[1] |
Wang, D. et al. Dynamics of molten pool evolution and high-speed real-time optical measurement in laser polishing. Light: Advanced Manufacturing 5, 588-598 (2024). |
[2] |
Yang, T. et al. Intelligent manufacturing for the process industry driven by industrial artificial intelligence. Engineering 7, 1224-1230 (2021). doi: 10.1016/j.eng.2021.04.023 |
[3] |
Gao, J. et al. Fundamentals of atomic and close-to-atomic scale manufacturing: a review. International Journal of Extreme Manufacturing 4, 012001 (2021). |
[4] |
Georgi, P. et al. Metasurface interferometry toward quantum sensors. Light: Science & Applications 8, 70 (2019). |
[5] |
Jafari, D., Vaneker, T. H. J. & Gibson, I. Wire and arc additive manufacturing: Opportunities and challenges to control the quality and accuracy of manufactured parts. Materials & Design 202, 109471 (2021). |
[6] |
Schmidt, R.-H. M. Ultra-precision engineering in lithographic exposure equipment for the semiconductor industry. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370, 3950-3972 (2012). doi: 10.1098/rsta.2011.0054 |
[7] |
Dong, Y. S. et al. Focus on sub-nanometer measurement accuracy: distortion and reconstruction of dynamic displacement in a fiber-optic microprobe sensor. Light: Advanced Manufacturing 5, 599-613 (2024). |
[8] |
Gao, W. et al. Machine tool calibration: Measurement, modeling, and compensation of machine tool errors. International Journal of Machine Tools and Manufacture 187, 104017 (2023). doi: 10.1016/j.ijmachtools.2023.104017 |
[9] |
Ye, Y. et al. A review on applications of capacitive displacement sensing for capacitive proximity sensor. Ieee Access 8, 45325-45342 (2020). doi: 10.1109/ACCESS.2020.2977716 |
[10] |
Wang, H. W. et al. Design and realization of a compact high-precision capacitive absolute angular position sensor based on time grating. IEEE Transactions on Industrial Electronics 68, 3548-3557 (2021). doi: 10.1109/TIE.2020.2977540 |
[11] |
Sun, B., Zheng, G. & Zhang, X. X. Application of contact laser interferometry in precise displacement measurement. Measurement 174, 108959 (2021). doi: 10.1016/j.measurement.2020.108959 |
[12] |
Zhu, J. H. et al. A reflective-type heterodyne grating interferometer for three-degree-of-freedom subnanometer measurement. IEEE Transactions on Instrumentation and Measurement 71, 7007509 (2022). |
[13] |
Luo, L. B. et al. Design and demonstration of a large range precision grating sensor for simultaneous measurement of out-of-plane motions. Measurement 249, 116799 (2025). doi: 10.1016/j.measurement.2025.116799 |
[14] |
Zhou, W. Y. et al. A random angle error interference eliminating method for grating interferometry measurement based on symmetry littrow structure. Laser & Photonics Reviews (in the press). |
[15] |
Ma, T. C. et al. A flexible multifunctional electronic skin for intelligent tactile perception. IEEE Sensors Journal 23, 17407-17414 (2023). doi: 10.1109/JSEN.2023.3285628 |
[16] |
Peng, K. et al. Planar two-dimensional capacitive displacement sensor based on time grating. IEEE Transactions on Industrial Electronics 71, 4262-4272 (2024). doi: 10.1109/TIE.2023.3277126 |
[17] |
Wang, Y. F. et al. Frequency-swept feedback interferometry for noncooperative-target ranging with a stand-off distance of several hundred meters. PhotoniX 3, 21 (2022). doi: 10.1186/s43074-022-00067-z |
[18] |
Zeng, Z. L. et al. High-accuracy self-mixing interferometer based on single high-order orthogonally polarized feedback effects. Optics express 23, 16977-16983 (2015). doi: 10.1364/OE.23.016977 |
[19] |
Kimura, A. et al. A sub-nanometric three-axis surface encoder with short-period planar gratings for stage motion measurement. Precision engineering 36, 576-585 (2012). doi: 10.1016/j.precisioneng.2012.04.005 |
[20] |
Gao, W. & Kimura, A. A three-axis displacement sensor with nanometric resolution. CIRP annals 56, 529-532 (2007). doi: 10.1016/j.cirp.2007.05.126 |
[21] |
Lee, J.-Y. et al. Optical heterodyne grating interferometry for displacement measurement with subnanometric resolution. Sensors and Actuators A: physical 137, 185-191 (2007). doi: 10.1016/j.sna.2007.02.017 |
