[1] |
Schmidt, R. F. & Thews, G. Human Physiology (Springer, Berlin, Heidelberg, 1989). |
[2] |
Ingber, D. E. Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ. Res. 91, 877–887 (2002). doi: 10.1161/01.RES.0000039537.73816.E5 |
[3] |
Kota, S. K. et al. Aberrant angiogenesis: the gateway to diabetic complications. Indian J. Endocrinol. Metab. 16, 918–930 (2012). doi: 10.4103/2230-8210.102992 |
[4] |
Girouard, H. & Iadecola, C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J. Appl. Physiol. 100, 328–335 (2006). doi: 10.1152/japplphysiol.00966.2005 |
[5] |
Stefánsson, E. Ocular oxygenation and the treatment of diabetic retinopathy. Surv. Ophthalmol. 51, 364–380 (2006). doi: 10.1016/j.survophthal.2006.04.005 |
[6] |
Vajkoczy, P., Ullrich, A. & Menger, M. D. Intravital fluorescence video-microscopy to study tumor angiogenesis and microcirculation. Neoplasia 2, 53–61 (2000). doi: 10.1038/sj.neo.7900062 |
[7] |
Levy, B. I. et al. Impaired tissue perfusion: a pathology common to hypertension, obesity, and diabetes mellitus. Circulation 118, 968–976 (2008). doi: 10.1161/CIRCULATIONAHA.107.763730 |
[8] |
Edwards-Richards, A. et al. Capillary rarefaction: an early marker of microvascular disease in young hemodialysis patients. Clin. Kidney J. 7, 569–574 (2014). doi: 10.1093/ckj/sfu106 |
[9] |
Kalaria, R. N. Neurodegenerative disease: diabetes, microvascular pathology and Alzheimer disease. Nat. Rev. Neurol. 5, 305–306 (2009). doi: 10.1038/nrneurol.2009.72 |
[10] |
Costa, P. Z. & Soares, R. Neovascularization in diabetes and its complications. Unraveling the angiogenic paradox. Life Sci. 92, 1037–1045 (2013). doi: 10.1016/j.lfs.2013.04.001 |
[11] |
Krock, B. L., Skuli, N. & Simon, M. C. hypoxia-induced angiogenesis: good and evil. Genes Cancer 2, 1117–1133 (2011). doi: 10.1177/1947601911423654 |
[12] |
Yao, C., Markowicz, M., Pallua, N., Noah, E. M. & Steffens, G. The effect of cross-linking of collagen matrices on their angiogenic capability. Biomaterials 29, 66–74 (2008). doi: 10.1016/j.biomaterials.2007.08.049 |
[13] |
Huang, D. et al. Optical coherence tomography. Science 254, 1178–1181 (1991). doi: 10.1126/science.1957169 |
[14] |
Zhi, Z. W. et al. Volumetric and quantitative imaging of retinal blood flow in rats with optical microangiography. Biomed. Opt. Express 2, 579–591 (2011). doi: 10.1364/BOE.2.000579 |
[15] |
Yi, J., Chen, S. Y., Backman, V. & Zhang, H. F. In vivo functional microangiography by visible-light optical coherence tomography. Biomed. Opt. Express 5, 3603–3612 (2014). doi: 10.1364/BOE.5.003603 |
[16] |
Faber, D. J., Mik, E. G., Aalders, M. C. G. & Van Leeuwen, T. G. Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography. Opt. Lett. 28, 1436–1438 (2003). doi: 10.1364/OL.28.001436 |
[17] |
Yi, J., Wei, Q., Liu, W. Z., Backman, V. & Zhang, H. F. Visible-light optical coherence tomography for retinal oximetry. Opt. Lett. 38, 1796–1798 (2013). doi: 10.1364/OL.38.001796 |
[18] |
Yi, J. et al. Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation. Light Sci. Appl. 4, e334 (2015). doi: 10.1038/lsa.2015.107 |
[19] |
Robles, F. E., Wilson, C., Grant, G. & Wax, A. Molecular imaging true-colour spectroscopic optical coherence tomography. Nat. Photonics 5, 744–747 (2011). doi: 10.1038/nphoton.2011.257 |
[20] |
Liu, R. R. et al. Theoretical model for optical oximetry at the capillary level: exploring hemoglobin oxygen saturation through backscattering of single red blood cells. J. Biomed. Opt. 22, 25002 (2017). doi: 10.1117/1.JBO.22.2.025002 |
[21] |
Yi, J. et al. Can OCT be sensitive to nanoscale structural alterations in biological tissue? Opt. Express 21, 9043–9059 (2013). doi: 10.1364/OE.21.009043 |
[22] |
Yi, J. et al. Spatially resolved optical and ultrastructural properties of colorectal and pancreatic field carcinogenesis observed by inverse spectroscopic optical coherence tomography. J. Biomed. Opt. 19, 36013 (2014). doi: 10.1117/1.JBO.19.3.036013 |
[23] |
Yi, J. & Backman, V. Imaging a full set of optical scattering properties of biological tissue by inverse spectroscopic optical coherence tomography. Opt. Lett. 37, 4443–4445 (2012). doi: 10.1364/OL.37.004443 |
[24] |
Yazdanfar, S., Rollins, A. M. & Izatt, J. A. Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography. Opt. Lett. 25, 1448–1450 (2000). doi: 10.1364/OL.25.001448 |
[25] |
Landa, G., Jangi, A. A., Garcia, P. M. T. & Rosen, R. B. Initial report of quantification of retinal blood flow velocity in normal human subjects using the Retinal Functional Imager (RFI). Int. Ophthalmol. 32, 211–215 (2012). doi: 10.1007/s10792-012-9547-z |
