[1] |
Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Letters 15, 3692-3696 (2015). doi: 10.1021/nl5048779 |
[2] |
Yettapu, G. R. et al. Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: Remarkably high carrier mobilities and large diffusion lengths. Nano Letters 16, 4838-4848 (2016). doi: 10.1021/acs.nanolett.6b01168 |
[3] |
Kang, J. & Wang, L. W. High defect tolerance in lead halide perovskite CsPbBr3. The Journal of Physical Chemistry Letters 8, 489-493 (2017). doi: 10.1021/acs.jpclett.6b02800 |
[4] |
Maes, J. et al. Light absorption coefficient of CsPbBr3 perovskite nanocrystals. The Journal of Physical Chemistry Letters 9, 3093-3097 (2018). doi: 10.1021/acs.jpclett.8b01065 |
[5] |
Dutta, A. et al. Near-unity photoluminescence quantum efficiency for all CsPbX3 (X=Cl, Br, and I) perovskite nanocrystals: A generic synthesis approach. Angewandte Chemie International Edition 58, 5552-5556 (2019). doi: 10.1002/anie.201900374 |
[6] |
Lin, K. B. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245-248 (2018). doi: 10.1038/s41586-018-0575-3 |
[7] |
Yang, Z. et al. Large and ultrastable all-inorganic CsPbBr3 monocrystalline films: Low-temperature growth and application for high-performance photodetectors. Advanced Materials 30, 1802110 (2018). doi: 10.1002/adma.201802110 |
[8] |
Qin, C. et al. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature 585, 53-57 (2020). doi: 10.1038/s41586-020-2621-1 |
[9] |
Lin, R. et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature 603, 73-78 (2022). doi: 10.1038/s41586-021-04372-8 |
[10] |
Kojima, A. et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society 131, 6050-6051 (2009). doi: 10.1021/ja809598r |
[11] |
Park, J. et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724-730 (2023). doi: 10.1038/s41586-023-05825-y |
[12] |
Boyd, C. C. et al. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chemical Reviews 119, 3418-3451 (2019). doi: 10.1021/acs.chemrev.8b00336 |
[13] |
Li, N. et al. Ion migration in perovskite light-emitting diodes: Mechanism, characterizations, and material and device engineering. Advanced Materials 34, 2108102 (2022). doi: 10.1002/adma.202108102 |
[14] |
Knight, A. J. & Herz, L. M. Preventing phase segregation in mixed-halide perovskites: a perspective. Energy & Environmental Science 13, 2024-2046 (2020). |
[15] |
Yuan, Y. B. & Huang, J. S. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Accounts of Chemical Research 49, 286-293 (2016). doi: 10.1021/acs.accounts.5b00420 |
[16] |
Yuan, H. F. et al. Degradation of methylammonium lead iodide perovskite structures through light and electron beam driven ion migration. The Journal of Physical Chemistry Letters 7, 561-566 (2016). doi: 10.1021/acs.jpclett.5b02828 |
[17] |
Xu, R. P. et al. In situ observation of light illumination-induced degradation in organometal mixed-halide perovskite films. ACS Applied Materials & Interfaces 10, 6737-6746 (2018). |
[18] |
Ruan, S. et al. Light induced degradation in mixed-halide perovskites. Journal of Materials Chemistry C 7, 9326-9334 (2019). doi: 10.1039/C9TC02635E |
[19] |
Lai, M. L. et al. Intrinsic anion diffusivity in lead halide perovskites is facilitated by a soft lattice. Proceedings of the National Academy of Sciences of the United States of America 115, 11929-11934 (2018). |
[20] |
Deng, Y. H., Xiao, Z. G. & Huang, J. S. Light-induced self-poling effect on organometal trihalide perovskite solar cells for increased device efficiency and stability. Advanced Energy Materials 5, 1500721 (2015). doi: 10.1002/aenm.201500721 |
[21] |
Deng, X. F. et al. Dynamic study of the light soaking effect on perovskite solar cells by in-situ photoluminescence microscopy. Nano Energy 46, 356-364 (2018). doi: 10.1016/j.nanoen.2018.02.024 |
[22] |
Jeong, B., Han, H. & Park, C. Micro- and nanopatterning of halide perovskites where crystal engineering for emerging photoelectronics meets integrated device array technology. Advanced Materials 32, 2000597 (2020). doi: 10.1002/adma.202000597 |
