[1] Stetson, K. A. & Powell, R. L. Hologram interferometry. Journal of the Optical Society of America 56, 1161-1163 (1966). doi: 10.1364/JOSA.56.001161
[2] Stetson, K. The discovery of holographic interferometry, its development and applications. Light – Advanced Manufacturing (in this issue).
[3] Waters, J. P. Interferometric holography. in Holographic Nondestructive Testing (ed Erf, R. K.) (Amsterdam: Elsevier, 1974), 87-103.
[4] Erf, R. K. Holographic Nondestructive Testing. (New York: Academic Press, 1974).
[5] Leendertz, J. A. Interferometric displacement measurement on scattering surfaces utilizing Speckle effect. Journal of Physics E:Scientific Instruments 3, 214-218 (1970). doi: 10.1088/0022-3735/3/3/312
[6] Hung, Y. Y. A Speckle-shearing interferometer: a tool for measuring derivatives of surface displacements. Optics Communications 11, 132-135 (1974). doi: 10.1016/0030-4018(74)90200-4
[7] Hung, Y. Y. & Liang, C. Y. Image-shearing camera for direct measurement of surface strains. Applied Optics 18, 1046-1051 (1979). doi: 10.1364/AO.18.001046
[8] Kalms, M. K. & Osten, W. Mobile shearography system for the inspection of aircraft and automotive components. Optical Engineering 42, 1188-1196 (2003). doi: 10.1117/1.1566968
[9] Erf, R. K. Speckle Metrology. (New York: Academic Press, 1978).
[10] Brown, G. M. Pneumatic Tire Inspection. (Amsterdam: Elsevier, 1974), 355-364.
[11] Abramson, N. Sandwich hologram interferometry. 4: holographic studies of two milling machines. Applied Optics 16, 2521-2531 (1977). doi: 10.1364/AO.16.002521
[12] Felske, A. & Happe, A. Double pulsed laser holography as a diagnostic method in the automative industry. Proceedings of Conference, on Engineering Uses of Coherent Optics, held at the Univ. of Strathclyde 1975. E. R. Robertson (Ed.), Cambridge Univ. Press 1976, pages 595-614. ISBN 0 521 20879 3
[13] Steinbichler, H. & Gehring, G. TV-Holography and holographic Interferometry: industrial applications. Optics and Lasers in Engineering 24, 111-127 (1996). doi: 10.1016/0143-8166(95)00025-9
[14] Amadesi, S. et al. Holographic methods for painting diagnostics. Applied Optics 13, 2009-2013 (1974). doi: 10.1364/AO.13.002009
[15] Ostrovsky, Y. I., Butusov, M. M. & Ostrovskaya, G. V. Interferometry by Holography. (Berlin, Heidelberg: Springer, 1980).
[16] Vest, C. M. Holographic Interferometry. (New York: Wiley, 1979).
[17] Wernicke, G. & Osten, W. Holografische Interferometrie: Grundlagen, Methoden und ihre Anwendung in der Festkorpermechanik. Physik Verlag, Weinheim, 1982. ISBN 10: 3876640660 / ISBN 13: 9783876640662
[18] See Wikipedia “Big Data”. athttps://en.wikipedia.org/wiki/Big_data.
[19] Boyd, D. & Crawford, K. Six provocations for big data: social science research network: a decade in internet time: symposium on the dynamics of the internet and society. (2011). at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1926431.
[20] Osten, W. et al. Different approaches to overcome existing limits in optical micro- and nano-metrology. 22nd Congress of the International Commission for Optics: Light for the Development of the World, edited by Ramón Rodríguez-Vera, Rufino Díaz-Uribe, Proc. of SPIE Vol. 8011, 80116O, CCC code: 0277-786X/11/$18. doi: 10.1117/12.905277
[21] Osten, W. Optical metrology: the long and unstoppable way to become an outstanding measuring tool. Proceedings of SPIE 10834, Speckle 2018: VII International Conference on Speckle Metrology. Janów Podlaski: SPIE, 2018.
[22] Mroczka, J. The cognitive process in metrology. Measurement 46, 2896-2907 (2013). doi: 10.1016/j.measurement.2013.04.040
[23] ISO/BIPM Guideline: Uncertainty of Measurement. (1999). at http://www.metrodata.de/papers/resistor_en.pdf.
[24] Gronle, M. & Osten, W. View and sensor planning for multi-sensor surface inspection. Surface Topography:Metrology and Properties 4, 024009 (2016). doi: 10.1088/2051-672X/4/2/024009
[25] Albertazzi, A. Jr. et al. Speckle interferometry in harsh environments: design considerations and successful examples. Proceedings of SPIE 10678, Optical Micro-and Nanometrology VII. Strasbourg: SPIE, 2018.
