and methods
Sample preparation, image acquisition and dataset
preparation
The C. elegans samples were firstly cultured and stained

with GFP using the strain AML18. AML18 carries the
genotype wtfIs3 [rab-3p::NLS::GFP+rab-3p::NLS::tagRFP]
and expresses GFP and tagRFP in the nuclei of all the
neurons. C. elegans samples were cultured on nematode
growth medium seeded with OP50 E. Coli bacteria using
standard conditions. During the imaging process, the
samples were washed off the plates with M9 solution and
anesthetized with 3 mM levamisole, and then mounted on
slides seeded with 3% agarose.

Huang et al. Light: Science & Applications ����������(2021)�10:62� Page 12 of 16



Light Sci Appl | 2021 | Vol 10 | Issue 4 |  631 LSA

results on new images never used in the training phase. In
Fig. 8, M= 3 wide-field images captured at z= 2.8, 4.8,
and 6.8 μm were fed into Recurrent-MZ+ as input images
and were virtually propagated onto axial planes from 0 to
9 μm with 0.2 μm spacing; the resulting Recurrent-MZ+
output images provided a very good match to the corre-
sponding confocal 3D image stack obtained by mechan-
ical scanning (also see Movie S3). Figure 8b further
illustrates the maximum intensity projection (MIP) side
views (x-z and y-z), showing the high fidelity of the
reconstructed image stack by Recurrent-MZ+ with
respect to the mechanical confocal scans. In contrast to
the wide-field image stack of the same sample (with 46

image scans), where only a few neurons can be recognized
in the MIP views with deformed shapes, the reconstructed
image stack by Recurrent-MZ+ shows substantially
sharper MIP views using only M= 3 input images,
and also mitigates the neuron deformation caused by
the elongated wide-field PSF, providing a comparable
image quality with respect to the confocal microscopy
image stack (Fig. 8b).

Discussion
We demonstrated a new deep learning-based volu-

metric imaging framework termed Recurrent-MZ enabled
by a convolutional recurrent neural network, which
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significantly extends the DOF of the microscopy system
from sparse 2D scanning, providing a 30-fold reduction in
the number of required mechanical scans. Another
advantage of Recurrent-MZ is that it does not require
special optical components in the microscopy set-up or an
optimized scanning strategy. Despite being trained with
equidistant input scans, Recurrent-MZ successfully gen-
eralized to use input images acquired with a non-uniform
axial spacing as well as unknown axial positioning errors,
all of which demonstrate its robustness.
In a practical application, the users of Recurrent-MZ

should select an optimumM to provide a balance between
the inference image quality of the reconstructed sample
volume and the imaging throughput. For example, it is
possible to set a stopping threshold, ϵ, for the volumetric
reconstruction improvement that is provided by adding
another image/scan to Recurrent-MZ, in terms of the
Euclidean distance from the volume which was recon-
structed from previous images; stated differently, the
scanning can stop when e.g., ‖VM(I1, ..,IM) − VM−1(I1,...,
IM−1)‖F ≤ ϵ, where ‖·‖F defines the Frobenius norm.
Importantly, this study shows the first application of

convolutional recurrent neural networks in microscopic
image reconstruction, and also reveals the potential of
RNNs in microscopic imaging when sequential image
data are acquired. With regards to solving inverse pro-
blems in microscopic imaging, most existing deep
learning-based methods are optimized for a single shot/
image, whereas sequential shots are generally convenient
to obtain and substantial sample information hides in
their 3D distribution. Through the incorporation of
sequential 2D scans, the presented Recurrent-MZ inte-
grates the information of different input images from
different depths to gain considerable improvement in the
volumetric image quality and the output DOF. Further-
more, the success of cross-modality image transforma-
tions using Recurrent-MZ+ reveals its potential for a
wide spectrum of biomedical and biological applications,
where confocal microscopy is frequently utilized. Using
just a few wide-field 2D input images corresponding to a
volumetric sample, Recurrent-MZ+ is able to rapidly
provide a 3D image stack that is comparable to confocal
microscopic imaging of the same sample volume (see
Fig. 8 and Movie S3), potentially avoiding time-
consuming scanning and substantially increasing the 3D
imaging throughput.
In contrast to 3D CNNs that generally require a fixed