[23] |
Zhang, Y. et al. Emerging intelligent manufacturing of metal halide perovskites. Advanced Materials Technologies 8, 2200275 (2023). doi: 10.1002/admt.202200275 |
[24] |
Lan, S. et al. Preparation and promising optoelectronic applications of lead halide perovskite patterned structures: A review. Carbon Energy 5, e318 (2023). doi: 10.1002/cey2.318 |
[25] |
Harwell, J. et al. Patterning multicolor hybrid perovskite films via top-down lithography. ACS Nano 13, 3823-3829 (2019). doi: 10.1021/acsnano.8b09592 |
[26] |
Dou, L. T. et al. Spatially resolved multicolor CsPbX3 nanowire heterojunctions via anion exchange. Proceedings of the National Academy of Sciences of the United States of America 114, 7216-7221 (2017). |
[27] |
Wang, Y. et al. Perovskite-ion beam interactions: toward controllable light emission and lasing. ACS Applied Materials & Interfaces 11, 15756-15763 (2019). |
[28] |
Gu, Z. K. et al. Controllable growth of high-quality inorganic perovskite microplate arrays for functional optoelectronics. Advanced Materials 32, 1908006 (2020). doi: 10.1002/adma.201908006 |
[29] |
Qiao, W. et al. Toward scalable flexible nanomanufacturing for photonic structures and devices. Advanced Materials 28, 10353-10380 (2016). doi: 10.1002/adma.201601801 |
[30] |
Poh, E. T., Lim, S. X. & Sow, C. H. Multifaceted approaches to engineer fluorescence in nanomaterials via a focused laser beam. Light:Advanced Manufacturing 3, 4 (2022). |
[31] |
Jia, B. H. et al. Two-photon polymerization for three-dimensional photonic devices in polymers and nanocomposites. Australian Journal of Chemistry 60, 484-495 (2007). doi: 10.1071/CH06484 |
[32] |
Lin, H., Jia, B. H. & Gu, M. Dynamic generation of Debye diffraction-limited multifocal arrays for direct laser printing nanofabrication. Optics Letters 36, 406-408 (2011). doi: 10.1364/OL.36.000406 |
[33] |
Lin, H., Jia, B. H. & Gu, M. Generation of an axially super-resolved quasi-spherical focal spot using an amplitude-modulated radially polarized beam. Optics Letters 36, 2471-2473 (2011). doi: 10.1364/OL.36.002471 |
[34] |
Wang, Z. P. et al. High-quality micropattern printing by interlacing-pattern holographic femtosecond pulses. Nanophotonics 9, 2895-2904 (2020). doi: 10.1515/nanoph-2020-0138 |
[35] |
Zeng, H. B. et al. Nanomaterials via laser ablation/irradiation in liquid: A review. Advanced Functional Materials 22, 1333-1353 (2012). doi: 10.1002/adfm.201102295 |
[36] |
Gattass, R. R. & Mazur, E. Femtosecond laser micromachining in transparent materials. Nature Photonics 2, 219-225 (2008). doi: 10.1038/nphoton.2008.47 |
[37] |
Coelho, S. et al. Direct-laser writing for subnanometer focusing and single-molecule imaging. Nature Communications 13, 647 (2022). doi: 10.1038/s41467-022-28219-6 |
[38] |
Sheng, Y. H. et al. Microsteganography on all inorganic perovskite micro-platelets by direct laser writing. Nanoscale 13, 14450-14459 (2021). doi: 10.1039/D1NR02511B |
[39] |
Jeon, T. et al. Laser crystallization of organic-inorganic hybrid perovskite solar cells. ACS Nano 10, 7907-7914 (2016). doi: 10.1021/acsnano.6b03815 |
[40] |
Arciniegas, M. P. et al. Laser-induced localized growth of methylammonium lead halide perovskite nano- and microcrystals on substrates. Advanced Functional Materials 27, 1701613 (2017). doi: 10.1002/adfm.201701613 |
[41] |
Sun, K. et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass. Science 375, 307-310 (2022). doi: 10.1126/science.abj2691 |
[42] |
Sun, K. et al. Pure blue perovskites nanocrystals in glass: Ultrafast laser direct writing and bandgap tuning. Laser & Photonics Reviews 17, 2200902 (2023). |
[43] |
Shirk, M. D. & Molian, P. A. A review of ultrashort pulsed laser ablation of materials. Journal of Laser Applications 10, 18-28 (1998). doi: 10.2351/1.521827 |
[44] |
