[1] Houweling, A. R. & Brecht, M. Behavioural report of single neuron stimulation in somatosensory cortex. Nature 451, 65–68 (2008). doi: 10.1038/nature06447
[2] Li, C. -Y. T., Poo, M. -m. & Dan, Y. Burst spiking of a single cortical neuron modifies global brain state. Science 324, 643–646 (2009). doi: 10.1126/science.1169957
[3] Rizzo, J. F. III Update on retinal prosthetic research: the Boston Retinal Implant Project. J. Neuro-Ophthalmol. 31, 160–168 (2011). doi: 10.1097/WNO.0b013e31821eb79e
[4] Palanker, D. et al. Design of a high-resolution optoelectronic retinal prosthesis. J. Neural Eng. 2, S105 (2005). doi: 10.1088/1741-2560/2/1/012
[5] Grunt, S., Becher, J. G. & Vermeulen, R. J. Long‐term outcome and adverse effects of selective dorsal rhizotomy in children with cerebral palsy: a systematic review. Dev. Med. Child Neurol. 53, 490–498 (2011). doi: 10.1111/j.1469-8749.2011.03912.x
[6] Boon, P. et al. Deep brain stimulation in patients with refractory temporal lobe epilepsy. Epilepsia 48, 1551–1560 (2007). doi: 10.1111/j.1528-1167.2007.01005.x
[7] Mayberg, H. S. et al. Deep brain stimulation for treatment-resistant depression. Neuron 45, 651–660 (2005). doi: 10.1016/j.neuron.2005.02.014
[8] Rosin, B. et al. Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron 72, 370–384 (2011). doi: 10.1016/j.neuron.2011.08.023
[9] Ineichen, C., Shepherd, N. R. & Sürücü, O. Understanding the effects and adverse reactions of deep brain stimulation: is it time for a paradigm shift toward a focus on heterogenous biophysical tissue properties instead of electrode design only? Front. Hum. Neurosci. 12, 468 (2018). doi: 10.3389/fnhum.2018.00468
[10] Boyden, E. S. et al. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005). doi: 10.1038/nn1525
[11] Kim, C. K., Adhikari, A. & Deisseroth, K. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat. Rev. Neurosci. 18, 222–235 (2017). doi: 10.1038/nrn.2017.15
[12] Wells, J. et al. Optical stimulation of neural tissue in vivo. Opt. Lett. 30, 504–506 (2005). doi: 10.1364/OL.30.000504
[13] Wells, J. et al. Biophysical mechanisms of transient optical stimulation of peripheral nerve. Biophys. J. 93, 2567–2580 (2007). doi: 10.1529/biophysj.107.104786
[14] Izzo, A. D. et al. Laser stimulation of the auditory nerve. Lasers Surg. Med. 38, 745–753 (2006). doi: 10.1002/lsm.20358
[15] Cayce, J. M. et al. Infrared neural stimulation of primary visual cortex in non-human primates. Neuroimage 84, 181–190 (2014). doi: 10.1016/j.neuroimage.2013.08.040
[16] Cayce, J. M. et al. Infrared neural stimulation of human spinal nerve roots in vivo. Neurophotonics 2, 015007 (2015). doi: 10.1117/1.NPh.2.1.015007
[17] Xu, A. G. et al. Focal infrared neural stimulation with high-field functional MRI: a rapid way to map mesoscale brain connectomes. Sci. Adv. 5, eaau7046 (2019). doi: 10.1126/sciadv.aau7046
[18] Chernov, M. M., Chen, G. & Roe, A. W. Histological assessment of thermal damage in the brain following infrared neural stimulation. Brain Stimulation 7, 476–482 (2014). doi: 10.1016/j.brs.2014.01.006
[19] Legon, W. et al. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat. Neurosci. 17, 322–329 (2014). doi: 10.1038/nn.3620
[20] Tufail, Y. et al. Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound. Nat. Protoc. 6, 1453–1470 (2011). doi: 10.1038/nprot.2011.371
[21] Blackmore, J. et al. Ultrasound neuromodulation: a review of results, mechanisms and safety. Ultrasound Med. Biol. 45, 1509–1536 (2019). doi: 10.1016/j.ultrasmedbio.2018.12.015
