[1] Stetson, K. A. & Powell, R. L. Interferometric hologram evaluation and real-time vibration analysis of diffuse objects. Journal of the Optical Society of America 55, 1694-1695 (1965). doi: 10.1364/JOSA.55.001694
[2] Rastogi, P. K. Holographic Interferometry: Principles and Methods. (Berlin: Springer, 2013).
[3] Goodman, J. W. & Lawrence, R. W. Digital image formation from electronically detected holograms. Applied Physics Letters 11, 77-79 (1967). doi: 10.1063/1.1755043
[4] Schnars, U. & Jüptner, W. Direct recording of holograms by a CCD target and numerical reconstruction. Applied Optics 33, 179-181 (1994). doi: 10.1364/AO.33.000179
[5] Singh, V. R. & Asundi, A. In-line digital holography for dynamic metrology of MEMS. Chinese Optics Letters 7, 1117-1122 (2009). doi: 10.3788/COL20090712.1117
[6] Lai, Y. W. et al. Integrity of micro-hotplates during high-temperature operation monitored by digital holographic microscopy. Journal of Microelectromechanical Systems 19, 1175-1179 (2010). doi: 10.1109/JMEMS.2010.2067442
[7] Osten, W. Optical microsystems metrology. Optics and Lasers in Engineering 36, 75-76 (2001). doi: 10.1016/S0143-8166(01)00051-3
[8] Pedrini, G. et al. Calibration of optical systems for the measurement of microcomponents. Optics and Lasers in Engineering 47, 203-210 (2009). doi: 10.1016/j.optlaseng.2008.05.002
[9] Matrecano, M. et al. Improving holographic reconstruction by automatic Butterworth filtering for microelectromechanical systems characterization. Applied Optics 54, 3428-3432 (2015). doi: 10.1364/AO.54.003428
[10] Pagliarulo, V. et al. Numerical tools for the characterization of microelectromechanical systems by digital holographic microscopy. Journal of Micro/Nanolithography 14, 041314 (2015). doi: 10.1117/1.JMM.14.4.041314
[11] Grilli, S. et al. Whole optical wavefields reconstruction by digital holography. Optics Express 9, 294-302 (2001). doi: 10.1364/OE.9.000294
[12] Ferraro, P. et al. Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging. Applied Optics 42, 1938-1946 (2003). doi: 10.1364/AO.42.001938
[13] Cuche, E., Bevilacqua, F. & Depeursinge, C. Digital holography for quantitative phase-contrast imaging. Optics Letters 24, 291-293 (1999). doi: 10.1364/OL.24.000291
[14] Kim, M. K. Principles and techniques of digital holographic microscopy. SPIE Reviews 1, 018005 (2010).
[15] Colomb, T. et al. Extended depth-of-focus by digital holographic microscopy. Optics Letters 35, 1840-1842 (2010). doi: 10.1364/OL.35.001840
[16] Fratz, M. et al. Digital holography in production: an overview. Light:Advanced Manufacturing 2, 134-146 (2021). doi: 10.37188/lam.2021.015
[17] Yang, L. et al. Multi-material multi-photon 3D laser micro-and nanoprinting. Light:Advanced Manufacturing 2, 1-17 (2021).
[18] Lee, A. et al. Optimization of experimental parameters to determine the jetting regimes in electrohydrodynamic printing. Langmuir 29, 13630-13639 (2013). doi: 10.1021/la403111m
[19] Kim, M. K. Applications of digital holography in biomedical microscopy. Journal of the Optical Society of Korea 14, 77-89 (2010). doi: 10.3807/JOSK.2010.14.2.077
[20] Memmolo, P. et al. Breakthroughs in photonics 2013: holographic imaging. IEEE Photonics Journal 6, 0701106 (2014).
