[1] Davis, K. M. et al. Writing waveguides in glass with a femtosecond laser. Optics Letters 21, 1729-1731 (1996). doi: 10.1364/OL.21.001729
[2] Amorim, V. A. et al. Optimization of broadband Y-junction splitters in fused silica by femtosecond laser writing. IEEE Photonics Technology Letters 29, 619-622 (2017). doi: 10.1109/LPT.2017.2675858
[3] Chen, W. J. et al. Broadband directional couplers fabricated in bulk glass with high repetition rate femtosecond laser pulses. Optics Express 16, 11470-11480 (2008). doi: 10.1364/OE.16.011470
[4] Watanabe, W., Note, Y. & Itoh, K. Fabrication of multimode interference waveguides in glass by use of a femtosecond laser. Optics Letters 30, 2888-2890 (2005). doi: 10.1364/OL.30.002888
[5] Osellame, R. , Cerullo, G. & Ramponi, R. Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials. (Berlin, Heidelberg: Springer Berlin Heidelberg, 2012), 123.
[6] Thomson, R. R. et al. Ultrafast laser inscription of an integrated photonic lantern. Optics Express 19, 5698-5705 (2011). doi: 10.1364/OE.19.005698
[7] Gross, S. et al. Ultrafast laser-written sub-components for space division multiplexing. Optical Fiber Communication Conference 2020. San Diego: Optica Publishing Group, 2020, W1A. 1.
[8] Jovanovic, N. et al. Starlight demonstration of the Dragonfly instrument: an integrated photonic pupil-remapping interferometer for high-contrast imaging. Monthly Notices of the Royal Astronomical Society 427, 806-815 (2012). doi: 10.1111/j.1365-2966.2012.21997.x
[9] Meany, T. et al. Laser written circuits for quantum photonics. Laser & Photonics Reviews 9, 363-384 (2015).
[10] Hansen, J. T. et al. Interferometric beam combination with a triangular tricoupler photonic chip. Journal of Astronomical Telescopes,Instruments,and Systems 8, 025002 (2022).
[11] Osellame, R. et al. Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips. Laser & Photonics Reviews 5, 442-463 (2011).
[12] Fontaine, N. K. et al. Photonic lanterns, 3-D waveguides, multiplane light conversion, and other components that enable space-division multiplexing. Proceedings of the IEEE 110, 1821-1834 (2022). doi: 10.1109/JPROC.2022.3207046
[13] Ceccarelli, F. et al. Universal photonic processors in a glass-based femtosecond laser writing platform. Photonics in Switching and Computing 2021. Washington: Optica Publishing Group, 2021, W2A. 3.
[14] Fernandez, T. T. et al. Designer glasses—future of photonic device platforms. Advanced Functional Materials 32, 2103103 (2022). doi: 10.1002/adfm.202103103
[15] Meyer, R. et al. Extremely high-aspect-ratio ultrafast Bessel beam generation and stealth dicing of multi-millimeter thick glass. Applied Physics Letters 114, 201105 (2019). doi: 10.1063/1.5096868
[16] Liu, Z. M. et al. Fabrication of an optical waveguide-mode-field compressor in glass using a femtosecond laser. Materials 11, 1926 (2018). doi: 10.3390/ma11101926
[17] Lapointe, J. et al. Nonlinear increase, invisibility, and sign inversion of a localized fs-laser-induced refractive index change in crystals and glasses. Light:Science & Applications 9, 64 (2020).
[18] Arriola, A. et al. Low bend loss waveguides enable compact, efficient 3D photonic chips. Optics Express 21, 2978-2986 (2013). doi: 10.1364/OE.21.002978
[19] Eaton, S. M. et al. High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser. Conference on Lasers and Electro-Optics 2009. Baltimore: Optica Publishing Group, 2009, CFT3.