sampling grid (see e.g., the failure of 3D U-Net with non-
uniform axial sampling in Fig. 4), the presented recurrent
scheme is compatible with (1) input sequences of variable
lengths, as shown in Fig. 7, and (2) input images at vari-
able, non-uniform axial sampling, as shown in Figs. 4 and
S4. In various imaging applications, where the 3D dis-
tribution of the fluorescent samples has a large axial

variation, exhibiting significant spatial non-uniformity,
Recurrent-MZ’s compatibility with variable sampling
grids provides us significant flexibility and performance
advantage over conventional 3D CNNs that demand a
fixed sampling grid. Another interesting property that we
demonstrated is the robustness of Recurrent-MZ infer-
ence to input image permutations (Fig. 6), which could
lead to catastrophic failure modes for standard convolu-
tional networks, as also illustrated in Fig. S5. For 3D
microscopy modalities under random, interlaced or other
specific scanning modes, where the captured images can
hardly be sorted, this unique permutation invariance
could empower the Recurrent-MZ framework to correctly
utilize the information of the input image sequence
regardless of its order. One potential future application
that might benefit from the above discussed unique
advantages of the Recurrent-MZ framework is 3D
microscopic imaging with an isotropic PSF. In general, 3D
imaging with isotropic resolution can be achieved through
e.g., image fusion and deconvolution from multiple
views46–49, during which several image stacks from dif-
ferent viewing angles are acquired to improve 3D image
resolution. The presented Recurrent-MZ framework and
the underlying core principles could potentially be applied
to incorporate 2D images that are sparsely captured at a
variable sampling grid under the spherical coordinate
system, i.e., sampling the 3D object at variable depths
from variable viewing angles. Such a learning approach
that is based on Recurrent-MZ framework might sig-
nificantly reduce the number of axial scans and viewing
angles needed to achieve an isotropic 3D resolution.
In summary, Recurrent-MZ provides a rapid and flex-

ible volumetric imaging framework with reduced number
of axial scans, and opens up new opportunities in machine
learning-based 3D microscopic imaging. The presented
recurrent neural network structure could also be widely
applicable to process sequential data resulting from var-
ious other 3D imaging modalities such as OCT, Fourier
ptychographic microscopy, holography, structured illu-
mination microscopy, among others.

Materials and methods
Sample preparation, image acquisition and dataset
preparation
The C. elegans samples were firstly cultured and stained

with GFP using the strain AML18. AML18 carries the
genotype wtfIs3 [rab-3p::NLS::GFP+rab-3p::NLS::tagRFP]
and expresses GFP and tagRFP in the nuclei of all the
neurons. C. elegans samples were cultured on nematode
growth medium seeded with OP50 E. Coli bacteria using
standard conditions. During the imaging process, the
samples were washed off the plates with M9 solution and
anesthetized with 3 mM levamisole, and then mounted on
slides seeded with 3% agarose.
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The wide-field and confocal microscopy images of
C. elegans were captured by an inverted scanning
microscope (TCS SP8, Leica Microsystems), using a 63×/
1.4NA objective lens (HC PL APO 63×/1.4NA oil CS2,
Leica Microsystems) and a FITC filter set (excitation/
emission wavelengths: 495 nm/519 nm), resulting in a
DOF about 0.4 μm. A monochrome scientific CMOS
camera (Leica DFC9000GTC-VSC08298) was used for
wide-field imaging where each image has 1024 × 1024
pixels and 12-bit dynamic range; a photo-multiplier tube
(PMT) recorded the confocal image stacks. For each FOV,
91 images with 0.2 μm axial spacing were recorded, where
the starting position of the axial scan (z= 0 μm) was set
on the boundary of each worm. A total of 100 FOVs were
captured and exclusively divided into training, validation
and testing datasets at the ratio of 41:8:1, respectively,
where the testing dataset was strictly captured on distinct
worms that were not used in training dataset.
The nanobead image dataset consists of wide-field