[21] Miccio, L. et al. Perspectives on liquid biopsy for label‐free detection of “circulating tumor cells” through intelligent lab‐on‐chips. View 1, 20200034 (2020). doi: 10.1002/VIW.20200034
[22] Shaked, N. T. Quantitative phase microscopy of biological samples using a portable interferometer. Optics Letters 37, 2016-2018 (2012). doi: 10.1364/OL.37.002016
[23] Bishitz, Y. et al. Optical‐mechanical signatures of cancer cells based on fluctuation profiles measured by interferometry. Journal of Biophotonics 7, 624-630 (2014). doi: 10.1002/jbio.201300019
[24] Park, Y. K., Depeursinge, C. & Popescu, G. Quantitative phase imaging in biomedicine. Nature Photonics 12, 578-589 (2018). doi: 10.1038/s41566-018-0253-x
[25] Blum, O. & Shaked, N. T. Prediction of photothermal phase signatures from arbitrary plasmonic nanoparticles and experimental verification. Light:Science & Applications 4, e322 (2015).
[26] Kuschmierz, R. et al. Ultra-thin 3D lensless fiber endoscopy using diffractive optical elements and deep neural networks. Light:Advanced Manufacturing 2, 1-10 (2021).
[27] Mysels, K. J. Soap films and some problems in surface and colloid chemistry. The Journal of Physical Chemistry 68, 3441-3448 (1964). doi: 10.1021/j100794a001
[28] Hartl, M. et al. Thin film colorimetric interferometry. Tribology Transactions 44, 270-276 (2001). doi: 10.1080/10402000108982458
[29] Israelachvili, J. N. Thin film studies using multiple-beam interferometry. Journal of Colloid and Interface Science 44, 259-272 (1973). doi: 10.1016/0021-9797(73)90218-X
[30] Kim, S. W. & Kim, G. H. Thickness-profile measurement of transparent thin-film layers by white-light scanning interferometry. Applied Optics 38, 5968-5973 (1999). doi: 10.1364/AO.38.005968
[31] Chen, H. et al. Structural coloration by internal reflection and interference in hydrogel microbubbles and their precursors. Advanced Optical Materials 9, 2100259 (2021). doi: 10.1002/adom.202100259
[32] Afanasyev, Y. D., Andrews, G. T. & Deacon, C. G. Measuring soap bubble thickness with color matching. American Journal of Physics 79, 1079-1082 (2011). doi: 10.1119/1.3596431
[33] Kitagawa, K. Thin-film thickness profile measurement by three-wavelength interference color analysis. Applied Optics 52, 1998-2007 (2013). doi: 10.1364/AO.52.001998
[34] Vannoni, M. et al. Measuring the thickness of soap bubbles with phase-shift interferometry. Optics Express 21, 19657-19667 (2013). doi: 10.1364/OE.21.019657
[35] Gao, F., Muhamedsalih, H. & Jiang, X. Q. Surface and thickness measurement of a transparent film using wavelength scanning interferometry. Optics Express 20, 21450-21456 (2012). doi: 10.1364/OE.20.021450
[36] Mandracchia, B. et al. Quantitative imaging of the complexity in liquid bubbles’ evolution reveals the dynamics of film retraction. Light:Science & Applications 8, 20 (2019).
[37] Wong, W. S. Y. et al. Super liquid repellent surfaces for anti-foaming and froth management. Nature Communications 12, 5358 (2021). doi: 10.1038/s41467-021-25556-w
[38] Osten, W. Optical Inspection of Microsystems. (Boca Raton: CRC Press, 2018).
[39] Ferraro, P. et al. Extended focused image in microscopy by digital holography. Optics Express 13, 6738-6749 (2005). doi: 10.1364/OPEX.13.006738
[40] Zhang, J. et al. A review of common-path off-axis digital holography: towards high stable optical instrument manufacturing. Light:Advanced Manufacturing 2, 1-17 (2021).
[41] Wang, Z. et al. Interferometric measurement of film thickness during bubble blowing. Proceedings of SPIE 10333, Optical Methods for Inspection, Characterization, and Imaging of Biomaterials III. Munich, Germany: SPIE, 2017.