Miotello, A. & Kelly, R. Critical assessment of thermal models for laser sputtering at high fluences. Applied Physics Letters 67, 3535-3537 (1995). doi: 10.1063/1.114912 |
[45] |
Stuart, B. C. et al. Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. Physical Review Letters 74, 2248-2251 (1995). doi: 10.1103/PhysRevLett.74.2248 |
[46] |
Stuart, B. C. et al. Optical ablation by high-power short-pulse lasers. Journal of the Optical Society of America B 13, 459-468 (1996). doi: 10.1364/JOSAB.13.000459 |
[47] |
Plech, A. et al. Femtosecond laser near-field ablation from gold nanoparticles. Nature Physics 2, 44-47 (2006). doi: 10.1038/nphys191 |
[48] |
Kanaujia, P. K. & Prakash, G. V. Laser-induced microstructuring of two-dimensional layered inorganic-organic perovskites. Physical Chemistry Chemical Physics 18, 9666-9672 (2016). doi: 10.1039/C6CP00357E |
[49] |
Zhou, C. H. et al. Spatially modulating the fluorescence color of mixed-halide perovskite nanoplatelets through direct femtosecond laser writing. ACS Applied Materials & Interfaces 11, 26017-26023 (2019). |
[50] |
Zhizhchenko, A. Y. et al. Light-emitting nanophotonic designs enabled by ultrafast laser processing of halide perovskites. Small 16, 2000410 (2020). doi: 10.1002/smll.202000410 |
[51] |
Zhizhchenko, A. Y. et al. Direct imprinting of laser field on halide perovskite single crystal for advanced photonic applications. Laser & Photonics Reviews 15, 2100094 (2021). |
[52] |
Liang, S. Y. et al. High-quality patterning of CsPbBr3 perovskite films through lamination-assisted femtosecond laser ablation toward light-emitting diodes. ACS Applied Materials & Interfaces 14, 46958-46963 (2022). |
[53] |
Rajan, R. A. et al. Space-resolved light emitting and lasing behaviors of crystalline perovskites upon femtosecond laser ablation. Materials Today Physics 31, 101000 (2023). doi: 10.1016/j.mtphys.2023.101000 |
[54] |
Wei, Y. et al. Laser-induced optoelectronic tuning of perovskite nanocrystal films for multicolor pattern displays. ACS Applied Nano Materials 5, 11020-11027 (2022). doi: 10.1021/acsanm.2c02240 |
[55] |
Liang, S. Y. et al. Femtosecond laser regulatory focus ablation patterning of a fluorescent film up to 1/10 of the scale of the diffraction limit. Nanoscale 15, 5494-5498 (2023). doi: 10.1039/D2NR06946F |
[56] |
Chou, S. S. et al. Laser direct write synthesis of lead halide perovskites. The Journal of Physical Chemistry Letters 7, 3736-3741 (2016). doi: 10.1021/acs.jpclett.6b01557 |
[57] |
Huang, X. J. et al. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nature Photonics 14, 82-88 (2020). doi: 10.1038/s41566-019-0538-8 |
[58] |
Zhang, L. W. et al. In situ localized formation of cesium lead bromide nanocomposites for fluorescence micro-patterning technology achieved by organic solvent polymerization. Journal of Materials Chemistry C 8, 3409-3417 (2020). |
[59] |
Zhan, W. J. et al. In situ patterning perovskite quantum dots by direct laser writing fabrication. ACS Photonics 8, 765-770 (2021). doi: 10.1021/acsphotonics.1c00118 |
[60] |
Nie, L. et al. Multicolor display fabricated via stacking CW laser-patterned perovskite films. ACS Energy Letters 8, 2025-2032 (2023). doi: 10.1021/acsenergylett.3c00134 |
[61] |
Huang, X. J. et al. Three-dimensional laser-assisted patterning of blue-emissive metal halide perovskite nanocrystals inside a glass with switchable photoluminescence. ACS Nano 14, 3150-3158 (2020). doi: 10.1021/acsnano.9b08314 |
[62] |
Jeon, N. J. et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature Materials 13, 897-903 (2014). doi: 10.1038/nmat4014 |
[63] |
Snaith, H. J. et al. Anomalous hysteresis in perovskite solar cells. The Journal of Physical Chemistry Letters 5, 1511-1515 (2014). doi: 10.1021/jz500113x |
[64] |
Unger, E. L. et al. Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells. Energy & Environmental Science 7, 3690-3698 (2014). |
[65] |