[22] Naor, O., Krupa, S. & Shoham, S. Ultrasonic neuromodulation. J. Neural Eng. 13, 031003 (2016). doi: 10.1088/1741-2560/13/3/031003
[23] Tyler, W. J. et al. Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound. PLoS ONE 3, e3511 (2008). doi: 10.1371/journal.pone.0003511
[24] Kodandaramaiah, S. B. et al. Automated whole-cell patch-clamp electrophysiology of neurons in vivo. Nat. Methods 9, 585–587 (2012). doi: 10.1038/nmeth.1993
[25] Wang, L. V. & Hu, S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335, 1458–1462 (2012). doi: 10.1126/science.1216210
[26] Jiang, Y. et al. Optoacoustic brain stimulation at submillimeter spatial precision. Nat. Commun. 11, 881 (2020). doi: 10.1038/s41467-020-14706-1
[27] Shi, L. et al. A fiber optoacoustic emitter with controlled ultrasound frequency for cell membrane sonoporation at submillimeter spatial resolution. Photoacoustics 20, 100208 (2020). doi: 10.1016/j.pacs.2020.100208
[28] Noimark, S. et al. Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging. Adv. Funct. Mater. 28, 1704919 (2018). doi: 10.1002/adfm.201704919
[29] Noimark, S. et al. Carbon‐nanotube–PDMS composite coatings on optical fibers for all‐optical ultrasound imaging. Adv. Funct. Mater. 26, 8390–8396 (2016). doi: 10.1002/adfm.201601337
[30] Poduval, R. K. et al. Optical fiber ultrasound transmitter with electrospun carbon nanotube-polymer composite. Appl. Phys. Lett. 110, 223701 (2017). doi: 10.1063/1.4984838
[31] Lyu, Y. et al. Semiconducting polymer nanobioconjugates for targeted photothermal activation of neurons. J. Am. Chem. Soc. 138, 9049–9052 (2016). doi: 10.1021/jacs.6b05192
[32] Shapiro, M. G. et al. Infrared light excites cells by changing their electrical capacitance. Nat. Commun. 3, 736 (2012). doi: 10.1038/ncomms1742
[33] Cohen, J. E. & Fields, R. D. Extracellular calcium depletion in synaptic transmission. Neuroscientist 10, 12–17 (2004). doi: 10.1177/1073858403259440
[34] Asteriti, S., Liu, C. -H. & Hardie, R. C. Calcium signalling in Drosophila photoreceptors measured with GCaMP6f. Cell Calcium 65, 40–51 (2017). doi: 10.1016/j.ceca.2017.02.006
[35] Ha, G. E. & Cheong, E. Spike frequency adaptation in neurons of the central nervous system. Exp. Neurobiol. 26, 179–185 (2017). doi: 10.5607/en.2017.26.4.179
[36] Lin, C. -R. et al. Sonoporation-mediated gene transfer into adult rat dorsal root ganglion cells. J. Biomed. Sci. 17, 44 (2010). doi: 10.1186/1423-0127-17-44
[37] Shemesh, O. A. et al. Temporally precise single-cell-resolution optogenetics. Nat. Neurosci. 20, 1796–1806 (2017). doi: 10.1038/s41593-017-0018-8
[38] Tufail, Y. et al. Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron 66, 681–694 (2010). doi: 10.1016/j.neuron.2010.05.008
[39] Mehić, E. et al. Increased anatomical specificity of neuromodulation via modulated focused ultrasound. PLoS ONE 9, e86939 (2014). doi: 10.1371/journal.pone.0086939
[40] Dana, H. et al. High-performance GFP-based calcium indicators for imaging activity in neuronal populations and microcompartments. Nat. Methods 16, 649–657 (2018). doi: 10.1038/s41592-019-0435-6
[41] King, R. L. et al. Effective parameters for ultrasound-induced in vivo neurostimulation. Ultrasound Med. Biol. 39, 312–331 (2013). doi: 10.1016/j.ultrasmedbio.2012.09.009