[42] Joye, J. L., Hirasaki. G. J. & Miller, C. A. Dimple formation and behavior during axisymmetrical foam film drainage. Langmuir 8, 3083-3092 (1992). doi: 10.1021/la00048a038
[43] Bioucas-Dias, J. M. & Valadao, G. Phase unwrapping via graph cuts. IEEE Transactions on Image Processing 16, 698-709 (2007). doi: 10.1109/TIP.2006.888351
[44] Sett, S., Sinha-Ray, S. & Yarin, A. L. Gravitational drainage of foam films. Langmuir 29, 4934-4947 (2013). doi: 10.1021/la4003127
[45] Schnars, U. et al. Digital holography. in Digital Holography and Wavefront Sensing: Principles, Techniques and Applications (eds Schnars, U. et al.) (Berlin, Heidelberg: Springer, 2014), 39-68.
[46] Huang, T. S. Digital holography. Proceedings of the IEEE 59, 1335-1346 (1971). doi: 10.1109/PROC.1971.8408
[47] González-Cano, A. & Bernabéu, E. Automatic interference method for measuring transparent film thickness. Applied Optics 32, 2292-2294 (1993). doi: 10.1364/AO.32.002292
[48] Ferraro, V. et al. Full-field and quantitative analysis of a thin liquid film at the nanoscale by combining digital holography and white light interferometry. The Journal of Physical Chemistry C 125, 1075-1086 (2021). doi: 10.1021/acs.jpcc.0c09555
[49] Hoyt, L. F. & Verwiebe, A. Determination of the concentration of liquid soaps by the immersion refractometer. Industrial & Engineering Chemistry 18, 581-582 (1926).
[50] Glassner, A. Soap bubbles : part 2. IEEE Computer Graphics and Applications 2, 99-109 (2000).
[51] Osten, W. et al. Recent advances in digital holography. Applied Optics 53, G44-G63 (2014). doi: 10.1364/AO.53.000G44
[52] Ferraro, V. et al. Axisymmetric bare freestanding films of highly viscous liquids: preparation and real-time investigation of capillary leveling. Journal of Colloid and Interface Science 596, 493-499 (2021). doi: 10.1016/j.jcis.2021.03.102
[53] Kim, Y. et al. Surface measurement of indium tin oxide thin film by wavelength-tuning Fizeau interferometry. Applied Optics 54, 7135-7141 (2015). doi: 10.1364/AO.54.007135
[54] Zhang, Y. R. et al. Nanoscopic terraces, mesas, and ridges in freely standing thin films sculpted by supramolecular oscillatory surface forces. ACS Nano 10, 4678-4683 (2016). doi: 10.1021/acsnano.6b01012
[55] Piegari, A. & Masetti, E. Thin film thickness measurement: a comparison of various techniques. Thin Solid Films 124, 249-257 (1985). doi: 10.1016/0040-6090(85)90273-1
[56] Onses, M. S. et al. Mechanisms, capabilities, and applications of high‐resolution electrohydrodynamic jet printing. Small 11, 4237-4266 (2015). doi: 10.1002/smll.201500593
[57] Ferraro, P. et al. Dispensing nano–pico droplets and liquid patterning by pyroelectrodynamic shooting. Nature Nanotechnology 5, 429-435 (2010). doi: 10.1038/nnano.2010.82
[58] Coppola, S. et al. Self-assembling of multi-jets by pyro-electrohydrodynamic effect for high throughput liquid nanodrops transfer. Lab on a Chip 11, 3294-3298 (2011). doi: 10.1039/c1lc20472f
[59] Gennari, O. et al. Investigation on cone jetting regimes of liquid droplets subjected to pyroelectric fields induced by laser blasts. Applied Physics Letters 106, 054103 (2015). doi: 10.1063/1.4907005
[60] Coppola, S. et al. Nanocomposite polymer carbon-black coating for triggering pyro-electrohydrodynamic inkjet printing. Applied Physics Letters 106, 261603 (2015). doi: 10.1063/1.4923469
[61] Ruggiero, F. et al. Electro-drawn polymer microneedle arrays with controlled shape and dimension. Sensors and Actuators B:Chemical 255, 1553-1560 (2018). doi: 10.1016/j.snb.2017.08.165
[62] Coppola, S. et al. On the spraying modality of liquids by pyroelectrohydrodynamics. ACS Omega 3, 17707-17716 (2018). doi: 10.1021/acsomega.8b01398
