[1] Polman, A. & Atwater, H. A. Photonic design principles for ultrahigh-efficiency photovoltaics. Nat. Mater. 11, 174–177 (2012). doi: 10.1038/nmat3263
[2] Limpert, S. et al. Bipolar photothermoelectric effect across energy filters in single nanowires. Nano Lett. 17, 4055–4060 (2017). doi: 10.1021/acs.nanolett.7b00536
[3] Gabor, N. M. et al. Hot carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011). doi: 10.1126/science.1211384
[4] DeBorde, T. et al. Photothermoelectric effect in suspended semiconducting carbon nanotubes. ACS Nano 8, 216–221 (2014). doi: 10.1021/nn403137a
[5] Barkelid, M. & Zwiller, V. Photocurrent generation in semiconducting and metallic carbon nanotubes. Nat. Photonics 8, 48–51 (2014).
[6] He, X. W. et al. Photothermoelectric p-n junction photodetector with intrinsic broadband polarimetry based on macroscopic carbon nanotube films. ACS Nano 7, 7271–7277 (2013). doi: 10.1021/nn402679u
[7] Fedorov, G. et al. Photothermoelectric response in asymmetric carbon nanotube devices exposed to sub-terahertz radiation. Appl. Phys. Lett. 103, 181121 (2013). doi: 10.1063/1.4828555
[8] St-Antoine, B. C., Ménard, D. & Martel, R. Photothermoelectric effects in single-walled carbon nanotube films: reinterpreting scanning photocurrent experiments. Nano Res. 5, 73–81 (2012). doi: 10.1007/s12274-011-0186-x
[9] St-Antoine, B. C., Ménard, D. & Martel, R. Position sensitive photothermoelectric effect in suspended single-walled carbon nanotube films. Nano Lett. 9, 3503–3508 (2009). doi: 10.1021/nl901696j
[10] Léonard, F. et al. Simultaneous thermoelectric and optoelectronic characterization of individual nanowires. Nano Lett. 15, 8129–8135 (2015). doi: 10.1021/acs.nanolett.5b03572
[11] Ma, Q. et al. Giant intrinsic photoresponse in pristine graphene. Nat. Nanotechnol. 14, 145–150 (2019). doi: 10.1038/s41565-018-0323-8
[12] Cai, X. H. et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. Nat. Nanotechnol. 9, 814–819 (2014). doi: 10.1038/nnano.2014.182
[13] Xu, X. D. et al. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562–566 (2010). doi: 10.1021/nl903451y
[14] Buscema, M. et al. Large and tunable photothermoelectric effect in single-layer MoS2. Nano Lett. 13, 358–363 (2013). doi: 10.1021/nl303321g
[15] Groenendijk, D. J. et al. Photovoltaic and photothermoelectric effect in a double-gated WSe2 device. Nano Lett. 14, 5846–5852 (2014). doi: 10.1021/nl502741k
[16] Low, T. et al. Origin of photoresponse in black phosphorus phototransistors. Phys. Rev. B 90, 081408 (2014). doi: 10.1103/PhysRevB.90.081408
[17] Harper, J. G., Matthews, H. E. & Bube, R. H. Photothermoelectric effects in semiconductors: n- and p-type silicon. J. Appl. Phys. 41, 765–770 (1970). doi: 10.1063/1.1658745
[18] Ju, Y. S. & Goodson, K. E. Phonon scattering in silicon films with thickness of order 100 nm. Appl. Phys. Lett. 74, 3005–3007 (1999). doi: 10.1063/1.123994
[19] Baffou, G. & Quidant, R. Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photonics Rev. 7, 171–187 (2013). doi: 10.1002/lpor.201200003
[20] Xu, Y. & Schoonen, M. A. A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineralogist 85, 543–556 (2000). doi: 10.2138/am-2000-0416
[21] Song, J. C. W. et al. Hot carrier transport and photocurrent response in graphene. Nano Lett. 11, 4688–4692 (2011). doi: 10.1021/nl202318u
[22] Zhang, Y. W. et al. Photothermoelectric and photovoltaic effects both present in MoS2. Sci. Rep. 5, 7938 (2015). doi: 10.1038/srep07938
[23] Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9, 780–793 (2014). doi: 10.1038/nnano.2014.215
[24] Neamen, D. A. Semiconductor Physics and Devices: Basic Principles 4th edn, (McGraw-Hill, New York, 2012).
[25] Lai, Y. S. et al. Photothermoelectric effects in nanoporous silicon. Adv. Mater. 28, 2644–2648 (2016). doi: 10.1002/adma.201504990
[26] Mauser, K. W. et al. Resonant thermoelectric nanophotonics. Nat. Nanotechnol. 12, 770–775 (2017). doi: 10.1038/nnano.2017.87
[27] Gabriel, M. M. et al. Direct imaging of free carrier and trap carrier motion in silicon nanowires by spatially-separated femtosecond pump-probe microscopy. Nano Lett. 13, 1336–1340 (2013). doi: 10.1021/nl400265b
[28] Kumar, S. et al. Probing ultrafast carrier dynamics, nonlinear absorption and refraction in core-shell silicon nanowires. Pramana 79, 471–481 (2012). doi: 10.1007/s12043-012-0337-y
[29] Tedeschi, D. et al. Long-lived hot carriers in Ⅲ-Ⅴ nanowires. Nano Lett. 16, 3085–3093 (2016). doi: 10.1021/acs.nanolett.6b00251
[30] Ghosh, S. et al. Position dependent photodetector from large area reduced graphene oxide thin films. Appl. Phys. Lett. 96, 163109 (2010). doi: 10.1063/1.3415499
[31] Kallatt, S. et al. Photoresponse of atomically thin MoS2 layers and their planar heterojunctions. Nanoscale 8, 15213–15222 (2016). doi: 10.1039/C6NR02828D
[32] Lopez-Sanchez, O. et al. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497–501 (2013). doi: 10.1038/nnano.2013.100
[33] Boukai, A. I. et al. Silicon nanowires as efficient thermoelectric materials. Nature 451, 168–171 (2008). doi: 10.1038/nature06458
[34] Hochbaum, A. I. et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167 (2008). doi: 10.1038/nature06381
[35] Derrien, T. J. et al. Application of a two-temperature model for the investigation of the periodic structure formation on Si surface in femtosecond laser interactions. J. Optoelectron. Adv. Mater. 12, 610–615 (2010).
[36] Bulgakova, N. M. et al. A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: the problem of coulomb explosion. Appl. Phys. A 81, 345–356 (2005). doi: 10.1007/s00339-005-3242-0
[37] Van Driel, H. M. Kinetics of high-density plasmas generated in Si by 1.06-and 0.53-μm picosecond laser pulses. Phys. Rev. B 35, 8166–8176 (1987). doi: 10.1103/PhysRevB.35.8166
[38] Liu, W. K. et al. A plasmon modulated photothermoelectric photodetector in silicon nanostripes. Nanoscale 11, 4918–4924 (2019). doi: 10.1039/C8NR10222H
[39] Kern, W. & Puotinen, D. A. Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology. RCA Rev. 31, 187–206 (1970).
[40] Yan, X. J. et al. Investigation on the phase-transition-induced hysteresis in the thermal transport along the c-axis of MoTe2. npj Quantum Mater. 2, 31 (2017). doi: 10.1038/s41535-017-0031-x