[42] Mihran, R. T., Barnes, F. S. & Wachtel, H. Temporally-specific modification of myelinated axon excitability in vitro following a single ultrasound pulse. Ultrasound Med. Biol. 16, 297–309 (1990). doi: 10.1016/0301-5629(90)90008-Z
[43] Nakamura, T. et al. Synergistic release of Ca2+ from IP3-sensitive stores evoked by synaptic activation of mGluRs paired with backpropagating action potentials. Neuron 24, 727–737 (1999). doi: 10.1016/S0896-6273(00)81125-3
[44] Micheva, K. D. et al. A large fraction of neocortical myelin ensheathes axons of local inhibitory neurons. Elife 5, e15784 (2016). doi: 10.7554/eLife.15784
[45] Kubanek, J. Neuromodulation with transcranial focused ultrasound. Neurosurgical Focus 44, E14 (2018). doi: 10.3171/2017.11.FOCUS17621
[46] Tyler, W. J. Noninvasive neuromodulation with ultrasound? A continuum mechanics hypothesis. Neuroscientist 17, 25–36 (2011). doi: 10.1177/1073858409348066
[47] Deffieux, T. et al. Low-intensity focused ultrasound modulates monkey visuomotor behavior. Curr. Biol. 23, 2430–2433 (2013). doi: 10.1016/j.cub.2013.10.029
[48] Mahmud, M. & Vassanelli, S. Differential modulation of excitatory and inhibitory neurons during periodic stimulation. Front. Neurosci. 10, 62 (2016). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4766297/
[49] Prestigio, C. et al. Spike-related electrophysiological identification of cultured hippocampal excitatory and inhibitory neurons. Molecular Neurobiology 56, 6276–6292 (2019).
[50] Kubanek, J. et al. Ultrasound modulates ion channel currents. Sci. Rep. 6, 1–14 (2016). doi: 10.1038/srep24170
[51] Kubanek, J., Shukla, P., Das, A., Baccus, S. A. & Goodman, M. B. Ultrasound elicits behavioral responses through mechanical effects on neurons and ion channels in a simple nervous system. J. Neurosci. 38, 3081–3091 (2018). doi: 10.1523/JNEUROSCI.1458-17.2018
[52] Yoo, S., Mittelstein, D. R., Hurt, R. C., Lacroix, J. J. & Shapiro, M. G. Focused ultrasound excites neurons via mechanosensitive calcium accumulation and ion channel amplification. Preprint at https://www.biorxiv.org/content/10.1101/2020.05.19.101196v1 (2020).
[53] Ye, J. et al. Ultrasonic control of neural activity through activation of the mechanosensitive channel MscL. Nano Lett. 18, 4148–4155 (2018). doi: 10.1021/acs.nanolett.8b00935
[54] Krasovitski, B., Frenkel, V., Shoham, S. & Kimmel, E. Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. Proc. Natl Acad. Sci. USA 108, 3258–3263 (2011). doi: 10.1073/pnas.1015771108
[55] Plaksin, M., Shoham, S. & Kimmel, E. Intramembrane cavitation as a predictive bio-piezoelectric mechanism for ultrasonic brain stimulation. Phys. Rev. X 4, 011004 (2014). http://arxiv.org/abs/1307.7701
[56] Gaub, B. M. et al. Neurons differentiate magnitude and location of mechanical stimuli. Proc. Natl Acad. Sci. USA 117, 848–856 (2020). doi: 10.1073/pnas.1909933117
[57] Liu, Y., Zhou, X., Ma, J., Ge, Y. & Cao, X. The diameters and number of nerve fibers in spinal nerve roots. J. Spinal Cord. Med. 38, 532–537 (2015). doi: 10.1179/1079026814Z.000000000273
[58] Chen, Y. et al. MRI-guided robotic arm drives optogenetic fMRI with concurrent Ca 2+ recording. Nat. Commun. 10, 2536 (2019). doi: 10.1038/s41467-019-10450-3
[59] Fernandez, F. R., Rahsepar, B. & White, J. A. Differences in the electrophysiological properties of mouse somatosensory layer 2/3 neurons in vivo and slice stem from intrinsic sources rather than a network-generated high conductance state. Eneuro 5, 2 (2018). doi: 10.1523/ENEURO.0447-17.2018