[1] Kim K, Choi JY, Kim T, Cho SH, Chung HJ. A role for graphene in silicon-based semiconductor devices. Nature 2011; 479: 338–344. doi: 10.1038/nature10680
[2] Li LK, Yu YJ, Ye GJ, Ge QQ, Ou XD et al. Black phosphorus field-effect transistors. Nat Nanotechnol 2014; 9: 372–377. doi: 10.1038/nnano.2014.35
[3] Xu MS, Liang T, Shi MM, Chen HZ. Graphene-like two-dimensional materials. Chem Rev 2012; 113: 3766–3798. doi: 10.1021/cr300263a
[4] Shen YR. The Principles of Nonlinear Optics. New York: Wiley-Interscience; 2003.
[5] Boyd RW. Nonlinear Optics. 3rd ed. San Diego, CA, USA: Academy Press; 2008.
[6] Malard LM, Alencar TV, Barboza APM, Mak KF, de Paula AM. Observation of intense second harmonic generation from MoS2 atomic crystals. Phys Rev B 2013; 87: 201401. doi: 10.1103/PhysRevB.87.201401
[7] Li YL, Rao Y, Mak KF, You YM, Wang SY et al. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett 2013; 13: 3329–3333. doi: 10.1021/nl401561r
[8] Zhao M, Ye ZL, Suzuki R, Ye Y, Zhu HY et al. Atomically phase-matched second-harmonic generation in a 2D crystal. Light Sci Appl 2016; 5: e16131, doi: 10.1038/lsa.2016.131.
[9] Beams R, Cancado LG, Krylyuk S, Kalish I, Kalanyan B et al. Characterization of few-layer 1T' MoTe2 by polarization-resolved second harmonic generation and Raman scattering. ACS Nano 2016; 10: 9626–9636. doi: 10.1021/acsnano.6b05127
[10] Janisch C, Wang YX, Ma D, Mehta N, Elías AL et al. Extraordinary second harmonic generation in tungsten disulfide monolayers. Sci Rep 2014; 4: 5530. doi: 10.1038/srep05530
[11] Zhou X, Cheng JX, Zhou YB, Cao T, Hong H et al. Strong second-harmonic generation in atomic layered GaSe. J Am Chem Soc 2015; 137: 7994–7997. doi: 10.1021/jacs.5b04305
[12] Yin XB, Ye ZL, Chenet DA, Ye Y, O'Brien K et al. Edge nonlinear optics on a MoS2 atomic monolayer. Science 2014; 344: 488–490. doi: 10.1126/science.1250564
[13] Cheng JX, Jiang T, Ji QQ, Zhang Y, Li ZM et al. Kinetic nature of grain boundary formation in as-grown MoS2 monolayer. Adv Mater 2015; 27: 4069–4074. doi: 10.1002/adma.201501354
[14] Seyler KL, Schaibley JR, Gong P, Rivera P, Jones AM et al. Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nat Nanotechnol 2015; 10: 407–411. doi: 10.1038/nnano.2015.73
[15] Xie C, Mak C, Tao XM, Yan F. Photodetectors based on two-dimensional layered materials beyond graphene. Adv Funct Mater 2017; 27: 1603886. doi: 10.1002/adfm.201603886
[16] Ross JS, Klement P, Jones AM, Ghimire NJ, Yan JQ et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat Nanotechnol 2014; 9: 268–272. doi: 10.1038/nnano.2014.26
[17] Withers F, Del Pozo-Zamudio O, Schwarz S, Dufferwiel S, Walker PM et al. WSe2 light-emitting tunneling transistors with enhanced brightness at room temperature. Nano Lett 2015; 15: 8223–8228. doi: 10.1021/acs.nanolett.5b03740
[18] Gan XT, Shiue RJ, Gao YD, Meric I, Heinz TF et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat Photonics 2013; 7: 883–887. doi: 10.1038/nphoton.2013.253
[19] Pospischil A, Humer M, Furchi MM, Bachmann D, Guider R et al. CMOS-compatible graphene photodetector covering all optical communication bands. Nat Photonics 2013; 7: 892–896. doi: 10.1038/nphoton.2013.240
[20] Wang XM, Cheng ZZ, Xu K, Tsang HK, Xu JB. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat Photonics 2013; 7: 888–891. doi: 10.1038/nphoton.2013.241
[21] Liu M, Yin XB, Ulin-Avila E, Geng BS, Zentgraf T et al. A graphene-based broadband optical modulator. Nature 2011; 474: 64–67. doi: 10.1038/nature10067
[22] Guo J, Xie JJ, Li DJ, Yang GL, Chen F et al. Doped GaSe crystals for laser frequency conversion. Light Sci Appl 2015; 4: e362, doi: 10.1038/lsa.2015.135.
