[1] Allen, L. et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992). doi: 10.1103/PhysRevA.45.8185
[2] Padgett, M. & Bowman, R. Tweezers with a twist. Nat. Photonics 5, 343–348 (2011). doi: 10.1038/nphoton.2011.81
[3] Mirhosseini, N. et al. High-dimensional quantum cryptography with twisted light. N. J. Phys. 17, 033033 (2015). doi: 10.1088/1367-2630/17/3/033033
[4] Bozinovic, N. et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545–1548 (2013). doi: 10.1126/science.1237861
[5] Berkhout, G. C. G. & Beijersbergen, M. W. Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects. Phys. Rev. Lett. 101, 100801 (2008). doi: 10.1103/PhysRevLett.101.100801
[6] Ritsch-Marte, M. Orbital angular momentum light in microscopy. Philos. Trans. R. Soc. A Math., Phys. Eng. Sci. 375, 20150437 (2017).
[7] Mamani, S. et al. Transmission of classically entangled beams through mouse brain tissue. J. Biophoton 11, e201800096 (2018). doi: 10.1002/jbio.201800096
[8] Lingyan, Shi et al. Propagation of Gaussian and Laguerre-Gaussian vortex beams through mouse brain tissue. J. Biophoton 10, 1756–1760 (2017). doi: 10.1002/jbio.201700022
[9] Milione, G., Sztul, H. I., Nolan, D. A. & Alfano, R. R. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light. Phys. Rev. Lett. 107, 053601 (2011). doi: 10.1103/PhysRevLett.107.053601
[10] Ma, H. X. et al. In situ measurement of the topological charge of a perfect vortex using the phase shift method. Opt. Lett. 42, 135–138 (2017). doi: 10.1364/OL.42.000135
[11] Leach, J. et al. Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon. Phys. Rev. Lett. 92, 013601 (2004). doi: 10.1103/PhysRevLett.92.013601
[12] Zhao, R. Z., Huang, L. L. & Wang, Y. T. Recent advances in multi-dimensional metasurfaces holographic technologies. PhotoniX 1, 20 (2020). doi: 10.1186/s43074-020-00020-y
[13] Sztul, H. I. & Alfano, R. R. Double-slit interference with Laguerre–Gaussian beams. Opt. Lett. 31, 999–1001 (2006). doi: 10.1364/OL.31.000999
[14] Hickmann, J. M. et al. Unveiling a truncated optical lattice associated with a triangular aperture using light's orbital angular momentum. Phys. Rev. Lett. 105, 053904 (2010). doi: 10.1103/PhysRevLett.105.053904
[15] Guo, C. S., Lu, L. L. & Wang, H. T. Characterizing topological charge of optical vortices by using an annular aperture. Opt. Lett. 34, 3686–3688 (2009). doi: 10.1364/OL.34.003686
[16] Ferreira, Q. S. et al. Fraunhofer diffraction of light with orbital angular momentum by a slit. Opt. Lett. 36, 3106–3108 (2011). doi: 10.1364/OL.36.003106
[17] Fu, D. Z. et al. Probing the topological charge of a vortex beam with dynamic angular double slits. Opt. Lett. 40, 788–791 (2015). doi: 10.1364/OL.40.000788
[18] Wen, Y. H. et al. Spiral transformation for high-resolution and efficient sorting of optical vortex modes. Phys. Rev. Lett. 120, 193904 (2018). doi: 10.1103/PhysRevLett.120.193904
[19] Ruffato, G. et al. Total angular momentum sorting in the telecom infrared with silicon Pancharatnam-Berry transformation optics. Opt. Express 27, 15750–15764 (2019). doi: 10.1364/OE.27.015750
[20] Fontaine, N. K. et al. Laguerre-Gaussian mode sorter. Nat. Commun. 10, 1865 (2019). doi: 10.1038/s41467-019-09840-4
[21] Zhou, J., Zhang, W. H. & Chen, L. X. Experimental detection of high-order or fractional orbital angular momentum of light based on a robust mode converter. Appl. Phys. Lett. 108, 111108 (2016). doi: 10.1063/1.4944463
[22] Zhou, H. L. et al. Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect. Light. : Sci. Appl. 6, e16251 (2017). doi: 10.1038/lsa.2016.251
[23] Ji, Z. R. et al. Photocurrent detection of the orbital angular momentum of light. Science 368, 763–767 (2020). doi: 10.1126/science.aba9192
[24] Qiu, J. D., Ren, C. L. & Zhang, Z. Y. Precisely measuring the orbital angular momentum of beams via weak measurement. Phys. Rev. A 93, 063841 (2016). doi: 10.1103/PhysRevA.93.063841
