[1] Huang, Y. Z. et al. Nanowire-supported plasmonic waveguide for remote excitation of surface-enhanced Raman scattering. Light.: Sci. Appl. 3, e199 (2014). doi: 10.1038/lsa.2014.80
[2] Yao, J. C. et al. AgNPs decorated Mg-doped ZnO heterostructure with dramatic SERS activity for trace detection of food contaminants. J. Mater. Chem. C. 7, 8199–8208 (2019). doi: 10.1039/C8TC06588H
[3] Shan, X. Y. et al. Mesoporous TiO2 nanofiber as highly efficient sulfur host for advanced lithium-sulfur batteries. Chin. J. Mech. Eng. 32, e60 (2019). doi: 10.1186/s10033-019-0374-2
[4] Yao, J. C. et al. Improved charge transfer and hot spots by doping and modulating the semiconductor structure: a high sensitivity and renewability surface-enhanced Raman spectroscopy substrate. Langmuir 35, 8921–8926 (2019). doi: 10.1021/acs.langmuir.9b00754
[5] Quan, Y. N. et al. ZnO nanoparticles on MoS2 microflowers for ultrasensitive SERS detection of bisphenol A. Microchim. Acta 186, 593 (2019). doi: 10.1007/s00604-019-3702-4
[6] Hugall, J. T. & Baumberg, J. J. Demonstrating photoluminescence from Au is electronic inelastic light scattering of a plasmonic metal: the origin of SERS backgrounds. Nano Lett. 15, 2600–2604 (2015). doi: 10.1021/acs.nanolett.5b00146
[7] Weber, M. L. et al. Super-resolution imaging reveals a difference between SERS and luminescence centroids. ACS Nano 6, 1839–1848 (2012). doi: 10.1021/nn205080q
[8] Lin, K. Q. et al. Plasmonic photoluminescence for recovering native chemical information from surface-enhanced Raman scattering. Nat. Commun. 8, 14891 (2017). doi: 10.1038/ncomms14891
[9] Williams, F. E. & Eyring, H. The mechanism of the luminescence of solids. J. Chem. Phys. 15, 289–304 (1947). doi: 10.1063/1.1746499
[10] Gao, M. et al. Strong red emission and catalytic properties of ZnO by adding Eu2O3 shell. J. Alloy. Compd. 724, 537–542 (2017). doi: 10.1016/j.jallcom.2017.07.060
[11] Zheng, J. T. et al. Electrical and SERS detection of disulfide-mediated dimerization in single-molecule benzene-1, 4-dithiol junctions. Chem. Sci. 9, 5033–5038 (2018). doi: 10.1039/C8SC00727F
[12] Kiguchi, M. et al. Surface enhanced Raman scattering on molecule junction. Appl. Mater. Today 14, 76–83 (2019). doi: 10.1016/j.apmt.2018.10.008
[13] Xue, X. X. et al. Surface-enhanced Raman scattering of molecules adsorbed on Co-doped ZnO nanoparticles. J. Raman Spectrosc. 43, 61–64 (2012). doi: 10.1002/jrs.2988
[14] Yang, S. et al. Controllable morphology and tunable colors of Mg and Eu ion co-doped ZnO by thermal annealing. CrystEngComm 16, 6896–6900 (2014). doi: 10.1039/C4CE00471J
[15] Wang, X. T. et al. Remarkable SERS activity observed from amorphous ZnO nanocages. Angew. Chem. Int. Ed. 56, 9851–9855 (2017). doi: 10.1002/anie.201705187
[16] Gao, M. et al. Zinc oxide nanotubes decorated with silver nanoparticles as an ultrasensitive substrate for surface-enhanced Raman scattering. Microchim. Acta 179, 315–321 (2012). doi: 10.1007/s00604-012-0898-y
[17] Wang, S. G. et al. Thermally removable in-situ formed ZnO template for synthesis of hierarchically porous N-doped carbon nanofibers for enhanced electrocatalysis. Nano Res. 9, 2270–2283 (2016). doi: 10.1007/s12274-016-1114-x
[18] Alam, U. et al. Comparative photocatalytic activity of sol–gel derived rare earth metal (La, Nd, Sm and Dy)-doped ZnO photocatalysts for degradation of dyes. RSC Adv. 8, 17582–17594 (2018). doi: 10.1039/C8RA01638K
[19] Cheng, X. B. et al. Waterproof coatings for high-power laser cavities. Light. Sci. Appl. 8, 12 (2019). doi: 10.1038/s41377-018-0118-6
[20] Gao, M. et al. Novel composite nanomaterials with superior thermal and pressure stability for potential LED applications. J. Alloy. Compd. 734, 282–289 (2018). doi: 10.1016/j.jallcom.2017.11.042
[21] Wang, X. H. et al. The photoluminescence properties of ZnO whiskers. J. Cryst. Growth 263, 316–319 (2004). doi: 10.1016/j.jcrysgro.2003.11.063
[22] Vanheusden, K. et al. Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 79, 7983–7990 (1996). doi: 10.1063/1.362349
[23] Balestrieri, M. et al. Efficient energy transfer from ZnO to Nd3+ ions in Nd-doped ZnO films deposited by magnetron reactive sputtering. J. Mater. Chem. C. 2, 9182–9188 (2014). doi: 10.1039/C4TC00980K
[24] Yilmaz, M. et al. Micro-/nanostructured highly crystalline organic semiconductor films for surface-enhanced Raman spectroscopy applications. Adv. Funct. Mater. 25, 5669–5676 (2015). doi: 10.1002/adfm.201502151
[25] Meng, J. L. et al. Luminescence mechanistic study of BaLaGa3O7:Nd using density functional theory calculations. Inorg. Chem. 55, 2855–2863 (2016). doi: 10.1021/acs.inorgchem.5b02714
[26] Qiao, Y. S. & Schelter, E. J. Lanthanide photocatalysis. Acc. Chem. Res. 51, 2926–2936 (2018). doi: 10.1021/acs.accounts.8b00336