[26] Osten, W. & Jüptner, W. Measurement of displacement vector fields of extended objects. Optics and Lasers in Engineering 24, 261-285 (1996).
[27] Nadeborn, W., Andrä, P. & Osten, W. A robust procedure for absolute phase measurement. Optics and Lasers in Engineering 24, 245-260 (1996). doi: 10.1016/0143-8166(95)00017-8
[28] DIN EN ISO 9241. https://docplayer.org/21480943-Deutsche-norm-din-en-iso-9241-110.html
[29] Gronle, M. et al. itom: an open source metrology, automation, and data evaluation software. Applied Optics 53, 2974-2982 (2014). doi: 10.1364/AO.53.002974
[30] Mason, B. & Antony, J. Statistical process control: an essential ingredient for improving service and manufacuring quality. Managing Service Quality:An International Journal 10, 233-238 (2000). doi: 10.1108/09604520010341618
[31] Pyzdek, T. & Keller, P. A. The Six Sigma Handbook. (New York: McGraw-HillEducation, 2018).
[32] Leach, R. et al. Information-rich manufacturing metrology. Proceedings of the 8th IFIP WG 5.5 International Precision Assembly Seminar. Chamonix: Springer, 2019.
[33] Hadamard, J. Lectures on Cauchy’s Problem in Partial Differential Equations. New Haven: Yale Univ. Press, 1923.
[34] Bruning, J. H. et al. Digital wavefront measuring interferometer for testing optical surfaces and lenses. Applied Optics 13, 2693 (1974). doi: 10.1364/AO.13.002693
[35] Totzeck, M. & Tiziani, H. J. Phase-shifting polarization interferometry for microstructure linewidth measurement. Optics Letters 24, 294-296 (1999). doi: 10.1364/OL.24.000294
[36] Osten, W. et al. High-resolution measurement of extended technical surfaces with scalable topometry. Proceedings of SPIE 4101, Laser Interferometry X: Techniques and Analysis. San Diego: SPIE, 2000.
[37] Kayser, D., Bothe, T. & Osten, W. Scaled topometry in a multisensor approach. Optical Engineering 43, 2469-2477 (2004). doi: 10.1117/1.1788690
[38] Osten, W., Haist, T. & Manske, E. How to drive an optical measurement system to outstanding performance. Proceedings of SPIE 10557, Ultra-High-Definition Imaging Systems. San Francisco: SPIE, 2018.
[39] The Fair Data Sheet Initiative. at http://optassyst.de/fairesdatenblatt/.
[40] OptAssyst. at http://www.optassyst.de/index.html.
[41] Häusler, G. & Ettl, P. Über die kluge Auswahl und Anwendung optischer 3D-Sensoren. Photonik 5, 2-5 (2004).
[42] De Lega, X. C. & De Groot, P. J. Lateral resolution and instrument transfer function as criteria for selecting surface metrology instruments. Imaging and Applied Optics Technical Papers. http://dx.doi.org/10.1364/OFT.2012.OTu1D.4 (2012).
[43] De Groot, P. & De Lega, X. C. Interpreting interferometric height measurements using the instrument transfer function. in Fringe 2005. (ed Osten, W.) (Berlin, Heidelberg: Springer, 2006), 30-37.
[44] De Groot, P. et al. Fourier optics modelling of coherence scanning interferometers. Proceedings of SPIE 11817, Applied Optical Metrology IV. San Diego: SPIE, 2021.
[45] Osten, W. et al. Shearography system for the testing of large-scale aircraft components taking into account noncooperative surfaces. Proceedings of SPIE 4101, Laser Interferometry X: Techniques and Analysis. San Diego: SPIE, 2000.