microscopic images that were captured using 50 nm
fluorescence beads with a Texas Red filter set (excitation/
emission wavelengths: 589 nm/615 nm). The wide-field
microscopy system consists of an inverted scanning
microscope (TCS SP8, Leica Microsystems) and a 63×/
1.4NA objective lens (HC PL APO 63×/1.4NA oil CS2,
Leica Microsystems). The nanobeads were purchased
from MagSphere (PSF-050NM RED), and ultrasonicated
before dilution into the heated agar solution. ~1mL
diluted bead-agar solution was further mixed to break
down the bead clusters and then a 2.5 µL droplet was
pipetted onto a cover slip, spread and dried for imaging.
Axial scanning was implemented and the system started
to record images (z= 0 μm) when a sufficient number of
nanobeads could be seen in the FOV. Each volume con-
tains 101 images with 0.1 μm axial spacing. A subset of
400, 86 and 16 volumes were exclusively divided as
training, validation and testing datasets.
Each captured image volume was first axially aligned

using the ImageJ plugin ‘StackReg’50 for correcting the
lateral stage shift and stage rotation. Secondly, an image
with extended depth of field (EDF) was generated for each
volume, using the ImageJ plugin ‘Extended Depth of
Field’51. The EDF image was later used as a reference for
the following image processing steps: (1) apply triangle
thresholding to the EDF image to separate the back-
ground and foreground contents38, (2) draw the mean
intensity from the background pixels as the shift factor,
and the 99% percentile of the foreground pixels as the
scale factor, (3) normalize the volume by the shift and
scale factors. For Recurrent-MZ+, confocal image stacks
were registered to their wide-field counterparts using the
same feature-based registration method reported earlier38.
Thirdly, training FOVs were cropped into small regions of

256 × 256 pixels without any overlap. Eventually, the data
loader randomly selects M images from the volume with
an axial spacing of Δz= 6 μm (C. elegans) and Δz= 3 μm
(nanobeads) in both the training and testing phases.

Network structure
Recurrent-MZ is based on a convolutional recurrent

network52 design, which combines the advantages of both
convolutional neural networks39 and recurrent neural
networks in processing sequential inputs53,54. A common
design of the network is formed by an encoder-decoder
structure55,56, with the convolutional recurrent units
applying to the latent domain40,57–59. Furthermore,
inspired by the success of exploiting multiscale features in
image translation tasks60–62, a sequence of cascaded
encoder-decoder pairs is utilized to exploit and incorpo-
rate image features at different scales from different axial
positions.
As shown in Fig. 1b, the output of last encoder block xk−1

is pooled and then fed into the k-th block, which can be
expressed as

xk ¼ ReLU BN Convk;2 ReLU BN Convk;1 P xk�1ð Þð Þ� �� �� �� �� �

ð1Þ
where P(·) is the 2 × 2 max-pooling operation, BN(·) is
batch normalization, ReLU(·) is the rectified linear unit
activation function and Convk,i(·) stands for the i-th
convolution layer in the k-th encoder block. The
convolution layers in all convolution blocks have a kernel
size of 3 × 3, with a stride of 1, and the number of
channels for Convk,1 and Convk,2 are 20 · 2k−2 and 20 ·
2k−1, respectively. Then, xk is sent to the recurrent block,
where features from the sequential input images are
recurrently integrated:

sk ¼ xk þ Convk;3 RConvk xkð Þð Þ ð2Þ

where RConvk(·) is the convolutional recurrent layer with
kernels of 3 × 3 and a stride of 1, the Convk,3(·) is a 1 × 1
convolution layer. Finally, at the decoder part, sk is
concatenated with the up-sampled output from last
decoder convolution block, and fed into the k-th decoder
block, so the output of k-th decoder block can be
expressed as

yk ¼ ReLU BN Convk;5 ReLU BN Convk;4 I yk�1ð Þ � skð Þ� �� �� �� �� �

ð3Þ
where ⊕ is the concatenation operation, I(·) is the 2 × 2
up-sampling operation using nearest interpolation and
Convk,i(·) are the convolution layers of the k-th
decoder block.
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In this work, the gated recurrent unit (GRU)63 is used as
the recurrent unit, i.e., the RConv(·) layer in Eq. (2)
updates ht, given the input xt, through the following three
steps:

ft ¼ σ Wf � xt þ Uf � ht�1 þ bf
� � ð4Þ

bht ¼ tanh Wh � xt þ Uh � ft � ht�1ð Þ þ bhð Þ ð5Þ

ht ¼ 1� ftð Þ � ht�1 þ ft � bht ð6Þ
where ft, ht are forget and output vectors at time step t,
respectively, Wf, Wh, Uf, Uh are the corresponding
convolution kernels, bf, bh are the corresponding
biases, σ is the sigmoid activation function, * is the 2D
convolution operation, and ⊙ is the element-wise multi-
plication. Compared with long short term memory
(LSTM) network64, GRU entails fewer parameters but is
able to achieve similar performance.
The discriminator (D) is a CNN consisting of five

convolutional blocks and two dense layers. The k-th
convolutional block has two convolutional layers with 20 ·
2k channels. A global average pooling layer compacts each
channel before the dense layers. The first dense layer has
20 hidden units with ReLU activation function and the
second dense layer uses a sigmoid activation function.
The GAN structure and other details of both the gen-
erator and discriminator networks are reported in Fig. S8.

Recurrent-MZ implementation
The Recurrent-MZ was written and implemented using

TensorFlow 2.0. In both training and testing phases, a
DPM is automatically concatenated with the input image
by the data loader, indicating the relative axial position of
the input plane to the desired output plane, i.e., the input
in the training phase has dimensions of M × 256 × 256 ×
2. Through varying the DPMs, Recurrent-MZ learns to
digitally propagate inputs to any designated plane, and
thus forming an output volume with dimensions of
|Z| × 256 × 256.
The training loss of Recurrent-MZ is composed of three

parts: (i) pixel-wise BerHu loss65,66, (ii) multiscale struc-
tural similarity index (MSSSIM)67, and (iii) the adversarial
loss using the generative adversarial network (GAN)68

structure. Based on these, the total loss of Recurrent-MZ,
i.e., LV, is expressed as

LV ¼ αBerHu ŷ; yð Þ þ βMSSSIM ŷ; yð Þ þ γ D ŷð Þ � 1½ �2
ð7Þ

ŷ is the output image of the Recurrent-MZ, and y is the
ground truth image for a given axial plane. α, β, γ are the
hyperparameters, which were set as 3, 1 and 0.5,
respectively. And the MSSSIM and BerHu losses are

expressed as:

MSSSIM x; yð Þ ¼ 2μxMμyM þ C1

μ2xM þ μ2yM þ C1

" #αM

´
YM
j¼1

2σxjσyj þ C2

σ2
xj þ σ2yj þ C2

" #βj σ2
xjyj þ C3

σxjσyj þ C3

" #γ j

ð8Þ

BerHu x; yð Þ ¼
X
m;n

x m;nð Þ�y m;nð Þj j�c

x m; nð Þ � y m; nð Þj j

þ
X
m;n

x m;nð Þ�y m;nð Þj j>c

x m; nð Þ � y m; nð Þ½ �2þc2

2c

ð9Þ

xj, yj are 2j−1 down-sampled images of x,y, respectively,
μx; σ

2
x denote the mean and variance of x, respectively,

and σ2
xy denotes the covariance between x and y. x(m,n) is

the intensity value at pixel (m,n) of image x. αM, βj, γj, Ci

are empirical constants67 and c is a constant set as 0.1.
BerHu and MSSSIM losses provide a structural loss term,
in addition to the adversarial loss, focusing on the high-
level image features. The combination of SSIM or
MSSSIM evaluating regional or global similarity, and a
pixel-wise loss term with respect to the ground truth
(such as L1, L2, Huber and BerHu) has been shown to
improve network performance in image translation and
restoration tasks69.
The loss for the discriminator LD is defined as:

LD ¼ 1
2
D ŷð Þ2þ 1

2
D yð Þ � 1½ �2 ð10Þ

where D is the discriminator of the GAN framework. An
Adam optimizer70 with an initial learning rate 10−5 was
employed for stochastic optimization.
The training time on a PC with Intel Xeon W-2195

CPU, 256 GB RAM and one single NVIDIA RTX 2080 Ti
graphic card is about 3 days. After optimization for mixed
precision and parallel computation, the image recon-
struction using Recurrent-MZ (M= 3) takes ~0.15 s for
an output image of 1024 × 1024, and ~3.42s for a volume
of 101 × 1024 × 1024 pixels.

