| [1] | Sandgren, A. et al. Tuberculosis drug resistance mutation database. PLoS Med. 6, e1000002 (2009). doi: 10.1371/journal.pmed.1000002 |
| [2] | Arain, T. M. et al. Bioluminescence screening in vitro (Bio-Siv) assays for high-volume antimycobacterial drug discovery. Antimicrob. Agents Chemother. 40, 1536–1541 (1996). doi: 10.1128/AAC.40.6.1536 |
| [3] | Jacobs, W. R. Jr. et al. Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages. Science 260, 819–822 (1993). doi: 10.1126/science.8484123 |
| [4] | Goodacre, R. et al. Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks. Microbiology 144, 1157–1170 (1998). doi: 10.1099/00221287-144-5-1157 |
| [5] | Lagier, J. C. et al. Culturing the human microbiota and culturomics. Nat. Rev. Microbiol. 16, 540–550 (2018). doi: 10.1038/s41579-018-0041-0 |
| [6] | Fierer, N. et al. Forensic identification using skin bacterial communities. Proc. Natl Acad. Sci. USA 107, 6477–6481 (2010). doi: 10.1073/pnas.1000162107 |
| [7] | Koydemir, H. C. et al. Rapid imaging, detection and quantification of Giardia lamblia cysts using mobile-phone based fluorescent microscopy and machine learning. Lab a Chip 15, 1284–1293 (2015). doi: 10.1039/C4LC01358A |
| [8] | Oliver, S. P., Jayarao, B. M. & Almeida, R. A. Foodborne pathogens in milk and the dairy farm environment: food safety and public health implications. Foodborne Pathog. Dis. 2, 115–129 (2005). doi: 10.1089/fpd.2005.2.115 |
| [9] | World Water Day. https://www.cdc.gov/healthywater/observances/wwd.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Ffeatures%2Fworldwaterday%2Findex.html (2020). |
| [10] | DeFlorio-Barker, S. et al. Estimate of incidence and cost of recreational waterborne illness on United States surface waters. Environ. Health 17, 3 (2018). doi: 10.1186/s12940-017-0347-9 |
| [11] | US Environmental Protection Agency. Method 1604: Total Coliforms and Escherichia Coli in Water by Membrane Filtration Using A Simultaneous Detection Technique (MI Medium). (Environmental Protection Agency, Office of Water, United States, 2002). |
| [12] | Current Waterborne Disease Burden Data & Gaps | Healthy Water | CDC. https://www.cdc.gov/healthywater/burden/current-data.html (2018). |
| [13] | US EPA. Analytical Methods Approved for Compliance Monitoring under the Long Term 2 Enhanced Surface Water Treatment Rule (US EPA, 2017). |
| [14] | Deshmukh, R. A. et al. Recent developments in detection and enumeration of waterborne bacteria: a retrospective minireview. MicrobiologyOpen 5, 901–922 (2016). doi: 10.1002/mbo3.383 |
| [15] | Amann, R. & Fuchs, B. M. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat. Rev. Microbiol. 6, 339–348 (2008). doi: 10.1038/nrmicro1888 |
| [16] | Kang, D. K. et al. Rapid detection of single bacteria in unprocessed blood using Integrated Comprehensive Droplet Digital Detection. Nat. Commun. 5, 5427 (2014). doi: 10.1038/ncomms6427 |
| [17] | Title 40: Protection of Environment. Electronic Code of Federal Regulations Vol. 136.3. https://www.ecfr.gov/cgi-bin/text-idx?node=pt40.1.136 (2020). |
| [18] | Huff, K. et al. Light-scattering sensor for real-time identification of Vibrio parahaemolyticus, Vibrio vulnificus and Vibrio cholerae colonies on solid agar plate. Microb. Biotechnol. 5, 607–620 (2012). doi: 10.1111/j.1751-7915.2012.00349.x |
| [19] | Choi, J. et al. A rapid antimicrobial susceptibility test based on single-cell morphological analysis. Sci. Transl. Med. 6, 267ra174 (2014). doi: 10.1126/scitranslmed.3009650 |
| [20] | Jo, Y. et al. Holographic deep learning for rapid optical screening of anthrax spores. Sci. Adv. 3, e1700606 (2017). doi: 10.1126/sciadv.1700606 |
| [21] | Van Poucke, S. O. & Nelis, H. J. A 210-min solid phase cytometry test for the enumeration of Escherichia coli in drinking water. J. Appl. Microbiol. 89, 390–396 (2000). doi: 10.1046/j.1365-2672.2000.01125.x |
| [22] | Kim, M. et al. Optofluidic ultrahigh-throughput detection of fluorescent drops. Lab a Chip 15, 1417–1423 (2015). doi: 10.1039/C4LC01465K |
| [23] | Tryland, I. et al. Monitoring of β-D-Galactosidase activity as a surrogate parameter for rapid detection of sewage contamination in urban recreational water. Water 8, 65 (2016). doi: 10.3390/w8020065 |
| [24] | Van Poucke, S. O. & Nelis, H. J. Limitations of highly sensitive enzymatic presence-absence tests for detection of waterborne coliforms and Escherichia coli. Appl. Environ. Microbiol. 63, 771–774 (1997). doi: 10.1128/AEM.63.2.771-774.1997 |
