[1] Kingslake, R. Optical System Design. (New York: Academic Press, 1983).
[2] Kingslake, R. Lens Design Fundamentals. (New York: Academic Press, 1978).
[3] Conrady, A. E. Applied Optics and Optical Design. (New York: Dover Publications, 1992).
[4] Rosen, S. & Eldert, C. Least-squares method for optical correction. J. Opt. Soc. Am. 44, 250–252 (1954). doi: 10.1364/JOSA.44.000250
[5] Hopkins, R. E., McCarthy, C. A. & Walters, R. Automatic correction of third-order aberrations. J. Opt. Soc. Am. 45, 363–365 (1955). doi: 10.1364/JOSA.45.000363
[6] Feder, D. P. Automatic optical design. Appl. Opt. 2, 1209–1226 (1963). doi: 10.1364/AO.2.001209
[7] Shannon, R. R. The Art and Science of Optical Design (Cambridge: Cambridge University Press, 1997).
[8] Hopkins, R. E. & Spencer, G. Creative thinking and computing machines in optical design. J. Opt. Soc. Am. 52, 172–176 (1962). doi: 10.1364/JOSA.52.000172
[9] Frieden, B. R. The Computer in Optical Research (Berlin: Springer-Verlag, 1980).
[10] Malacara-Hernández, D. & Malacara-Hernández, Z. Handbook of Optical Design. 3rd edn. (Boca Raton: CRC Press, 2013).
[11] Rolland, J. P. et al. Freeform optics for imaging. Optica 8, 161–176 (2021). doi: 10.1364/OPTICA.413762
[12] Cheng, D. W. et al. Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism. Appl. Opt. 48, 2655–2668 (2009). doi: 10.1364/AO.48.002655
[13] Wu, W. C., Jin, G. F. & Zhu, J. Optical design of the freeform reflective imaging system with wide rectangular FOV and low F-number. Results Phys. 15, 102688 (2019). doi: 10.1016/j.rinp.2019.102688
[14] Reimers, J. et al. Freeform spectrometer enabling increased compactness. Light. : Sci. Appl. 6, e17026 (2017). doi: 10.1038/lsa.2017.26
[15] Tang, R. R., Jin, G. F. & Zhu, J. Freeform off-axis optical system with multiple sets of performance integrations. Opt. Lett. 44, 3362–3365 (2019). doi: 10.1364/OL.44.003362
[16] Zhu, J. et al. Design of an oblique camera based on a field-dependent parameter. Appl. Opt. 58, 5650–5655 (2019). doi: 10.1364/AO.58.005650
[17] Forbes, G. W. Manufacturability estimates for optical aspheres. Opt. Express 19, 9923–9942 (2011). doi: 10.1364/OE.19.009923
[18] Owen, J. D. et al. On the ultra-precision diamond machining of chalcogenide glass. CIRP Ann. 64, 113–116 (2015). doi: 10.1016/j.cirp.2015.04.065
[19] Supranowitz, C. et al. Freeform metrology using subaperture stitching interferometry. Proceedings of SPIE 10151, Optics and Measurement International Conference 2016. Liberec: SPIE, 2016.
[20] Fuerschbach, K., Rolland, J. P. & Thompson, K. P. Theory of aberration fields for general optical systems with freeform surfaces. Opt. Exp. 22, 26585–26606 (2014). doi: 10.1364/OE.22.026585
[21] Bauer, A., Schiesser, E. M. & Rolland, J. P. Starting geometry creation and design method for freeform optics. Nat. Commun. 9, 1756 (2018). doi: 10.1038/s41467-018-04186-9
[22] Hicks, R. A. Direct methods for freeform surface design. Proceedings of SPIE 6668, Novel Optical Systems Design and Optimization X. San Diego: SPIE, 2007.
[23] Duerr, F. et al. Analytic free-form lens design in 3D: coupling three ray sets using two lens surfaces. Opt. Express 20, 10839–10846 (2012). doi: 10.1364/OE.20.010839
[24] Gimenez-Benitez, P. et al. Simultaneous multiple surface optical design method in three dimensions. Opt. Eng. 43, 1489–1502 (2004).
[25] Zhu, J., Yang, T. & Jin, G. F. Design method of surface contour for a freeform lens with wide linear field-of-view. Opt. Express 21, 26080–26092 (2013). doi: 10.1364/OE.21.026080
[26] Yang, T. et al. Direct design of freeform surfaces and freeform imaging systems with a point-by-point three-dimensional construction-iteration method. Opt. Express 23, 10233–10246 (2015). doi: 10.1364/OE.23.010233
[27] Yang, T., Jin, G. F. & Zhu, J. Automated design of freeform imaging systems. Light. : Sci. Appl. 6, e17081 (2017). doi: 10.1038/lsa.2017.81
[28] Xu, C. et al. Automatic optical path configuration variation in off-axis mirror system design. Opt. Express 27, 15251–15261 (2019). doi: 10.1364/OE.27.015251
[29] Nie, Y. F., Duerr, F. & Ottevaere, H. Automated design of unobscured four-mirror freeform imaging systems. Optical Design and Fabrication 2019. Washington: OSA, 2019.
[30] Papa, J. C., Howard, J. M. & Rolland, J. P. Automatic solution space exploration for freeform optical design. Optical Design and Fabrication 2019. Washington: OSA, 2019.
[31] Zhu, J. et al. Generating optical freeform surfaces considering both coordinates and normals of discrete data points. J. Opt. Soc. Am. A 31, 2401–2408 (2014). doi: 10.1364/JOSAA.31.002401