The implementation of Deep-Z
The Deep-Z network, used for comparison purposes, is

identical as in ref. 38, and was trained and tested on the
same dataset as Recurrent-MZ using the same machine.
The loss function, optimizer and hyperparameter settings
were also identical to ref. 38. Due to the single-scan pro-
pagation of Deep-Z, the training range is 1

M of that of
Recurrent-MZ, depending on the value of M used in the
comparison. The reconstructed volumes over a large
axial range, as presented in the manuscript, were axially
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The wide-field and confocal microscopy images of
C. elegans were captured by an inverted scanning
microscope (TCS SP8, Leica Microsystems), using a 63×/
1.4NA objective lens (HC PL APO 63×/1.4NA oil CS2,
Leica Microsystems) and a FITC filter set (excitation/
emission wavelengths: 495 nm/519 nm), resulting in a
DOF about 0.4 μm. A monochrome scientific CMOS
camera (Leica DFC9000GTC-VSC08298) was used for
wide-field imaging where each image has 1024 × 1024
pixels and 12-bit dynamic range; a photo-multiplier tube
(PMT) recorded the confocal image stacks. For each FOV,
91 images with 0.2 μm axial spacing were recorded, where
the starting position of the axial scan (z= 0 μm) was set
on the boundary of each worm. A total of 100 FOVs were
captured and exclusively divided into training, validation
and testing datasets at the ratio of 41:8:1, respectively,
where the testing dataset was strictly captured on distinct
worms that were not used in training dataset.
The nanobead image dataset consists of wide-field

microscopic images that were captured using 50 nm
fluorescence beads with a Texas Red filter set (excitation/
emission wavelengths: 589 nm/615 nm). The wide-field
microscopy system consists of an inverted scanning
microscope (TCS SP8, Leica Microsystems) and a 63×/
1.4NA objective lens (HC PL APO 63×/1.4NA oil CS2,
Leica Microsystems). The nanobeads were purchased
from MagSphere (PSF-050NM RED), and ultrasonicated
before dilution into the heated agar solution. ~1mL
diluted bead-agar solution was further mixed to break
down the bead clusters and then a 2.5 µL droplet was
pipetted onto a cover slip, spread and dried for imaging.
Axial scanning was implemented and the system started
to record images (z= 0 μm) when a sufficient number of
nanobeads could be seen in the FOV. Each volume con-
tains 101 images with 0.1 μm axial spacing. A subset of
400, 86 and 16 volumes were exclusively divided as
training, validation and testing datasets.
Each captured image volume was first axially aligned

using the ImageJ plugin ‘StackReg’50 for correcting the
lateral stage shift and stage rotation. Secondly, an image
with extended depth of field (EDF) was generated for each
volume, using the ImageJ plugin ‘Extended Depth of
Field’51. The EDF image was later used as a reference for
the following image processing steps: (1) apply triangle
thresholding to the EDF image to separate the back-
ground and foreground contents38, (2) draw the mean
intensity from the background pixels as the shift factor,
and the 99% percentile of the foreground pixels as the
scale factor, (3) normalize the volume by the shift and
scale factors. For Recurrent-MZ+, confocal image stacks
were registered to their wide-field counterparts using the
same feature-based registration method reported earlier38.
Thirdly, training FOVs were cropped into small regions of

256 × 256 pixels without any overlap. Eventually, the data
loader randomly selects M images from the volume with
an axial spacing of Δz= 6 μm (C. elegans) and Δz= 3 μm
(nanobeads) in both the training and testing phases.

