[1] Yang, Y. et al. Integrated metasurfaces for re-envisioning a near-future disruptive optical platform. Light: Science & Applications 12, 152 (2023).
[2] Petrov, N. V. et al. Design of broadband terahertz vector and vortex beams: I. Review of materials and components. Light: Advanced Manufacturing 3, 640-652 (2022).
[3] Hu, J. T. et al. Diffractive optical computing in free space. Nature Communications 15, 1525 (2024). doi: 10.1038/s41467-024-45982-w
[4] Wang, H. L. et al. Multichannel highly secure wireless communication system with information camouflage capability. Science Advances 10, eadk7557 (2024). doi: 10.1126/sciadv.adk7557
[5] Fan, Z. X. et al. Homeostatic neuro-metasurfaces for dynamic wireless channel management. Science Advances 8, eabn7905 (2022). doi: 10.1126/sciadv.abn7905
[6] Tan, S. J. et al. Achieving broadband microwave shielding, thermal management, and smart window in energy-efficient buildings. Advanced Functional Materials 35, 2415921 (2025). doi: 10.1002/adfm.202415921
[7] Jiang, Z. J. et al. A 3D carpet cloak with non-euclidean metasurfaces. Advanced Optical Materials 8, 2000827 (2020). doi: 10.1002/adom.202000827
[8] Sounas, D. L., Caloz, C. & Alù, A. Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials. Nature Communications 4, 2407 (2013). doi: 10.1038/ncomms3407
[9] Li, W. X. et al. Multi-functional metasurface: ultra-wideband/multi-band absorption switching by adjusting guided-mode resonance and local surface plasmon resonance effects. Communications in Theoretical Physics 76, 065701 (2024). doi: 10.1088/1572-9494/ad3b8f
[10] Tian, X. M. et al. Ge2Sb2Te5-based reconfigurable metasurface for polarization-insensitive, full-azimuth, and switchable cloaking. Applied Optics 60, 8088-8096 (2021). doi: 10.1364/AO.434912
[11] Huang, L. C. et al. Design and analysis of extended depth of focus metalenses for achromatic computational imaging. Photonics Research 8, 1613-1623 (2020). doi: 10.1364/PRJ.396839
[12] Erçağlar, V., Hajian, H. & Özbay, E. VO2-graphene-integrated hBN-based metasurface for bi-tunable phonon-induced transparency and nearly perfect resonant absorption. Journal of Physics D: Applied Physics 54, 245101 (2021). doi: 10.1088/1361-6463/abecb2
[13] Liang, Q. X. et al. A bezier-shaped electromagnetic camouflaging meta surface. Journal of Materials Science: Materials in Electronics 33, 14784-14792 (2022). doi: 10.1007/s10854-022-08398-0
[14] Chen, X. Y. et al. All-dielectric metasurface-based beam splitter with arbitrary splitting ratio. Nanomaterials 11, 1137 (2021). doi: 10.3390/nano11051137
[15] Wang, J. & Jiang, Y. N. Gradient metasurface for four-direction anomalous reflection in terahertz. Optics Communications 416, 125-129 (2018). doi: 10.1016/j.optcom.2018.01.045
[16] Mou, N. L. et al. Switchable ultra-broadband terahertz wave absorption with VO2-based metasurface. Scientific Reports 12, 2501 (2022). doi: 10.1038/s41598-022-04772-4
[17] Lee, E. J. et al. Microwave-transparent metallic metamaterials for autonomous driving safety. Nature Communications 15, 4516 (2024). doi: 10.1038/s41467-024-49001-w
[18] Zhuang, X. L. et al. Active terahertz beam steering based on mechanical deformation of liquid crystal elastomer metasurface. Light: Science & Applications 12, 14 (2023).
[19] Chen, B. W. et al. Directional terahertz holography with thermally active Janus metasurface. Light: Science & Applications 12, 136 (2023).
[20] Wang, Y. X. et al. Extreme diffraction management in phase-corrected gradient metasurface by fourier harmonic component engineering. Laser & Photonics Reviews 17, 2300152 (2023).