[63] Madugani, R. et al. Terahertz tuning of whispering gallery modes in a PDMS stand-alone, stretchable microsphere. Optics Letters 37, 4762-4764 (2012). doi: 10.1364/OL.37.004762
[64] Russo, P. et al. Single fibres of pyro-electrospinned PVDF-HFP/MWCNT unveal high electrical conductivity. Polymer 159, 157-161 (2018). doi: 10.1016/j.polymer.2018.11.024
[65] Hayati, I., Bailey, A. & Tadros, T. F. Investigations into the mechanism of electrohydrodynamic spraying of liquids: II. Mechanism of stable jet formation and electrical forces acting on a liquid cone. Journal of Colloid and Interface Science 117, 222-230 (1987). doi: 10.1016/0021-9797(87)90186-X
[66] Jaworek, A. & Krupa, A. Jet and drops formation in electrohydrodynamic spraying of liquids. A systematic approach. Experiments in Fluids 27, 43-52 (1999). doi: 10.1007/s003480050327
[67] Jaworek, A. & Krupa, A. Generation and characteristics of the precession mode of EHD spraying. Journal of Aerosol Science 27, 75-82 (1996). doi: 10.1016/0021-8502(95)00528-5
[68] Gim, Y. et al. Development of limited-view and three-dimensional reconstruction method for analysis of electrohydrodynamic jetting behavior. Optics Express 25, 9244-9251 (2017). doi: 10.1364/OE.25.009244
[69] Atkinson, C. & Soria, J. An efficient simultaneous reconstruction technique for tomographic particle image velocimetry. Experiments in Fluids 47, 553-568 (2009). doi: 10.1007/s00348-009-0728-0
[70] Lu, W. K. & Yin, F. F. Adaptive algebraic reconstruction technique: adaptive algebraic reconstruction technique. Medical Physics 31, 3222-3230 (2004). doi: 10.1118/1.1812606
[71] Verhoeven, D. Limited-data computed tomography algorithms for the physical sciences. Applied Optics 32, 3736-3754 (1993). doi: 10.1364/AO.32.003736
[72] Edwards, C. et al. Measuring the nonuniform evaporation dynamics of sprayed sessile microdroplets with quantitative phase imaging. Langmuir 31, 11020-11032 (2015). doi: 10.1021/acs.langmuir.5b02148
[73] Polonschii, C. et al. High-resolution impedance mapping using electrically activated quantitative phase imaging. Light:Science & Applications 10, 20 (2021).
[74] Yokota, M. & Aoyama, F. Drying process of an ink-dot analyzed using both digital holographic microscopy and tackiness measurement. Microelectronic Engineering 241, 111543 (2021). doi: 10.1016/j.mee.2021.111543
[75] Yao, L. C. et al. Three-dimensional dynamic measurement of irregular stringy objects via digital holography. Optics Letters 43, 1283-1286 (2018). doi: 10.1364/OL.43.001283
[76] Lebrun, D. et al. Particle field digital holographic reconstruction in arbitrary tilted planes. Optics Express 11, 224-229 (2003). doi: 10.1364/OE.11.000224
[77] Kempkes, M. et al. Three dimensional digital holographic profiling of micro-fibers. Optics Express 17, 2938-2943 (2009). doi: 10.1364/OE.17.002938
[78] Wu, Y. C. et al. Wavelet-based depth-of-field extension, accurate autofocusing, and particle pairing for digital inline particle holography. Applied Optics 53, 556-564 (2014). doi: 10.1364/AO.53.000556
[79] Busse, F. et al. Digital interference microscopy and density reconstruction of picosecond infrared laser desorption at the water-air interface. Journal of Applied Physics 124, 094701 (2018). doi: 10.1063/1.5030741
[80] Guildenbecher, D R. et al. Digital holography simulations and experiments to quantify the accuracy of 3D particle location and 2D sizing using a proposed hybrid method. Applied Optics 52, 3790-3801 (2013). doi: 10.1364/AO.52.003790
[81] Coppola, S. et al. Tethered pyro-electrohydrodynamic spinning for patterning well-ordered structures at micro-and nanoscale. Chemistry of Materials 26, 3357-3360 (2014). doi: 10.1021/cm501265j
[82] Coppola, S. et al. Layered 3D printing by tethered pyro-electrospinning. Advances in Polymer Technology 2020, 1252960 (2020).