Xiao, Z. G. et al. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nature Materials 14, 193-198 (2015). doi: 10.1038/nmat4150 |
[66] |
Xing, J. et al. Ultrafast ion migration in hybrid perovskite polycrystalline thin films under light and suppression in single crystals. Physical Chemistry Chemical Physics 18, 30484-30490 (2016). doi: 10.1039/C6CP06496E |
[67] |
deQuilettes, D. W. et al. Photo-induced halide redistribution in organic-inorganic perovskite films. Nature Communications 7, 11683 (2016). doi: 10.1038/ncomms11683 |
[68] |
Mosconi, E. et al. Light-induced annihilation of Frenkel defects in organo-lead halide perovskites. Energy & Environmental Science 9, 3180-3187 (2016). |
[69] |
Chiba, T. et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nature Photonics 12, 681-687 (2018). doi: 10.1038/s41566-018-0260-y |
[70] |
Sheng, Y. H. et al. Laser-triggered vapor-phase anion exchange on all-inorganic perovskites for multicolor patterns and microfabrications. Advanced Optical Materials 11, 2202230 (2023). doi: 10.1002/adom.202202230 |
[71] |
Aihemaiti, N. et al. Light-induced phase segregation evolution of all-inorganic mixed halide perovskites. The Journal of Physical Chemistry Letters 14, 267-272 (2023). doi: 10.1021/acs.jpclett.2c03419 |
[72] |
Tang, X. F. et al. Local observation of phase segregation in mixed-halide perovskite. Nano Letters 18, 2172-2178 (2018). doi: 10.1021/acs.nanolett.8b00505 |
[73] |
Chen, W. J. et al. Tracking dynamic phase segregation in mixed-halide perovskite single crystals under two-photon scanning laser illumination. Small Methods 3, 1900273 (2019). doi: 10.1002/smtd.201900273 |
[74] |
Mao, W. X. et al. Visualizing phase segregation in mixed-halide perovskite single crystals. Angewandte Chemie International Edition 58, 2893-2898 (2019). doi: 10.1002/anie.201810193 |
[75] |
Nandi, P. et al. Stabilizing mixed halide lead perovskites against photoinduced phase segregation by A-site cation alloying. ACS Energy Letters 6, 837-847 (2021). doi: 10.1021/acsenergylett.0c02631 |
[76] |
Bischak, C. G. et al. Origin of reversible photoinduced phase separation in hybrid perovskites. Nano Letters 17, 1028-1033 (2017). doi: 10.1021/acs.nanolett.6b04453 |
[77] |
Belisle, R. A. et al. Impact of surfaces on photoinduced halide segregation in mixed-halide perovskites. ACS Energy Letters 3, 2694-2700 (2018). doi: 10.1021/acsenergylett.8b01562 |
[78] |
Bischak, C. G. et al. Tunable polaron distortions control the extent of halide demixing in lead halide perovskites. The Journal of Physical Chemistry Letters 9, 3998-4005 (2018). doi: 10.1021/acs.jpclett.8b01512 |
[79] |
Wang, X. et al. Suppressed phase separation of mixed-halide perovskites confined in endotaxial matrices. Nature Communications 10, 695 (2019). doi: 10.1038/s41467-019-08610-6 |
[80] |
Wang, Z. M. et al. Laser induced ion migration in all-inorganic mixed halide perovskite micro-platelets. Nanoscale Advances 1, 4459-4465 (2019). doi: 10.1039/C9NA00565J |
[81] |
Sheng, Y. H. et al. Mechanism of photoinduced phase segregation in mixed-halide perovskite microplatelets and its application in micropatterning. ACS Applied Materials & Interfaces 14, 12412-12422 (2022). |
[82] |
Mao, W. X. et al. Light-induced reversal of ion segregation in mixed-halide perovskites. Nature Materials 20, 55-61 (2021). doi: 10.1038/s41563-020-00826-y |
[83] |
Sun, X. X., Zhang, Y. & Ge, W. K. Photo-induced macro/mesoscopic scale ion displacement in mixed-halide perovskites: ring structures and ionic plasma oscillations. Light:Science and Applications 11, 262 (2022). doi: 10.1038/s41377-022-00957-8 |
[84] |
Park, S. Y. et al. Patterning quantum dots via photolithography: A review. Advanced Materials. https://doi.org/10.1002/adma.202300546(2023). doi: 10.1002/adma.202300546(2023) |
[85] |