[20] Fernandez, T. et al. Record-high positive refractive index change in bismuth germanate crystals through ultrafast laser enhanced polarizability. Scientific Reports 10, 15142 (2020). doi: 10.1038/s41598-020-72234-w
[21] Takahashi, H. High performance planar lightwave circuit devices for large capacity transmission. Optics Express 19, B173-B180 (2011). doi: 10.1364/OE.19.00B173
[22] Sun, B. S. et al. On-chip beam rotators, adiabatic mode converters, and waveplates through low-loss waveguides with variable cross-sections. Light:Science & Applications 11, 214 (2022).
[23] Lee, T. et al. Low bend loss femtosecond laser written waveguides exploiting integrated microcrack. Scientific Reports 11, 23770 (2021). doi: 10.1038/s41598-021-03116-y
[24] T. T. Fernandez et al. ,Dual Regimes of Ion Migration in High Repetition Rate Femtosecond Laser Inscribed Waveguides. IEEE Photonics Technology Letters, 27, 1068-1071 (2015).
[25] Toney Fernandez, T. et al. Thermally stable high numerical aperture integrated waveguides and couplers for the 3 μm wavelength range. APL Photonics 7, 126106 (2022). doi: 10.1063/5.0119961
[26] Oberson, P. et al. Refracted near-field measurements of refractive index and geometry of silica-on-silicon integrated optical waveguides. Applied Optics 37, 7268-7272 (1998). doi: 10.1364/AO.37.007268
[27] Khalil, A. A. et al. Refractive index change measurement by quantitative microscopy phase imaging for femtosecond laser written structures. Optics Communications 485, 126731 (2021). doi: 10.1016/j.optcom.2020.126731
[28] Brown, G. et al. Ultrafast laser inscription of Bragg-grating waveguides using the multiscan technique. Optics Letters 37, 491-493 (2012). doi: 10.1364/OL.37.000491
[29] Corrielli, G. et al. Symmetric polarization-insensitive directional couplers fabricated by femtosecond laser writing. Optics Express 26, 15101-15109 (2018). doi: 10.1364/OE.26.015101
[30] Norris, B. R. M. et al. First on-sky demonstration of an integrated-photonic nulling interferometer: the GLINT instrument. Monthly Notices of the Royal Astronomical Society 491, 4180-4193 (2020). doi: 10.1093/mnras/stz3277
[31] Cherchi, M. et al. The Euler bend: paving the way for high-density integration on micron-scale semiconductor platforms. Proceedings of SPIE 8990, Silicon Photonics IX. San Francisco: SPIE, 2014, 899004.
[32] Nasu, Y., Kohtoku, M. & Hibino, Y. Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit. Optics Letters 30, 723-725 (2005). doi: 10.1364/OL.30.000723
[33] Sun, Q. et al. Control of laser induced cumulative stress for efficient processing of fused silica. Scientific Reports 10, 3819 (2020). doi: 10.1038/s41598-020-60828-3
[34] Sun, B. S., Salter, P. S. & Booth, M. J. Effects of sample dispersion on ultrafast laser focusing. Journal of the Optical Society of America B 32, 1272-1280 (2015). doi: 10.1364/JOSAB.32.001272
[35] Song, J. et al. Mechanism of femtosecond laser inducing inverted microstructures by employing different types of objective lens. Journal of Physics D:Applied Physics 44, 495402 (2011). doi: 10.1088/0022-3727/44/49/495402
[36] Huot, N. et al. Analysis of the effects of spherical aberration on ultrafast laser-induced refractive index variation in glass. Optics Express 15, 12395-12408 (2007). doi: 10.1364/OE.15.012395
[37] Huang, L. et al. Aberration correction for direct laser written waveguides in a transverse geometry. Optics Express 24, 10565-10574 (2016). doi: 10.1364/OE.24.010565
[38] Sun, B. S. et al. High speed precise refractive index modification for photonic chips through phase aberrated pulsed lasers. Print at https://doi.org/10.48550/arXiv.2307.14451 (2023). doi: 10.48550/arXiv.2307.14451(2023)
[39] Thomson, R. R. et al. Internal gain from an erbium-doped oxyfluoride-silicate glass waveguide fabricated using femtosecond waveguide inscription. IEEE Photonics Technology Letters 18, 1515-1517 (2006). doi: 10.1109/LPT.2006.877591