[1] Sakaue-Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 2008; 132: 487–498. doi: 10.1016/j.cell.2007.12.033
[2] Stephens DJ, Allan VJ. Light microscopy techniques for live cell imaging. Science 2003; 300: 82–86. doi: 10.1126/science.1082160
[3] Rust MJ, Bates M, Zhuang XW. Stochastic optical reconstruction microscopy (STORM) provides sub-diffraction-limit image resolution. Nat Methods 2006; 3: 793–796. doi: 10.1038/nmeth929
[4] Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006; 313: 1642–1645. doi: 10.1126/science.1127344
[5] Arosio D, Ricci F, Marchetti L, Gualdani R, Albertazzi L et al. Simultaneous intracellular chloride and pH measurements using a GFP-based sensor. Nat Methods 2010; 7: 516–518. doi: 10.1038/nmeth.1471
[6] Okada M, Smith NI, Palonpon AF, Endo H, Kawata S et al. Label-free Raman observation of cytochrome c dynamics during apoptosis. Proc Natl Acad Sci USA 2012; 109: 28–32. doi: 10.1073/pnas.1107524108
[7] Butler HJ, Ashton L, Bird B, Cinque G, Curtis K et al. Using Raman spectroscopy to characterize biological materials. Nat Protoc 2016; 11: 664–687. doi: 10.1038/nprot.2016.036
[8] Kong K, Kendall C, Stone N, Notingher I. Raman spectroscopy for medical diagnostics—From in-vitro biofluid assays to in-vivo cancer detection. Adv Drug Deliv Rev 2015; 89: 121–134. doi: 10.1016/j.addr.2015.03.009
[9] Jermyn M, Mok K, Mercier J, Desroches J, Pichette J et al. Intraoperative brain cancer detection with Raman spectroscopy in humans. Sci Transl Med 2015; 7: 274ra19. doi: 10.1126/scitranslmed.aaa2384
[10] Scarcelli G, Yun SH. Confocal Brillouin microscopy for three-dimensional mechanical imaging. Nat Photonics 2007; 2: 39–43. doi: 10.1038/nphoton.2007.250
[11] Scarcelli G, Polacheck WJ, Nia HT, Patel K, Grodzinsky AJ et al. Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy. Nat Methods 2015; 12: 1132–1134. doi: 10.1038/nmeth.3616
[12] Palombo F, Madami M, Stone N, Fioretto D. Mechanical mapping with chemical specificity by confocal Brillouin and Raman microscopy. Analyst 2014; 139: 729–733. doi: 10.1039/C3AN02168H
[13] Antonacci G, Braakman S. Biomechanics of subcellular structures by non-invasive Brillouin microscopy. Sci Rep 2016; 6: 37217. doi: 10.1038/srep37217
[14] Meng ZK, Traverso AJ, Ballmann CW, Troyanova-Wood M, Yakovlev VV. Seeing cells in a new light: a renaissance of Brillouin spectroscopy. Adv Opt Photonics 2016; 8: 300–327. doi: 10.1364/AOP.8.000300
[15] Palombo F, Winlove CP, Edginton RS, Green E, Stone N et al. Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering. J R Soc Interface 2014; 11: 20140739. doi: 10.1098/rsif.2014.0739
[16] Elsayad K, Werner S, Gallemí M, Kong JX, Guajardo ERS et al. Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging. Sci Signal 2016; 9: rs5. doi: 10.1126/scisignal.aaf6326
[17] Caponi S, Corezzi S, Fioretto D, Fontana A, Monaco G et al. Raman-scattering measurements of the vibrational density of states of a reactive mixture during polymerization: Effect on the boson peak. Phys Rev Lett 2009; 102: 027402. doi: 10.1103/PhysRevLett.102.027402
[18] Mattarelli M, Caponi S, Chiappini A, Montagna M, Moser E et al. Diagnostic techniques for photonic materials based on Raman and Brillouin spectroscopies. Optoelectron Lett 2007; 3: 188–191. doi: 10.1007/s11801-007-6197-x
[19] Zanatta M, Baldi G, Caponi S, Fontana A, Gilioli E et al. Elastic properties of permanently densified silica: A Raman, Brillouin light, and x-ray scattering study. Phys Rev B 2010; 81: 212201. doi: 10.1103/PhysRevB.81.212201
[20] Schantz S, Torell LM, Stevens JR. Raman and Brillouin scattering of LiClO4 complexed in poly(propylene-glycol). J Appl Phys 1988; 64: 2038–2043. doi: 10.1063/1.341709
[21] Traverso AJ, Thompson JV, Steelman ZA, Meng ZK, Scully MO et al. Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging. Anal Chem 2015; 87: 7519–7523. doi: 10.1021/acs.analchem.5b02104
[22] Guerette M, Ackerson MR, Thomas J, Yuan FL, Bruce WE et al. Structure and properties of silica glass densified in cold compression and hot compression. Sci Rep 2015; 5: 15343. doi: 10.1038/srep15343
[23] Scarponi F, Mattana S, Corezzi S, Caponi S, Comez L et al. High-performance versatile setup for simultaneous Brillouin-Raman micro-spectroscopy. Phys Rev X 2017; 7: 031015.