[46] Alexeenko, I. et al. Nondestructive testing by using long-wave infrared interferometric techniques with CO2 lasers and microbolometer arrays. Applied Optics 52, A56-A67 (2013). doi: 10.1364/AO.52.000A56
[47] Georges, M. P. et al. Combined holography and thermography in a single sensor through image-plane holography at thermal infrared wavelengths. Optics Express 22, 25517-25529 (2014). doi: 10.1364/OE.22.025517
[48] Wenzelburger, M., López, D. & Gadow, R. Methods and application of residual stress analysis on thermally sprayed coatings and layer composites. Surface and Coatings Technology 201, 1995-2001 (2006). doi: 10.1016/j.surfcoat.2006.04.040
[49] Schajer, G. S. & Prime, M. B. Use of inverse solutions for residual stress measurements. Journal of Engineering Materials and Technology 128, 375-382 (2006). doi: 10.1115/1.2204952
[50] Pedrini, G. et al. Residual stress analysis of ceramic coating by laser ablation and digital holography. Experimental Mechanics 56, 683-701 (2016). doi: 10.1007/s11340-015-0120-3
[51] Alekseenko, I. et al. Residual stress evaluation in ceramic coating under industrial conditions by digital holography. IEEE Transactions on Industrial Informatics 16, 1102-1110 (2020). doi: 10.1109/TII.2019.2939972
[52] Osten, W. et al. Optical method and arrangement for measuring residual stresses, in particular in coated objects. Patent WO2016184578 (issued 2016). https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2016184578
[53] Pedrini, G. et al. Calibration of optical systems for the measurement of microcomponents. Optics and Lasers in Engineering 47, 203-210 (2009). doi: 10.1016/j.optlaseng.2008.05.002
[54] Pedrini, G. et al. Development of reference standards for the calibration of optical systems used in the measurement of microcomponents. Strain 46, 79-88 (2010). doi: 10.1111/j.1475-1305.2008.00603.x
[55] Pedrini, G. et al. Measurement of nano/micro out-of-plane and in-plane displacements of micromechanical components by using digital holography and speckle interferometry. Optical Engineering 50, 101504 (2011). doi: 10.1117/1.3572186
[56] Pedrini, G. et al. Feasibility study of digital holography for erosion measurements under extreme environmental conditions inside the international thermonuclear experimental reactor tokamak. Applied Optics 58, A147-A155 (2019). doi: 10.1364/AO.58.00A147
[57] Pedrini, G. et al. Pulsed digital holography for high-speed contouring that uses a two-wavelength method. Applied Optics 38, 3460-3467 (1999). doi: 10.1364/AO.38.003460
[58] https://en.wikipedia.org/wiki/ITER.
[59] Tornari, V. et al. Laser-based systems for the structural diagnostic of artwork: an application to XVII-century Byzantine icons. Proceedings of SPIE 4402, Laser Techniques and Systems in Art Conservation. Munich: SPIE, 2001.
[60] Tornari, V. Laser interference-based techniques and applications in structural inspection of works of art. Analytical and Bioanalytical Chemistry 387, 761-780 (2007). doi: 10.1007/s00216-006-0974-4
[61] EU-Project MultiEncode. Multifunctional Encoding System for Assessment of Movable Cultural Heritage. https://cordis.europa.eu/project/id/6427.
[62] Madonna from Stuppach. https://de.wikipedia.org/wiki/Stuppacher_Madonna.
[63] Osten, W., Wilke, M. & Pedrini, G. Remote laboratories for optical metrology: from the lab to the cloud. Proceedings of SPIE 8413, Speckle 2012: V International Conference on Speckle Metrology. Vigo: SPIE, 2012.
[64] Buchta, D. et al. Artwork inspection by shearography with adapted loading. Experimental Mechanics 55, 1691-1704 (2015). doi: 10.1007/s11340-015-0070-9
[65] Buchta, D. et al. Combination of FEM simulations and shearography for defect detection on artwork. Strain 54, e12269 (2018). doi: 10.1111/str.12269
[66] Vest, C. M. Holographic NDE: Status and Future. NGS-GCR-81-318 (Publication of the National Bureau of Standards, Washington DC 1981)..
[67] Osten, W. & Jueptner, W. P. O. New light sources and sensors for active optical 3D inspection. Proceedings of SPIE 3897, Advanced Photonic Sensors and Applications. Singapore: SPIE, 1999.
[68] Osten, W. et al. Optical metrology: from the laboratory to the real world. Proceedings of SPIE 7387, Speckle 2010: Optical Metrology. Florianapolis: SPIE, 2010.
[69] Pirati, A. et al. EUV lithography performance for manufacturing: status and outlook. Proceedings of SPIE 9776, Extreme Ultraviolet (EUV) Lithography VII. San Jose: SPIE, 2016.
[70] Den Boef, A. J. Optical wafer metrology sensors for process-robust CD and overlay control in semiconductor device manufacturing. Surface Topography:Metrology and Properties 4, 023001 (2016). doi: 10.1088/2051-672X/4/2/023001
[71] Pruss, C. et al. Measuring aspheres quickly: tilted wave interferometry. Optical Engineering 56, 111713 (2017). doi: 10.1117/1.OE.56.11.111713
[72] Osten, W. Different ways to overcome the resolution problem in optical micro and nano metrology, in Optical Imaging and Metrology: Advanced Technologies, eds Osten, W. & Reingand, N., Weinheim: Wiley-VCH, 2012, 327-368.
[73] Osten, W., Wilke, M. & Pedrini, G. Remote laboratories for optical metrology: from the lab to the cloud. Optical Engineering 52, 101914 (2013). doi: 10.1117/1.OE.52.10.101914