[22] |
Li, X. H. et al. A six-degree-of-freedom surface encoder for precision positioning of a planar motion stage. Precision Engineering 37, 771-781 (2013). doi: 10.1016/j.precisioneng.2013.03.005 |
[23] |
de Vine, G. et al. Picometer level displacement metrology with digitally enhanced heterodyne interferometry. Optics express 17, 828-837 (2009). doi: 10.1364/OE.17.000828 |
[24] |
Yang, H. X. et al. Design for a highly stable laser source based on the error model of high-speed high-resolution heterodyne interferometers. Sensors 20, 1083 (2020). doi: 10.3390/s20041083 |
[25] |
Joo, K.-N. et al. A compact high-precision periodic-error-free heterodyne interferometer. Journal of the Optical Society of America A 37, B11-B18 (2020). doi: 10.1364/JOSAA.396298 |
[26] |
Hu, P. C. et al. Displacement measuring grating interferometer: a review. Frontiers of Information Technology & Electronic Engineering 20, 631-654 (2019). |
[27] |
Hu, P. C. et al. Toward a nonlinearity model for a heterodyne interferometer: not based on double-frequency mixing. Optics express 23, 25935-25941 (2015). doi: 10.1364/OE.23.025935 |
[28] |
Fu, H. J. et al. Nonlinear errors resulting from ghost reflection and its coupling with optical mixing in heterodyne laser interferometers. Sensors 18, 758 (2018). doi: 10.3390/s18030758 |
[29] |
Wu, C. M., Lawall, J. & Deslattes, R. D. Heterodyne interferometer with subatomic periodic nonlinearity. Applied optics 38, 4089-4094 (1999). doi: 10.1364/AO.38.004089 |
[30] |
Guan, J. et al. A differential interferometric heterodyne encoder with 30 picometer periodic nonlinearity and sub-nanometer stability. Precision Engineering 50, 114-118 (2017). doi: 10.1016/j.precisioneng.2017.04.019 |
[31] |
Xing, X. et al. Spatially separated heterodyne grating interferometer for eliminating periodic nonlinear errors. Optics Express 25, 31384-31393 (2017). doi: 10.1364/OE.25.031384 |
[32] |
Fu, H. J. et al. Highly thermal-stable heterodyne interferometer with minimized periodic nonlinearity. Applied optics 57, 1463-1467 (2018). doi: 10.1364/AO.57.001463 |
[33] |
Wang, G. C. et al. A wavelength-stabilized and quasi-common-path heterodyne grating interferometer with sub-nanometer precision. IEEE Transactions on Instrumentation and Measurement 73, 7002509 (2024). |
[34] |
Hsieh, H.-L. & Pan, S.-W. Three-degree-of-freedom displacement measurement using grating-based heterodyne interferometry. Applied optics 52, 6840-6848 (2013). doi: 10.1364/AO.52.006840 |
[35] |
Lin, J. et al. High-resolution and wide range displacement measurement based on planar grating. Optics Communications 404, 132-138 (2017). doi: 10.1016/j.optcom.2017.03.012 |
[36] |
HEIDENHAIN. PP-281: Incremental two-coordinate encoder. https://www.heidenhain.com/products/linear-encoders/exposed/pp-281 (2025). |
[37] |
RENISHAW. Encoders for position and motion control. https://www.renishaw.com.cn/zh/position-encoders–6331 (2025). |
[38] |
Yin, Y. F. et al. High-precision 2d grating displacement measurement system based on double-spatial heterodyne optical path interleaving. Optics and Lasers in Engineering 158, 107167 (2022). doi: 10.1016/j.optlaseng.2022.107167 |
[39] |
Yin, Y. F. et al. Littrow 3d measurement based on 2d grating dual-channel equal-optical path interference. Optics express 30, 41671-41684 (2022). doi: 10.1364/OE.475830 |
[40] |
Ban, Y. W. et al. Two-dimensional grating interferometer with nanometer accuracy. AIP Advances 13, (2023). |
[41] |
Zhong, Z. J. et al. High dynamic wavefront stability control for high-uniformity periodic microstructure fabrication. Precision Engineering 93, 216-223 (2025). doi: 10.1016/j.precisioneng.2025.01.006 |
[42] |
Gao, X. et al. Global alignment reference strategy for laser interference lithography pattern arrays. Microsystems & Nanoengineering 11, 41 (2025). |
[43] |
Köchert, P. et al. Phase measurement of various commercial heterodyne he–ne-laser interferometers with stability in the picometer regime. Measurement Science and Technology 23, 074005 (2012). doi: 10.1088/0957-0233/23/7/074005 |