[24] Meng ZK, Bustamante Lopez SC, Meissner KE, Yakovlev VV. Subcellular measurements of mechanical and chemical properties using dual Raman-Brillouin microspectroscopy. J Biophotonics 2016; 9: 201–207. doi: 10.1002/jbio.201500163
[25] Sandercock JR. Light Scattering in Solids Ⅲ: Recent Results. Berlin Heidelberg: Springer; 1982.
[26] Boreman GD. Modulation Transfer Function in Optical and Electro-Optical Systems In Tutorial Texts in Optical Engineering [S.l.]: SPIE Publications; 2001, 73–76.
[27] Seely JF, Hudson LT, Glover JL, Henins A, Pereira N. Ultra-thin curved transmission crystals for high resolving power (up to E/ΔE=6300) x-ray spectroscopy in the 6–13 keV energy range. Opt Lett 2014; 39: 6839–6842. doi: 10.1364/OL.39.006839
[28] Bohndiek SE, Wagadarikar A, Zavaleta CL, Van de Sompel D, Garai E et al. A small animal Raman instrument for rapid, wide-area, spectroscopic imaging. Proc Natl Acad Sci USA 2013; 110: 12408–12413. doi: 10.1073/pnas.1301379110
[29] Offroy M, Moreau M, Sobanska S, Milanfar P, Duponchel L. Pushing back the limits of Raman imaging by coupling super-resolution and chemometrics for aerosols characterization. Sci Rep 2015; 5: 12303. doi: 10.1038/srep12303
[30] Dieing T, Hollricher O, Toporski J. Confocal Raman Microscopy. Berlin Heidelberg: Springer; 2011.
[31] Armeni T, Ercolani L, Urbanelli L, Magini A, Magherini F et al. Cellular redox imbalance and changes of protein S-glutathionylation patterns are associated with senescence induced by oncogenic H-ras. PLoS ONE 2012; 7: e52151. doi: 10.1371/journal.pone.0052151
[32] Caponi S, Fontana A, Montagna M, Pilla Q, Rossi F et al. Acoustic attenuation in silica porous systems. J Non-Cryst Solids 2003; 322: 29–34. doi: 10.1016/S0022-3093(03)00167-4
[33] Caponi S, Benassi P, Eramo R, Giugni A, Nardone M et al. Phonon attenuation in vitreous silica and silica porous systems. Philos Mag 2004; 84: 1423–1431. doi: 10.1080/14786430310001644170
[34] Mattana S, Caponi S, Tamagnini F, Fioretto D, Palombo F. Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis. J Innov Opt Health Sci 2017; 10: 1742001. doi: 10.1142/S1793545817420019
[35] Comez L, Masciovecchio C, Monaco G, Fioretto D. Progress in liquid and glass physics by Brillouin scattering spectroscopy. Solid State Phys 2012; 63: 1–77. doi: 10.1016/B978-0-12-397028-2.00001-1
[36] Benassi P, Caponi S, Eramo R, Fontana A, Giugni A et al. Sound attenuation in a unexplored frequency region: Brillouin ultraviolet light scattering measurements in v-SiO2. Phys Rev B 2005; 71: 172201. doi: 10.1103/PhysRevB.71.172201
[37] Antonacci G, Foreman MR, Paterson C, Török P. Spectral broadening in Brillouin imaging. Appl Phys Lett 2013; 103: 221105. doi: 10.1063/1.4836477
[38] Pully VV, Lenferink ATM, Otto C. Time-lapse Raman imaging of single live lymphocytes. J Raman Spectrosc 2011; 42: 167–173. doi: 10.1002/jrs.2683
[39] Caponi S, Liguori L, Giugliarelli A, Mattarelli M, Morresi A et al. Raman micro-spectroscopy: A powerful tool for the monitoring of dynamic supramolecular changes in living cells. Biophys Chem 2013; 182: 58–63. doi: 10.1016/j.bpc.2013.06.013
[40] Lu FK, Basu S, Igras V, Hoang MP, Ji MB et al. Label-free DNA imaging in vivo with stimulated Raman scattering microscopy. Proc Natl Acad Sci USA 2015; 112: 11624–11629. doi: 10.1073/pnas.1515121112
[41] Boon JP, Yip S. Molecular Hydrodynamics. New York: Dover Publications; 1981.