[83] Grilli, S. et al. 3D lithography by rapid curing of the liquid instabilities at nanoscale. Proceedings of the National Academy of Sciences of the United States of America 108, 15106-15111 (2011). doi: 10.1073/pnas.1110676108
[84] Mecozzi, L. et al. Easy printing of high viscous microdots by spontaneous breakup of thin fibers. ACS applied materials & interfaces 10, 2122-2129 (2018).
[85] Vespini, V. et al. Forward electrohydrodynamic inkjet printing of optical microlenses on microfluidic devices. Lab on a Chip 16, 326-333 (2016). doi: 10.1039/C5LC01386K
[86] Bianco, V. et al. Endowing a plain fluidic chip with micro-optics: a holographic microscope slide. Light:Science & Applications 6, e17055 (2017).
[87] Camou, S., Fujita, H. & Fujii, T. PDMS 2D optical lens integrated with microfluidic channels: principle and characterization. Lab on a Chip 3, 40-45 (2003). doi: 10.1039/b211280a
[88] Liu, S. H. et al. Assembly and alignment of metallic nanorods on surfaces with patterned wettability. Small 2, 1448-1453 (2006). doi: 10.1002/smll.200600275
[89] Mugele, F. & Herminghaus, S. Electrostatic stabilization of fluid microstructures. Applied Physics Letters 81, 2303-2305 (2002). doi: 10.1063/1.1508808
[90] Psaltis, D., Quake, S. R. & Yang, C. Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381-386 (2006). doi: 10.1038/nature05060
[91] Jones, T. B. et al. Dielectrophoretic liquid actuation and nanodroplet formation. Journal of Applied Physics 89, 1441-1448 (2001). doi: 10.1063/1.1332799
[92] Mugele, F. & Baret, J. C. Electrowetting: from basics to applications. Journal of Physics:Condensed Matter 17, R705-R774 (2005). doi: 10.1088/0953-8984/17/28/R01
[93] Wang, D. B. et al. Local wettability modification by thermochemical nanolithography with write-read-overwrite capability. Applied Physics Letters 91, 243104 (2007). doi: 10.1063/1.2816401
[94] Hayes, R A. & Feenstra, B. J. Video-speed electronic paper based on electrowetting. Nature 425, 383-385 (2003). doi: 10.1038/nature01988
[95] Moran, P. M. et al. Fluidic lenses with variable focal length. Applied Physics Letters 88, 041120 (2006). doi: 10.1063/1.2168245
[96] Bourim, E. M. et al. Investigation of pyroelectric electron emission from monodomain lithium niobate single crystals. Physica B:Condensed Matter 383, 171-182 (2006). doi: 10.1016/j.physb.2006.02.034
[97] Ferraro, P. et al. Wettability patterning of lithium niobate substrate by modulating pyroelectric effect to form microarray of sessile droplets. Applied Physics Letters 92, 213107 (2008). doi: 10.1063/1.2936851
[98] Grilli, S. et al. Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates. Optics Express 16, 8084-8093 (2008). doi: 10.1364/OE.16.008084
[99] Miccio, L. et al. Tunable liquid microlens arrays in electrode-less configuration and their accurate characterization by interference microscopy. Optics Express 17, 2487-2499 (2009). doi: 10.1364/OE.17.002487
[100] Miccio, L. et al. Hemicylindrical and toroidal liquid microlens formed by pyro-electro-wetting. Optics Letters 34, 1075-1077 (2009). doi: 10.1364/OL.34.001075
[101] Grimaldi, I. A. et al. Graded-size microlens array by the pyro-electrohydrodynamic continuous printing method. Applied Optics 52, 7699-7705 (2013). doi: 10.1364/AO.52.007699
[102] Coppola, S. et al. Direct writing of microfluidic footpaths by pyro-EHD printing. ACS Applied Materials & Interfaces 9, 16488-16494 (2017).