Network structure
Recurrent-MZ is based on a convolutional recurrent

network52 design, which combines the advantages of both
convolutional neural networks39 and recurrent neural
networks in processing sequential inputs53,54. A common
design of the network is formed by an encoder-decoder
structure55,56, with the convolutional recurrent units
applying to the latent domain40,57–59. Furthermore,
inspired by the success of exploiting multiscale features in
image translation tasks60–62, a sequence of cascaded
encoder-decoder pairs is utilized to exploit and incorpo-
rate image features at different scales from different axial
positions.
As shown in Fig. 1b, the output of last encoder block xk−1

is pooled and then fed into the k-th block, which can be
expressed as

xk ¼ ReLU BN Convk;2 ReLU BN Convk;1 P xk�1ð Þð Þ� �� �� �� �� �

ð1Þ
where P(·) is the 2 × 2 max-pooling operation, BN(·) is
batch normalization, ReLU(·) is the rectified linear unit
activation function and Convk,i(·) stands for the i-th
convolution layer in the k-th encoder block. The
convolution layers in all convolution blocks have a kernel
size of 3 × 3, with a stride of 1, and the number of
channels for Convk,1 and Convk,2 are 20 · 2k−2 and 20 ·
2k−1, respectively. Then, xk is sent to the recurrent block,
where features from the sequential input images are
recurrently integrated:

sk ¼ xk þ Convk;3 RConvk xkð Þð Þ ð2Þ

where RConvk(·) is the convolutional recurrent layer with
kernels of 3 × 3 and a stride of 1, the Convk,3(·) is a 1 × 1
convolution layer. Finally, at the decoder part, sk is
concatenated with the up-sampled output from last
decoder convolution block, and fed into the k-th decoder
block, so the output of k-th decoder block can be
expressed as

yk ¼ ReLU BN Convk;5 ReLU BN Convk;4 I yk�1ð Þ � skð Þ� �� �� �� �� �

ð3Þ
where ⊕ is the concatenation operation, I(·) is the 2 × 2
up-sampling operation using nearest interpolation and
Convk,i(·) are the convolution layers of the k-th
decoder block.
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In this work, the gated recurrent unit (GRU)63 is used as
the recurrent unit, i.e., the RConv(·) layer in Eq. (2)
updates ht, given the input xt, through the following three
steps:

ft ¼ σ Wf � xt þ Uf � ht�1 þ bf
� � ð4Þ

bht ¼ tanh Wh � xt þ Uh � ft � ht�1ð Þ þ bhð Þ ð5Þ

ht ¼ 1� ftð Þ � ht�1 þ ft � bht ð6Þ
where ft, ht are forget and output vectors at time step t,
respectively, Wf, Wh, Uf, Uh are the corresponding
convolution kernels, bf, bh are the corresponding
biases, σ is the sigmoid activation function, * is the 2D
convolution operation, and ⊙ is the element-wise multi-
plication. Compared with long short term memory
(LSTM) network64, GRU entails fewer parameters but is
able to achieve similar performance.
The discriminator (D) is a CNN consisting of five

convolutional blocks and two dense layers. The k-th
convolutional block has two convolutional layers with 20 ·
2k channels. A global average pooling layer compacts each
channel before the dense layers. The first dense layer has
20 hidden units with ReLU activation function and the
second dense layer uses a sigmoid activation function.
The GAN structure and other details of both the gen-
erator and discriminator networks are reported in Fig. S8.

Recurrent-MZ implementation
The Recurrent-MZ was written and implemented using

TensorFlow 2.0. In both training and testing phases, a
DPM is automatically concatenated with the input image
by the data loader, indicating the relative axial position of
the input plane to the desired output plane, i.e., the input
in the training phase has dimensions of M × 256 × 256 ×
2. Through varying the DPMs, Recurrent-MZ learns to
digitally propagate inputs to any designated plane, and
thus forming an output volume with dimensions of
|Z| × 256 × 256.
The training loss of Recurrent-MZ is composed of three

parts: (i) pixel-wise BerHu loss65,66, (ii) multiscale struc-
tural similarity index (MSSSIM)67, and (iii) the adversarial
loss using the generative adversarial network (GAN)68

structure. Based on these, the total loss of Recurrent-MZ,
i.e., LV, is expressed as