[23] Jiang T, Liu HR, Huang D, Zhang S, Li YG et al. Valley and band structure engineering of folded MoS2 bilayers. Nat Nanotechnol 2014; 9: 825–829. doi: 10.1038/nnano.2014.176
[24] Miller S, Luke K, Okawachi Y, Cardenas J, Gaeta AL et al. On-chip frequency comb generation at visible wavelengths via simultaneous second- and third-order optical nonlinearities. Opt Express 2014; 22: 26517–26525. doi: 10.1364/OE.22.026517
[25] Gan XT, Yao XW, Shiue RJ, Hatami F, Englund D. Photonic crystal cavity-assisted upconversion infrared photodetector. Opt Express 2015; 23: 12998–13004. doi: 10.1364/OE.23.012998
[26] Guo X, Zou CL, Schuck C, Jung H, Cheng RS et al. A parametric down conversion photon-pair source on a silicon chip platform. Light Sci Appl 2017; 6: e16249, doi: 10.1038/lsa.2016.249.
[27] Castellanos-Gomez A, Buscema M, Molenaar R, Singh V, Janssen L et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater 2014; 1: 011002. doi: 10.1088/2053-1583/1/1/011002
[28] Tang YH, Mandal KC, McGuire JA, Lai CW. Layer- and frequency-dependent second harmonic generation in reflection from GaSe atomic crystals. Phys Rev B 2016; 94: 125302. doi: 10.1103/PhysRevB.94.125302
[29] Buckley S, Radulaski M, Petykiewicz J, Lagoudakis KG, Kang JH et al. Second-harmonic generation in GaAs photonic crystal cavities in (111)B and (001) crystal orientations. ACS Photonics 2014; 1: 516–523. doi: 10.1021/ph500054u
[30] Rivoire K, Lin ZL, Hatami F, Masselink WT, Vučković J. Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power. Opt Express 2009; 17: 22609–22615. doi: 10.1364/OE.17.022609
[31] Galli M, Gerace D, Welna K, Krauss TF, O'Faolain L et al. Low-power continuous-wave generation of visible harmonics in silicon photonic crystal nanocavities. Opt Express 2010; 18: 26613–26624. doi: 10.1364/OE.18.026613
[32] Fryett TK, Seyler KL, Zheng JJ, Liu CH, Xu XD et al. Silicon photonic crystal cavity enhanced second-harmonic generation from monolayer WSe2. 2D Mater 2016; 4: 015031. doi: 10.1088/2053-1583/4/1/015031
[33] Watanabe T, Abe H, Nishijima Y, Baba T. Array integration of thousands of photonic crystal nanolasers. Appl Phys Lett 2014; 104: 121108. doi: 10.1063/1.4869753
[34] Gan XT, Pervez N, Kymissis I, Hatami F, Englund D. A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array. Appl Phys Lett 2012; 100: 231104. doi: 10.1063/1.4724177
[35] Gan XT, Mak KF, Gao YD, You YM, Hatami F et al. Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity. Nano Lett 2012; 12: 5626–5631. doi: 10.1021/nl302746n
[36] Yi F, Ren ML, Reed JC, Zhu H, Hou JC et al. Optomechanical enhancement of doubly resonant 2D optical nonlinearity. Nano Lett 2016; 16: 1631–1636. doi: 10.1021/acs.nanolett.5b04448