[21] Amin, M. et al. Anti-reflecting metasurface for broadband polarization independent absorption at Ku band frequencies. Scientific Reports 12, 20073 (2022). doi: 10.1038/s41598-022-24691-8
[22] Liu, Y. Q. et al. An ultra-thin high-efficiency plasmonic metalens with symmetric split ring transmitarray metasurfaces. Results in Physics 47, 106366 (2023). doi: 10.1016/j.rinp.2023.106366
[23] Londoño, M. et al. Broadband huygens' metasurface based on hybrid resonances. Physical Review Applied 10, 034026 (2018). doi: 10.1103/PhysRevApplied.10.034026
[24] Wang, Y. et al. Flexible bilayer terahertz metasurface for the manipulation of orbital angular momentum states. Optics Express 29, 33445-33455 (2021). doi: 10.1364/OE.439370
[25] Li, J. Q. et al. Wearable conformal metasurfaces for polarization division multiplexing. Advanced Optical Materials 8, 2000068 (2020). doi: 10.1002/adom.202000068
[26] Xu, H. X. et al. Polarization-insensitive 3D conformal-skin metasurface cloak. Light: Science & Applications 10, 75 (2021).
[27] Huang, X. J. et al. Simultaneous realization of polarization conversion for reflected and transmitted waves with bi-functional metasurface. Scientific Reports 12, 2368 (2022). doi: 10.1038/s41598-022-06366-6
[28] Liu, C. B. et al. High-performance bifunctional polarization switch chiral metamaterials by inverse design method. npj Computational Materials 5, 93 (2019). doi: 10.1038/s41524-019-0230-z
[29] Wang, B. et al. Wavelength de-multiplexing metasurface hologram. Scientific Reports 6, 35657 (2016). doi: 10.1038/srep35657
[30] Qureshi, U. U. R. et al. Polarization and incident angle independent multifunctional tunable terahertz metasurface based on graphene. Scientific Reports 14, 5118 (2024). doi: 10.1038/s41598-024-55676-4
[31] Cong, L. Q. et al. All-optical active THz metasurfaces for ultrafast polarization switching and dynamic beam splitting. Light: Science & Applications 7, 28 (2018).
[32] Wang, Q. et al. Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves. Light: Science & Applications 7, 25 (2018).
[33] Xu, H. X. et al. Interference-assisted kaleidoscopic meta-plexer for arbitrary spin-wavefront manipulation. Light: Science & Applications 8, 3 (2019).
[34] Guo, Q. H. et al. Observation of three-dimensional photonic dirac points and spin-polarized surface arcs. Physical Review Letters 122, 203903 (2019). doi: 10.1103/PhysRevLett.122.203903
[35] Li, M. et al. Topologically reconfigurable magnetic polaritons. Science Advances 8, eadd6660 (2022). doi: 10.1126/sciadv.add6660
[36] Toyama, H. & Yasumoto, K. Electromagnetic scattering from periodic arrays of composite circular cylinder with internal cylindrical scatterers. Progress in Electromagnetics Research-Pier 52, 321-333 (2005). doi: 10.2528/PIER04100101
[37] Huang, J., Wu, T. K. & Lee, S. W. Tri-band frequency selective surface with circular ring elements. IEEE Transactions on Antennas and Propagation 42, 166-175 (1994). doi: 10.1109/8.277210
[38] Tan, J. B. & Lu, Z. G. Contiguous metallic rings: an inductive mesh with high transmissivity, strong electromagnetic shielding, and uniformly distributed stray light. Optics Express 15, 790-796 (2007). doi: 10.1364/OE.15.000790
[39] Halman, J. I. et al. Predicted and measured transmission and diffraction by a metallic mesh coating. Proceedings of SPIE 7302, Window and Dome Technologies and Materials XI. Orlando, FL, USA: SPIE, 2009.
[40] Wang, H. Y. et al. Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding. Optics Letters 42, 1620-1623 (2017). doi: 10.1364/OL.42.001620
[41] Radtke, D. & Zeitner, U. D. Laser-lithography on non-planar surfaces. Optics Express 15, 1167-1174 (2007). doi: 10.1364/OE.15.001167
[42] Lee, Y. et al. Ultra-thin light-weight laser-induced-graphene (LIG) diffractive optics. Light: Science & Applications 12, 146 (2023).
[43] Pan, C. F. et al. 3D-printed multilayer structures for high-numerical aperture achromatic metalenses. Science Advances 9, eadj9262 (2023).
[44] Li, X. B. et al. Advanced optical methods and materials for fabricating 3D tissue scaffolds. Light: Advanced Manufacturing 3, 26 (2022).
[45] Xu, Y. L. et al. 3D-printed facet-attached microlenses for advanced photonic system assembly. Light: Advanced Manufacturing 4, 3 (2023).
[46] Waller, E. H., Karst, J. & Freymann, G. V. Photosensitive material enabling direct fabrication of filigree 3D silver microstructures via laser-induced photoreduction. Light: Advanced Manufacturing 2, 8 (2021).