[103] Ricotti, L. et al. Quantification of growth and differentiation of C2C12 skeletal muscle cells on PSS–PAH-based polyelectrolyte layer-by-layer nanofilms. Biomedical Materials 6, 031001 (2011). doi: 10.1088/1748-6041/6/3/031001
[104] Aubin, H. et al. Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials 31, 6941-6951 (2010). doi: 10.1016/j.biomaterials.2010.05.056
[105] Ahadian, S. et al. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering. Acta Biomaterialia 52, 81-91 (2017). doi: 10.1016/j.actbio.2016.12.009
[106] Kim, S. et al. Fabrication and characterization of magnetic microrobots for three‐dimensional cell culture and targeted transportation. Advanced Materials 25, 5863-5868 (2013). doi: 10.1002/adma.201301484
[107] Li, X. et al. Holographic display-based control for high-accuracy photolithography of cellular micro-scaffold with heterogeneous architecture. IEEE/ASME Transactions on Mechatronics. http://dx.doi.org/10.1109/TMECH.2021.3081769 (2021).
[108] Toulouse, A. et al. 3D-printed miniature spectrometer for the visible range with a 100× 100 μm2 footprint. Light:Advanced Manufacturing 2, 2 (2021).
[109] Saha, S. K. et al. Scalable submicrometer additive manufacturing. Science 366, 105-109 (2019). doi: 10.1126/science.aax8760
[110] Besaga, V. R. et al. Monitoring of photochemically induced changes in phase-modulating samples with digital holographic microscopy. Applied Optics 58, G41-G47 (2019). doi: 10.1364/AO.58.000G41
[111] Zhao, X. & Rosen, D. W. Real-time interferometric monitoring and measuring of photopolymerization based stereolithographic additive manufacturing process: sensor model and algorithm. Measurement Science and Technology 28, 015001 (2016).
[112] Pagliarulo, V. et al. Direct quantitative imaging of the writing stage in a photosensitive azopolymer by digital holography. Soft Matter 15, 7809-7813 (2019). doi: 10.1039/C9SM01018A
[113] Rekola, H. et al. Digital holographic microscopy for real-time observation of surface-relief grating formation on azobenzene-containing films. Scientific Reports 10, 19642 (2020). doi: 10.1038/s41598-020-76573-6
[114] Jith, A., Kumar, P. T. A. & Kumaran, R. K. Digital holographic method to study stress formation in photopolymer during live recording of holograms. Optical Engineering 60, 035105 (2021).
[115] Chikode, P. P. et al. Deformation studies of cylindrical nanostructured silica aerogels by using phase shifting digital holographic interferometry. Materials Today:Proceedings 46, 2298-2306 (2021). doi: 10.1016/j.matpr.2021.04.176
[116] Yu, X. et al. Measurement of Young’s modulus of polyacrylamide gel by digital holography. Digital Holography and Three-Dimensional Imaging 2011. Tokyo Japan: Optical Society of America, 2011.