[25] Zhu, J. et al. Measuring the topological charge of orbital angular momentum beams by utilizing weak measurement principle. Sci. Rep. 9, 7993 (2019). doi: 10.1038/s41598-019-44465-z
[26] Aharonov, Y., Albert, D. Z. & Vaidman, L. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351–1354 (1988). doi: 10.1103/PhysRevLett.60.1351
[27] Rego, L. et al. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science 364, eaaw9486 (2019). doi: 10.1126/science.aaw9486
[28] Dorney, K. M. et al. Controlling the polarization and vortex charge of attosecond high-harmonic beams via simultaneous spin–orbit momentum conservation. Nat. Photonics 13, 123–130 (2019). doi: 10.1038/s41566-018-0304-3
[29] Picón, A. et al. Photoionization with orbital angular momentum beams. Opt. Express 18, 3660–3671 (2010). doi: 10.1364/OE.18.003660
[30] Picón, A. et al. Transferring orbital and spin angular momenta of light to atoms. N. J. Phys. 12, 083053 (2010). doi: 10.1088/1367-2630/12/8/083053
[31] De Ninno, G. et al. Photoelectric effect with a twist. Nat. Photonics 14, 554–558 (2020). doi: 10.1038/s41566-020-0669-y
[32] Fang, Y. Q. et al. Photoelectronic mapping of the spin–orbit interaction of intense light fields. Nat. Photonics 15, 115–120 (2021). doi: 10.1038/s41566-020-00709-3
[33] Oemrawsingh, S. S. R. et al. Production and characterization of spiral phase plates for optical wavelengths. Appl. Opt. 43, 688–694 (2004). doi: 10.1364/AO.43.000688
[34] Ullrich, J. et al. Recoil-ion momentum spectroscopy. J. Phys. B: At., Mol. Optical Phys. 30, 2917–2974 (1997). doi: 10.1088/0953-4075/30/13/006
[35] Shao, Y. et al. Isolating resonant excitation from above-threshold ionization. Phys. Rev. A 92, 013415 (2015). doi: 10.1103/PhysRevA.92.013415
[36] Youngworth, K. S. & Brown, T. G. Focusing of high numerical aperture cylindrical-vector beams. Opt. Express 7, 77–87 (2000). doi: 10.1364/OE.7.000077
[37] Mancuso, C. A. et al. Strong-field ionization with two-color circularly polarized laser fields. Phys. Rev. A 91, 031402(R) (2015). doi: 10.1103/PhysRevA.91.031402
[38] Ammosov, M. V., Delon, N. B. & Kraǐnov, V. P. Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Sov. Phys. J. Exp. Theor. Phys. 64, 1191–1194 (1986).
[39] HuP, B., Liu, J. & Chen, S. G. Plateau in above-threshold-ionization spectra and chaotic behavior in rescattering processes. Phys. Lett. A 236, 533–542 (1997). doi: 10.1016/S0375-9601(97)00811-6
[40] Li, M. et al. Subcycle dynamics of Coulomb asymmetry in strong elliptical laser fields. Phys. Rev. Lett. 111, 023006 (2013). doi: 10.1103/PhysRevLett.111.023006
[41] Fang, Y. Q. et al. Strong-field photoionization of intense laser fields by controlling optical singularities. Sci. China Phys., Mech. Astron. 64, 274211 (2021). doi: 10.1007/s11433-021-1689-7
[42] Gao, S. J. et al. Paraxial skyrmionic beams. Phys. Rev. A 102, 053513 (2020). doi: 10.1103/PhysRevA.102.053513
[43] Zürch, M. et al. Strong-field physics with singular light beams. Nat. Phys. 8, 743–746 (2012). doi: 10.1038/nphys2397
[44] Kong, F. Q. et al. Controlling the orbital angular momentum of high harmonic vortices. Nat. Commun. 8, 14970 (2017). doi: 10.1038/ncomms14970
[45] Uchida, M. & Tonomura, A. Generation of electron beams carrying orbital angular momentum. Nature 464, 737–739 (2010). doi: 10.1038/nature08904
[46] Pengel, D. et al. Electron vortices in femtosecond multiphoton ionization. Phys. Rev. Lett. 118, 053003 (2017). doi: 10.1103/PhysRevLett.118.053003
[47] Mancuso, C. A. et al. Controlling electron-ion rescattering in two-color circularly polarized femtosecond laser fields. Phys. Rev. A 93, 053406 (2016). doi: 10.1103/PhysRevA.93.053406
[48] Landau, L. D. & Lifshits, E. M. Quantum Mechanics: Non-Relativistic Theory (Pergamon, 1977).
[49] Becker, W. et al. Above-threshold ionization: from classical features to quantum effects. Adv. At., Mol., Optical Phys. 48, 35–98 (2002).