Ko, J. et al. Ligand-assisted direct photolithography of perovskite nanocrystals encapsulated with multifunctional polymer ligands for stable, full-colored, high-resolution displays. Nano Letters 21, 2288-2295 (2021). doi: 10.1021/acs.nanolett.1c00134 |
[86] |
Pan, J. A., Ondry, J. C. & Talapin, D. V. Direct optical lithography of CsPbX3 nanocrystals via photoinduced ligand cleavage with postpatterning chemical modification and electronic coupling. Nano Letters 21, 7609-7616 (2021). doi: 10.1021/acs.nanolett.1c02249 |
[87] |
Liu, D. et al. Direct optical patterning of perovskite nanocrystals with ligand cross-linkers. Science Advances 8, eabm8433 (2022). doi: 10.1126/sciadv.abm8433 |
[88] |
Zhang, P. P. et al. Direct in situ photolithography of perovskite quantum dots based on photocatalysis of lead bromide complexes. Nature Communications 13, 6713 (2022). doi: 10.1038/s41467-022-34453-9 |
[89] |
Chen, J. et al. Simple and fast patterning process by laser direct writing for perovskite quantum dots. Advanced Materials Technologies 2, 1700132 (2017). doi: 10.1002/admt.201700132 |
[90] |
Martin, C. et al. Selectively tunable luminescence of perovskite nanocrystals embedded in polymer matrix allows direct laser patterning. Advanced Optical Materials 10, 2200201 (2022). doi: 10.1002/adom.202200201 |
[91] |
Lu, H. Z. et al. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science 370, eabb8985 (2020). doi: 10.1126/science.abb8985 |
[92] |
Min, H. et al. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science 366, 749-753 (2019). doi: 10.1126/science.aay7044 |
[93] |
Hui, W. et al. Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity. Science 371, 1359-1364 (2021). doi: 10.1126/science.abf7652 |
[94] |
Steele, J. A. et al. Direct laser writing of δ- to α-phase transformation in formamidinium lead iodide. ACS Nano 11, 8072-8083 (2017). doi: 10.1021/acsnano.7b02777 |
[95] |
Liang, T. Y. et al. Fabry-perot mode-limited high-purcell-enhanced spontaneous emission from in situ laser-induced CsPbBr3 quantum dots in CsPb2Br5 microcavities. Nano Letters 22, 355-365 (2022). doi: 10.1021/acs.nanolett.1c04025 |
[96] |
Palazon, F. et al. Postsynthesis transformation of insulating Cs4PbBr6 nanocrystals into bright perovskite CsPbBr3 through physical and chemical extraction of CsBr. ACS Energy Letters 2, 2445-2448 (2017). doi: 10.1021/acsenergylett.7b00842 |
[97] |
Saidaminov, M. I. et al. Pure Cs4PbBr6: Highly luminescent zero-dimensional perovskite solids. ACS Energy Letters 1, 840-845 (2016). doi: 10.1021/acsenergylett.6b00396 |
[98] |
Li, M. J. et al. Coupling localized laser writing and nonlocal recrystallization in perovskite crystals for reversible multidimensional optical encryption. Advanced Materials 34, 2201413 (2022). doi: 10.1002/adma.202201413 |
[99] |
Ma, K. W. et al. Tunable multicolor fluorescence of perovskite-based composites for optical steganography and light-emitting devices. Research 2022, 9896548 (2022). |
[100] |
Liang, S. Y. et al. High-resolution patterning of 2D perovskite films through femtosecond laser direct writing. Advanced Functional Materials 32, 2204957 (2022). |
[101] |
You, P. et al. Ultrafast laser-annealing of perovskite films for efficient perovskite solar cells. Energy & Environmental Science 13, 1187-1196 (2020). |
[102] |
Cao, H. Q. et al. Reducing defects in perovskite solar cells with white light illumination-assisted synthesis. ACS Energy Letters 4, 2821-2829 (2019). doi: 10.1021/acsenergylett.9b02145 |
[103] |
Brooks, K. G. & Nazeeruddin, M. K. Laser processing methods for perovskite solar cells and modules. Advanced Energy Materials 11, 2101149 (2021). doi: 10.1002/aenm.202101149 |
[104] |
Huang, Y. G. et al. Mini-LED, Micro-LED and OLED displays: present status and future perspectives. Light:Science and Applications 9, 105 (2020). doi: 10.1038/s41377-020-0341-9 |
[105] |
Gong, Y. F. & Gong, Z. Laser-based micro/nano-processing techniques for microscale LEDs and full-color displays. Advanced Materials Technologies 8, 2200949 (2023). doi: 10.1002/admt.202200949 |