[117] Wang, C. et al. Celebrating Soft Matter’s 10th Anniversary: monitoring colloidal growth with holographic microscopy. Soft Matter 11, 1062-1066 (2015). doi: 10.1039/C4SM01979B
[118] Fung, J. et al. Imaging multiple colloidal particles by fitting electromagnetic scattering solutions to digital holograms. Journal of Quantitative Spectroscopy and Radiative Transfer 113, 2482-2489 (2012). doi: 10.1016/j.jqsrt.2012.06.007
[119] Krishnatreya, B. J. et al. Measuring Boltzmann's constant through holographic video microscopy of a single colloidal sphere. American Journal of Physics 82, 23-31 (2014). doi: 10.1119/1.4827275
[120] Cheong, F. C. et al. Holographic characterization of colloidal particles in turbid media. Applied Physics Letters 111, 153702 (2017). doi: 10.1063/1.4999101
[121] Middleton, C. et al. Optimizing the synthesis of monodisperse colloidal spheres using holographic particle characterization. Langmuir 35, 6602-6609 (2019). doi: 10.1021/acs.langmuir.9b00012
[122] Gupta, S. & Vanapalli, S. A. Microfluidic shear rheology and wall-slip of viscoelastic fluids using holography-based flow kinematics. Physics of Fluids 32, 012006 (2020). doi: 10.1063/1.5135712
[123] Koukourakis, N. et al. Wavefront shaping for imaging-based flow velocity measurements through distortions using a Fresnel guide star. Optics Express 24, 22074-22087 (2016). doi: 10.1364/OE.24.022074
[124] Panahi, M. et al. 3D monitoring of the surface slippage effect on micro-particle sedimentation by digital holographic microscopy. Scientific Reports 11, 12916 (2021). doi: 10.1038/s41598-021-92498-0
[125] Wu, Y. C. et al. Quantifying bubble size and 3D velocity in a vortex with digital holographic particle tracking velocimetry (DHPTV). Flow Measurement and Instrumentation 76, 101826 (2020). doi: 10.1016/j.flowmeasinst.2020.101826
[126] Meng, H. et al. Holographic particle image velocimetry: from film to digital recording. Measurement Science and Technology 15, 673-685 (2004). doi: 10.1088/0957-0233/15/4/009
[127] Gao, Z. Y. et al. Distortion correction for particle image velocimetry using multiple-input deep convolutional neural network and Hartmann-Shack sensing. Optics Express 29, 18669-18687 (2021). doi: 10.1364/OE.419591
[128] Altman, L. E. & Grier, D. G. CATCH: characterizing and tracking colloids holographically using deep neural networks. The Journal of Physical Chemistry B 124, 1602-1610 (2020).
[129] Midtvedt, D. Deep learning enhanced digital holography for characterization of nanoparticles and soft matter. Proceedings of SPIE 11804, Emerging Topics in Artificial Intelligence (ETAI) 2021. San Diego, California, United States: SPIE, 2021.
[130] Midtvedt, B. et al. Fast and accurate nanoparticle characterization using deep-learning-enhanced off-axis holography. ACS Nano 15, 2240-2250 (2021). doi: 10.1021/acsnano.0c06902
[131] Lu, S. Y. et al. Dynamic quantitative phase imaging based on Ynet-ConvLSTM neural network. Optics and Lasers in Engineering 150, 106833 (2022). doi: 10.1016/j.optlaseng.2021.106833
[132] Forouhesh Tehrani, K. et al. In situ measurement of the isoplanatic patch for imaging through intact bone. Journal of Biophotonics 14, e202000160 (2021).
[133] Thurman, S. T. & Fienup, J. R. Phase-error correction in digital holography. Journal of the Optical Society of America A 25, 983-994 (2008).
[134] Lowman, A. E. & Greivenkamp, J. E. Interferometer errors due to the presence of fringes. Applied Optics 35, 6826-6828 (1996). doi: 10.1364/AO.35.006826
[135] Berger, R., Sure, T. & Osten, W. Measurement errors of mirrorlike, tilted objects in white light interferometry. Proceedings of SPIE 6616, Optical Measurement Systems for Industrial Inspection V. Munich, Germany: SPIE, 2007.
[136] Pruss, C. et al. Computer-generated holograms in interferometric testing. Optical Engineering 43, 2534-2540 (2004). doi: 10.1117/1.1804544
[137] Sheridan, J. T. et al. Roadmap on holography. Journal of Optics 22, 123002 (2020). doi: 10.1088/2040-8986/abb3a4