LV ¼ αBerHu ŷ; yð Þ þ βMSSSIM ŷ; yð Þ þ γ D ŷð Þ � 1½ �2
ð7Þ

ŷ is the output image of the Recurrent-MZ, and y is the
ground truth image for a given axial plane. α, β, γ are the
hyperparameters, which were set as 3, 1 and 0.5,
respectively. And the MSSSIM and BerHu losses are

expressed as:

MSSSIM x; yð Þ ¼ 2μxMμyM þ C1

μ2xM þ μ2yM þ C1
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xy denotes the covariance between x and y. x(m,n) is

the intensity value at pixel (m,n) of image x. αM, βj, γj, Ci

are empirical constants67 and c is a constant set as 0.1.
BerHu and MSSSIM losses provide a structural loss term,
in addition to the adversarial loss, focusing on the high-
level image features. The combination of SSIM or
MSSSIM evaluating regional or global similarity, and a
pixel-wise loss term with respect to the ground truth
(such as L1, L2, Huber and BerHu) has been shown to
improve network performance in image translation and
restoration tasks69.
The loss for the discriminator LD is defined as:

LD ¼ 1
2
D ŷð Þ2þ 1

2
D yð Þ � 1½ �2 ð10Þ

where D is the discriminator of the GAN framework. An
Adam optimizer70 with an initial learning rate 10−5 was
employed for stochastic optimization.
The training time on a PC with Intel Xeon W-2195

CPU, 256 GB RAM and one single NVIDIA RTX 2080 Ti
graphic card is about 3 days. After optimization for mixed
precision and parallel computation, the image recon-
struction using Recurrent-MZ (M= 3) takes ~0.15 s for
an output image of 1024 × 1024, and ~3.42s for a volume
of 101 × 1024 × 1024 pixels.

The implementation of Deep-Z
The Deep-Z network, used for comparison purposes, is

identical as in ref. 38, and was trained and tested on the
same dataset as Recurrent-MZ using the same machine.
The loss function, optimizer and hyperparameter settings
were also identical to ref. 38. Due to the single-scan pro-
pagation of Deep-Z, the training range is 1

M of that of
Recurrent-MZ, depending on the value of M used in the
comparison. The reconstructed volumes over a large
axial range, as presented in the manuscript, were axially
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stacked using M non-overlapping volumes, which were
propagated from different input scans and covered 1

M of
the total axial range. The Deep-Z reconstruction time for
a 1024 × 1024 output image on the same machine as
Recurrent-MZ is ~0.12 s.

The implementation of 3D U-Net
For each input sequence of M × 256 × 256 × 2 (the

second channel is the DPM), it was reshaped as a tensor of
256 × 256 × (2M) and fed into the 3D U-Net45. When
permuting the M input scans, the DPMs always follow the
corresponding images/scans. The number of channels at
the last convolutional layer of each down-sampling block is
60 · 2k and the convolutional kernel is 3 × 3 × 3. The
network structure is the same as reported in ref. 45. The
other training settings, such as the loss function and opti-
mizer are similar to Recurrent-MZ. The reconstruction
time (M= 3) for an output image of 1024 × 1024 on the
same machine (Intel XeonW-2195 CPU, 256 GB RAM and
one single NVIDIA RTX 2080 Ti graphic card) is ~0.2 s.
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stacked using M non-overlapping volumes, which were
propagated from different input scans and covered 1

M of
the total axial range. The Deep-Z reconstruction time for
a 1024 × 1024 output image on the same machine as
Recurrent-MZ is ~0.12 s.

The implementation of 3D U-Net
For each input sequence of M × 256 × 256 × 2 (the

second channel is the DPM), it was reshaped as a tensor of
256 × 256 × (2M) and fed into the 3D U-Net45. When
permuting the M input scans, the DPMs always follow the
corresponding images/scans. The number of channels at
the last convolutional layer of each down-sampling block is
60 · 2k and the convolutional kernel is 3 × 3 × 3. The
network structure is the same as reported in ref. 45. The
other training settings, such as the loss function and opti-
mizer are similar to Recurrent-MZ. The reconstruction
time (M= 3) for an output image of 1024 × 1024 on the
same machine (Intel XeonW-2195 CPU, 256 GB RAM and
one single NVIDIA RTX 2080 Ti graphic card) is ~0.2 s.
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