[47] Shang, Y. P. & Shen, Z. X. Electromagnetic retroreflection augmented by spherical and conical metasurfaces. Journal of Applied Physics 122, 205104 (2017). doi: 10.1063/1.5004252
[48] Kantamaneni, S. et al. Conformal and polarization adjustable cloaking metasurface utilizing graphene with low radar cross section for terahertz applications. Optical and Quantum Electronics 54, 454 (2022). doi: 10.1007/s11082-022-03863-w
[49] Hiep, L. T. H. et al. Flexible magnetic metasurface with defect cavity for wireless power transfer system. Materials 15, 6583 (2022). doi: 10.3390/ma15196583
[50] Kim, I. et al. Holographic metasurface gas sensors for instantaneous visual alarms. Science Advances 7, eabe9943 (2021). doi: 10.1126/sciadv.abe9943
[51] Kamali, S. M. et al. Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces. Nature Communications 7, 11618 (2016). doi: 10.1038/ncomms11618
[52] Liang, L. L. et al. Pneumatic structural deformation to enhance resonance behavior for broadband and adaptive radar stealth. Nano Letters 24, 2652-2660 (2024). doi: 10.1021/acs.nanolett.4c00153
[53] Liang, L. L. et al. MXene-enabled pneumatic multiscale shape morphing for adaptive, programmable and multimodal radar-infrared compatible camouflage. Advanced Materials 36, 2313939 (2024). doi: 10.1002/adma.202313939
[54] Luan, S. Y. et al. High-speed, large-area and high-precision fabrication of aspheric micro-lens array based on 12-bit direct laser writing lithography. Light: Advanced Manufacturing 3, 47 (2022).
[55] Leng, B. R. et al. Meta-device: advanced manufacturing. Light: Advanced Manufacturing 5, 5 (2024). doi: 10.37188/lam.2024.001
[56] Ai, J. et al. Laser direct-writing lithography equipment system for rapid and μm-precision fabrication on curved surfaces with large sag heights. Optics Express 26, 20965-20974 (2018). doi: 10.1364/OE.26.020965
[57] Xie, Y. J. et al. Lithographic fabrication of large diffractive optical elements on a concave lens surface. Optics Express 10, 1043-1047 (2002). doi: 10.1364/OE.10.001043
[58] Xie, Y. J., Lu, Z. W. & Li, F. Y. Fabrication of large diffractive optical elements in thick film on a concave lens surface. Optics Express 11, 992-995 (2003). doi: 10.1364/OE.11.000992
[59] Liu, C. C., Hsiao, H. H. & Chang, Y. C. Nonlinear two-photon pumped vortex lasing based on quasi-bound states in the continuum from perovskite metasurface. Science Advances 9, eadf6649 (2023). doi: 10.1126/sciadv.adf6649
[60] Geng, Z. C., Tong, Z. & Jiang, X. Q. Review of geometric error measurement and compensation techniques of ultra-precision machine tools. Light: Advanced Manufacturing 2, 211-227 (2020).
[61] Bhuian, B. et al. Pattern generation using axicon lens beam shaping in two-photon polymerisation. Applied Surface Science 254, 841-844 (2007). doi: 10.1016/j.apsusc.2007.08.071
[62] Yang, L. et al. Two-photon polymerization of cylinder microstructures by femtosecond bessel beams. Applied Physics Letters 105, 041110 (2014). doi: 10.1063/1.4891841
[63] Knoblich, M. et al. Variable ring-shaped lithography for the fabrication of meso-and microscale binary optical elements. Applied Optics 61, 2049-2059 (2022). doi: 10.1364/AO.451395
[64] Knoblich, M. et al. Annular gray tone lithography for the fabrication of rotationally symmetric continuous relief meso- and microscale optical elements. Photonics 10, 1000 (2023). doi: 10.3390/photonics10091000
[65] Huang, X. H. et al. 3D printed PEEK/CF nanocomposites metamaterial for enhanced resonances toward microwave absorption and compatible camouflage. Materials Today Nano 28, 100530 (2024).
[66] Zhang, S. X. et al. Deep-subwavelength ultrasonic imaging by MHz column-structured metalens: first evidence of quantitative visualization of subsurface defects. Applied Physics Letters 123, 252202 (2023). doi: 10.1063/5.0178454
[67] Spring, K. R. & Davidson, M. W. Depth of field and depth of focus. at https://www.microscopyu.com/microscopy-basics/depth-of-field-and-depth-of-focus.
[68] Nikon. Objective lenses providing incredible high contrast fluorescence observation and photomicrography. at https://www.microscope.healthcare.nikon.com/products/optics/cfi-plan-fluor-series.
[69] Heldelberg Instruments. DWL 66+ TECHNICAL DATA. at https://heidelberg-instruments.com/product/dwl-66-laser-lithography-system/.