[42] Lu F-K, Ji MB, Fu D, Ni XH, Freudiger CW et al. Multicolor stimulated Raman scattering microscopy. Mol Phys 2012; 110: 1927–1932. doi: 10.1080/00268976.2012.695028
[43] Freudiger CW, Pfannl R, Orringer DA, Saar BG, Ji MB et al. Multicolored stain-free histopathology with coherent Raman imaging. Lab Invest 2013; 92: 1492–1502. doi: 10.1038/labinvest.2012.109
[44] Fu D, Lu FK, Zhang X, Freudiger C, Pernik DR et al. Quantitative chemical imaging with multiplex stimulated raman scattering microscopy. J Am Chem Soc 2012; 134: 3623–3626. doi: 10.1021/ja210081h
[45] Saar BG, Freudiger CW, Reichman J, Stanley CM, Holtom GR et al. Video-rate molecular imaging in vivo with stimulated Raman scattering. Science 2010; 330: 1368–1370. doi: 10.1126/science.1197236
[46] Ryu SH, Kim KH, Kim HB, Kim MH, Kim NH et al. Oncogenic Ras-mediated downregulation of Clast1/LR8 is involved in Ras-mediated neoplastic transformation and tumorigenesis in NIH3T3 cells. Cancer Sci 2010; 101: 1990–1996. doi: 10.1111/j.1349-7006.2010.01626.x
[47] Zink D, Fischer AH, Nickerson JA. Nuclear structure in cancer cells. Nat Rev Cancer 2004; 4: 677–687. doi: 10.1038/nrc1430
[48] Chow K-H, Factor RE, Ullman KS. The nuclear envelope environment and its cancer connections. Nat Rev Cancer 2012; 12: 196–209. doi: 10.1038/nrc3219
[49] Haase K, Pelling AE. Investigating cell mechanics with atomic force microscopy. J R Soc Interface 2015; 12: 20140970. doi: 10.1098/rsif.2014.0970
[50] Swaminathan V, Mythreye K, O'Brien ET, Berchuck A, Blobe GC et al. Mechanical Stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res 2011; 71: 5075–5080. doi: 10.1158/0008-5472.CAN-11-0247
[51] Suresh S. Biomechanics and biophysics of cancer cells. Acta Mater 2007; 55: 3989–4014. doi: 10.1016/j.actamat.2007.04.022
[52] Docheva D, Padula D, Popov C, Mutschler W, Clausen-Schaumann H et al. Researching into the cellular shape, volume and elasticity of mesenchymal stem cells, osteoblasts and osteosarcoma cells by atomic force microscopy. J Cell Mol Med 2008; 12: 537–552. doi: 10.1111/j.1582-4934.2007.00138.x
[53] Xu WW, Mezencev R, Kim B, Wang LJ, McDonald J et al. Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells. PLoS One 2012; 7: e46609. doi: 10.1371/journal.pone.0046609
[54] Cross SE, Jin YS, Rao JY, Gimzewski JK. Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2007; 2: 780–783. doi: 10.1038/nnano.2007.388
[55] Scarcelli G, Kim P, Yun SH. In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy. Biophys J 2011; 101: 1539–1545. doi: 10.1016/j.bpj.2011.08.008