[106] |
Hu, Y. Z. et al. Laser-induced inverted patterning of nanocrystals embedded glass for micro-light-emitting diodes. Journal of Materials Science & Technology 150, 138-144 (2023). |
[107] |
Zhu, H. M. et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nature Materials 14, 636-642 (2015). doi: 10.1038/nmat4271 |
[108] |
Zhang, Q. et al. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Advanced Functional Materials 26, 6238-6245 (2016). doi: 10.1002/adfm.201601690 |
[109] |
Liu, Z. Z. et al. Robust subwavelength single-mode perovskite nanocuboid laser. ACS Nano 12, 5923-5931 (2018). doi: 10.1021/acsnano.8b02143 |
[110] |
Zhizhchenko, A. et al. Single-mode lasing from imprinted halide-perovskite microdisks. ACS Nano 13, 4140-4147 (2019). doi: 10.1021/acsnano.8b08948 |
[111] |
Tian, X. Y. et al. Femtosecond laser direct writing of perovskite patterns with whispering gallery mode lasing. Journal of Materials Chemistry C 8, 7314-7321 (2020). doi: 10.1039/D0TC01839B |
[112] |
Zhizhchenko, A. Y. et al. Directional lasing from nanopatterned halide perovskite nanowire. Nano Letters 21, 10019-10025 (2021). doi: 10.1021/acs.nanolett.1c03656 |
[113] |
Feng, J. G. et al. Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors. Nature Electronics 1, 404-410 (2018). doi: 10.1038/s41928-018-0101-5 |
[114] |
Tian, C. C. et al. Chemical vapor deposition method grown all-inorganic perovskite microcrystals for self-powered photodetectors. ACS Applied Materials & Interfaces 11, 15804-15812 (2019). |
[115] |
Xu, X. B. et al. High-definition colorful perovskite narrowband photodetector array enabled by laser-direct-writing. Nano Research 15, 5476-5482 (2022). doi: 10.1007/s12274-022-4163-3 |
[116] |
Zou, C. et al. Nonvolatile rewritable photomemory arrays based on reversible phase-change perovskite for optical information storage. Advanced Optical Materials 7, 1900558 (2019). doi: 10.1002/adom.201900558 |
[117] |
Tian, X. Y. et al. Triangular micro-grating via femtosecond laser direct writing toward high-performance polarization-sensitive perovskite photodetectors. Advanced Optical Materials 10, 2200856 (2022). doi: 10.1002/adom.202200856 |
[118] |
Klepov, V. V. et al. Laser scribing for electrode patterning of perovskite spectrometer-grade CsPbBr3 gamma-ray detectors. ACS Applied Materials & Interfaces 15, 16895-16901 (2023). |
[119] |
Deumel, S. et al. Laser cutting of metal-halide-perovskite wafers for X-ray detector integration. Advanced Materials Interfaces 9, 2200642 (2022). doi: 10.1002/admi.202200642 |
[120] |
Wang, Z. Y. et al. Flat lenses based on 2D perovskite nanosheets. Advanced Materials 32, 2001388 (2020). doi: 10.1002/adma.202001388 |
[121] |
Yang, W. K. et al. Detour-phased perovskite ultrathin planar lens using direct femtosecond laser writing. Photonics Research 10, 2768-2777 (2022). doi: 10.1364/PRJ.472321 |
[122] |
Tan, D. Z. et al. Photo-processing of perovskites: current research status and challenges. Opto-Electronic Science 1, 220014 (2022). doi: 10.29026/oes.2022.220014 |
[123] |
Wang, J. X. et al. Mechanisms and applications of laser action on lead halide perovskites. Acta Physico-Chimica Sinica 37, 2008051 (2021). |
[124] |
Lin, H. et al. Engineering van der Waals materials for advanced metaphotonics. Chemical Reviews 122, 15204-15355 (2022). doi: 10.1021/acs.chemrev.2c00048 |
[125] |
Ceratti, D. R. et al. Self-healing inside APbBr3 halide perovskite crystals. Advanced Materials 30, 1706273 (2018). doi: 10.1002/adma.201706273 |
[126] |
Yi, L. Y. et al. X-ray-to-visible light-field detection through pixelated colour conversion. Nature 618, 281-286 (2023). |
[127] |
Xu, Z. S. et al. Controlled on-chip fabrication of large-scale perovskite single crystal arrays for high-performance laser and photodetector integration. Light:Science and Applications 12, 67 (2023). doi: 10.1038/s41377-023-01107-4 |