[26] |
Hudetz, A. G. Blood flow in the cerebral capillary network: a review emphasizing observations with intravital microscopy. Microcirculation 4, 233–252 (1997). doi: 10.3109/10739689709146787 |
[27] |
Liba, O. et al. Speckle-modulating optical coherence tomography in living mice and humans. Nat. Commun. 8, 16131 (2017). doi: 10.1038/ncomms16131 |
[28] |
Zhu, Y. X. et al. Sustained release of stromal cell derived factor-1 from an antioxidant thermoresponsive hydrogel enhances dermal wound healing in diabetes. J. Control. Release 238, 114–122 (2016). doi: 10.1016/j.jconrel.2016.07.043 |
[29] |
Rege, A., Thakor, N. V., Rhie, K. & Pathak, A. P. In vivo laser speckle imaging reveals microvascular remodeling and hemodynamic changes during wound healing angiogenesis. Angiogenesis 15, 87–98 (2012). doi: 10.1007/s10456-011-9245-x |
[30] |
Singer, A. J. & Clark, A. F. Cutaneous wound healing. N. Engl. J. Med. 341, 738–746 (1999). doi: 10.1056/NEJM199909023411006 |
[31] |
Gabbiani, G. The myofibroblast in wound healing and fibrocontractive diseases. J. Pathol. 200, 500–503 (2003). doi: 10.1002/path.1427 |
[32] |
Ning, B. et al. Simultaneous photoacoustic microscopy of microvascular anatomy, oxygen saturation, and blood flow. Opt. Lett. 40, 910–913 (2015). doi: 10.1364/OL.40.000910 |
[33] |
Srinivasan, V. J. et al. Quantitative cerebral blood flow with optical coherence tomography. Opt. Express 18, 2477–2494 (2010). doi: 10.1364/OE.18.002477 |
[34] |
Raghunathan, R. et al. Evaluating changes in brain vasculature of murine embryos in utero due to maternal alcohol consumption using optical coherence tomography. In Proceedings Volume 10340, International Conference on Biophotonics V; 29 April 2017; Perth, Australia (eds David D. Sampson, Dennis L. Matthews, Jürgen Popp, Halina Rubinsztein-Dunlop, and Brian C. Wilson.) 1–7 (SPIE, Perth, Australia, 2017). |
[35] |
Cui, D. Y. et al. Flexible, high-resolution micro-optical coherence tomography endobronchial probe toward in vivo imaging of cilia. Opt. Lett. 42, 867–870 (2017). doi: 10.1364/OL.42.000867 |
[36] |
Yuan, W., Brown, R., Mitzner, W., Yarmus, L. & Li, X. D. Super-achromatic monolithic microprobe for ultrahigh-resolution endoscopic optical coherence tomography at 800 nm. Nat. Commun. 8, 1531 (2017). doi: 10.1038/s41467-017-01494-4 |
[37] |
Winkelmann, J. A. et al. In vivo broadband visible light optical coherence tomography probe enables inverse spectroscopic analysis. Opt. Lett. 43, 619–622 (2018). doi: 10.1364/OL.43.000619 |
[38] |
Liang, K. C. et al. Cycloid scanning for wide field optical coherence tomography endomicroscopy and angiography in vivo. Optica 5, 36–43 (2018). doi: 10.1364/OPTICA.5.000036 |
[39] |
Radosevich, A. J. et al. Rectal optical markers for in vivo risk stratification of premalignant colorectal lesions. Clin. Cancer Res. 21, 4347–4355 (2015). doi: 10.1158/1078-0432.CCR-15-0136 |
[40] |
Gomes, A. J. et al. Rectal mucosal microvascular blood supply increase is associated with colonic neoplasia. Clin. Cancer Res. 15, 3110–3117 (2009). doi: 10.1158/1078-0432.CCR-08-2880 |
[41] |
Nakazawa, M. S., Keith, B. & Simon, M. C. Oxygen availability and metabolic adaptations. Nat. Rev. Cancer 16, 663–673 (2016). doi: 10.1038/nrc.2016.84 |
[42] |
Wojtkowski, M. et al. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Opt. Express 12, 2404–2422 (2004). doi: 10.1364/OPEX.12.002404 |
[43] |
Scolaro, L. et al. Parametric imaging of the local attenuation coefficient in human axillary lymph nodes assessed using optical coherence tomography. Biomed. Opt. Express 3, 366–379 (2012). doi: 10.1364/BOE.3.000366 |
[44] |
Chen, S. Y., Yi, J. & Zhang, H. F. Measuring oxygen saturation in retinal and choroidal circulations in rats using visible light optical coherence tomography angiography. Biomed. Opt. Express 6, 2840–2853 (2015). doi: 10.1364/BOE.6.002840 |
[45] |
Chen, S. Y. et al. Measuring absolute microvascular blood flow in cortex using visible-light optical coherence tomography. In Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 26-30 August 2014; Chicago, IL, USA (eds Besio, W. et al.) 3881–3884 (IEEE, Chicago, IL, USA, 2014). |
[46] |
Leyland-Jones, B. et al. Maintaining normal hemoglobin levels with epoetin alfa in mainly nonanemic patients with metastatic breast cancer receiving first-line chemotherapy: a survival study. J. Clin. Oncol. 23, 5960–5972 (2005). doi: 10.1200/JCO.2005.06.150 |