| [25] | London, R. et al. An automated system for rapid non-destructive enumeration of growing microbes. PLoS ONE 5, e8609 (2010). doi: 10.1371/journal.pone.0008609 |
| [26] | EPA. EPA Microbiological Alternate Test Procedure (ATP) Protocol for Drinking Water, Ambient Water, Wastewater, and Sewage Sludge Monitoring Methods. (Environmental Protection Agency, Office of Water, United States, 2010). |
| [27] | CHROMagarTM ECC Product Leaflet. http://www.chromagar.com/fichiers/1559127431LF_EXT_003_EF_V8.0.pdf?PHPSESSID=bfb3a740c98b2bf26f8ac5c4d1880fe9 (2020). |
| [28] | Huang, G. et al. Densely connected convolutional networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, Honolulu, 2017). |
| [29] | Shapiro, J. A. The significances of bacterial colony patterns. BioEssays 17, 597–607 (1995). doi: 10.1002/bies.950170706 |
| [30] | Su, P. T. et al. Bacterial colony from two-dimensional division to three-dimensional development. PLoS ONE 7, e48098 (2012). doi: 10.1371/journal.pone.0048098 |
| [31] | Farrell, F. D. et al. Mechanical interactions in bacterial colonies and the surfing probability of beneficial mutations. J. R. Soc. Interface 14, 20170073 (2017). doi: 10.1098/rsif.2017.0073 |
| [32] | Sheats, J. et al. Role of growth rate on the orientational alignment of Escherichia coli in a slit. R. Soc. Open Sci. 4, 170463 (2017). doi: 10.1098/rsos.170463 |
| [33] | LeChevallier, M. W. & McFeters, G. A. Enumerating injured coliforms in drinking water. J. Am. Water Works Assoc. 77, 81–87 (1985). doi: 10.1002/j.1551-8833.1985.tb05558.x |
| [34] | CDC-Salmonella-Factsheet. https://www.cdc.gov/salmonella/pdf/CDC-Salmonella-Factsheet.pdf (2016). |
| [35] | Liu, H. L., Whitehouse, C. A. & Li, B. G. Presence and persistence of salmonella in water: the impact on microbial quality of water and food safety. Front. Public Health 6, 159 (2018). doi: 10.3389/fpubh.2018.00159 |
| [36] | Alternate Test Procedures in Clean Water Act Analytical Methods. https://www.epa.gov/cwa-methods/alternate-test-procedures (2018). |
| [37] | Sanders, E. R. Aseptic laboratory techniques: plating methods. J. Vis. Exp. https://doi.org/10.3791/3064 (2012). |
| [38] | Zhang, Y. B. et al. Motility-based label-free detection of parasites in bodily fluids using holographic speckle analysis and deep learning. Light 7, 108 (2018). doi: 10.1038/s41377-018-0110-1 |
| [39] | Isikman, S. O. et al. Lens-free optical tomographic microscope with a large imaging volume on a chip. Proc. Natl Acad. Sci. USA 108, 7296–7301 (2011). doi: 10.1073/pnas.1015638108 |
| [40] | Cobo, M. P. et al. Visualizing bacterial colony morphologies using time-lapse imaging chamber MOCHA. J. Bacteriol. 200, e00413–e00417 (2018). |
| [41] | Hutchison, J. R. et al. Consistent production of chlorine-stressed bacteria from non-chlorinated secondary sewage effluents for use in the U.S. Environmental Protection Agency Alternate Test Procedure protocol. J. Microbiol. Methods 163, 105651 (2019). doi: 10.1016/j.mimet.2019.105651 |
| [42] | Colilert 18—IDEXX US. https://www.idexx.com/en/water/water-products-services/colilert-18/ (2020). |
| [43] | Preibisch, S., Saalfeld, S. & Tomancak, P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25, 1463–1465 (2009). doi: 10.1093/bioinformatics/btp184 |
| [44] | Goodman, J. W. Introduction to Fourier Optics. (Roberts and Company Publishers, Greenwoood Village, 2005). |
| [45] | Rivenson, Y. et al. Sparsity-based multi-height phase recovery in holographic microscopy. Sci. Rep. 6, 37862 (2016). doi: 10.1038/srep37862 |
| [46] | Zhang, Y. B. et al. Edge sparsity criterion for robust holographic autofocusing. Opt. Lett. 42, 3824–3827 (2017). doi: 10.1364/OL.42.003824 |
| [47] | Qiu, Z. F., Yao, T. & Mei, T. Learning spatio-temporal representation with pseudo-3D residual networks. 2017 IEEE International Conference on Computer Vision (ICCV) (IEEE, Venice, Italy, 2017). |
| [48] | Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. 3rd International Conference on Learning Representations (ICLR, Ithaca, 2015) |
| [49] | Wang, H. D. et al. Computational out-of-focus imaging increases the space–bandwidth product in lens-based coherent microscopy. Optica 3, 1422–1429 (2016). doi: 10.1364/OPTICA.3.001422 |
| [50] | Greenbaum, A. et al. Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy. Sci. Rep. 3, 1717 (2013). doi: 10.1038/srep01717 |