[1] Aidelsburger, M., Nascimbene, S. & Goldman, N. Artificial gauge fields in materials and engineered systems. C. R. Phys. 19, 394–432 (2018). doi: 10.1016/j.crhy.2018.03.002
[2] Lin, Y. J. et al. Synthetic magnetic fields for ultracold neutral atoms. Nature 462, 628–632 (2009). doi: 10.1038/nature08609
[3] Aidelsburger, M. et al. Experimental realization of strong effective magnetic fields in an optical lattice. Phys. Rev. Lett. 107, 255301 (2011). doi: 10.1103/PhysRevLett.107.255301
[4] Miyake, H. et al. Realizing the harper Hamiltonian with laser-assisted tunneling in optical lattices. Phys. Rev. Lett. 111, 185302 (2013). doi: 10.1103/PhysRevLett.111.185302
[5] Struck, J. et al. Tunable gauge potential for neutral and spinless particles in driven optical lattices. Phys. Rev. Lett. 108, 225304 (2012). doi: 10.1103/PhysRevLett.108.225304
[6] Aidelsburger, M. et al. Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett. 111, 185301 (2013). doi: 10.1103/PhysRevLett.111.185301
[7] Aidelsburger, M. et al. Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Nat. Phys. 11, 162–166 (2015). doi: 10.1038/nphys3171
[8] Jotzu, G. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014). doi: 10.1038/nature13915
[9] Ray, M. W. et al. Observation of Dirac monopoles in a synthetic magnetic field. Nature 505, 657–660 (2014). doi: 10.1038/nature12954
[10] Li, T. et al. Bloch state tomography using Wilson lines. Science 352, 1094–1097 (2016). doi: 10.1126/science.aad5812
[11] Fang, K. J., Yu, Z. F. & Fan, S. H. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photonics 6, 782–787 (2012). doi: 10.1038/nphoton.2012.236
[12] Fang, K. J., Yu, Z. F. & Fan, S. H. Photonic Aharonov-Bohm effect based on dynamic modulation. Phys. Rev. Lett. 108, 153901 (2012). doi: 10.1103/PhysRevLett.108.153901
[13] Hafezi, M. et al. Robust optical delay lines with topological protection. Nat. Phys. 7, 907–912 (2011). doi: 10.1038/nphys2063
[14] Umucalılar, R. O. & Carusotto, I. Artificial gauge field for photons in coupled cavity arrays. Physical Review A 84, 043804 (2011). doi: 10.1103/PhysRevA.84.043804
[15] Li, E. B. et al. Photonic Aharonov–Bohm effect in photon–phonon interactions. Nat. Commun. 5, 3225 (2014). doi: 10.1038/ncomms4225
[16] Liu, F. & Li, J. Gauge field optics with anisotropic media. Phys. Rev. Lett. 114, 103902 (2015). doi: 10.1103/PhysRevLett.114.103902
[17] Liu, F. et al. Polarization beam splitting with gauge field metamaterials. Adv Opt Mater 7, 1801582 (2019). doi: 10.1002/adom.201801582
[18] Mittal, S. et al. Topologically robust transport of photons in a synthetic gauge field. Phys. Rev. Lett. 113, 087403 (2014). doi: 10.1103/PhysRevLett.113.087403
[19] Schine, N. et al. Synthetic Landau levels for photons. Nature 534, 671–675 (2016). doi: 10.1038/nature17943
[20] Rechtsman, M. C. et al. Strain-induced pseudomagnetic field and photonic Landau Levels in dielectric structures. Nat. Photonics 7, 153–158 (2013). doi: 10.1038/nphoton.2012.302
[21] Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008). doi: 10.1103/PhysRevLett.100.013904
[22] Wang, Z. et al. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009). doi: 10.1038/nature08293
[23] Xiao, M. et al. Synthetic gauge flux and Weyl points in acoustic systems. Nat. Phys. 11, 920–924 (2015). doi: 10.1038/nphys3458
[24] Yang, Z. J. et al. Strain-induced gauge field and landau levels in acoustic structures. Phys. Rev. Lett. 118, 194301 (2017). doi: 10.1103/PhysRevLett.118.194301
[25] Abbaszadeh, H. et al. Sonic landau levels and synthetic gauge fields in mechanical metamaterials. Phys. Rev. Lett. 119, 195502 (2017). doi: 10.1103/PhysRevLett.119.195502
[26] Lim, H. T. et al. Electrically tunable artificial gauge potential for polaritons. Nat. Commun. 8, 14540 (2017). doi: 10.1038/ncomms14540
[27] Schroer, M. D. et al. Measuring a topological transition in an artificial spin-1/2 system. Phys. Rev. Lett. 113, 050402 (2014). doi: 10.1103/PhysRevLett.113.050402
[28] Roushan, P. et al. Observation of topological transitions in interacting quantum circuits. Nature 515, 241–244 (2014). doi: 10.1038/nature13891
[29] Roushan, P. et al. Chiral ground-state currents of interacting photons in a synthetic magnetic field. Nat. Phys. 13, 146 (2017). doi: 10.1038/nphys3930
[30] Galitski, V. & Spielman, I. B. Spin–orbit coupling in quantum gases. Nature 494, 49–54 (2013). doi: 10.1038/nature11841
[31] Zhai, H. Degenerate quantum gases with spin–orbit coupling: a review. Rep. Prog. Phys. 78, 026001 (2015). doi: 10.1088/0034-4885/78/2/026001
[32] Huang, L. H. et al. Experimental realization of two-dimensional synthetic spin–orbit coupling in ultracold Fermi gases. Nat. Phys. 12, 540–544 (2016). doi: 10.1038/nphys3672
[33] Wu, Z. et al. Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates. Science 354, 83–88 (2016). doi: 10.1126/science.aaf6689
[34] Rechcińska, K. et al. Engineering spin-orbit synthetic Hamiltonians in liquid-crystal optical cavities. Science 366, 727–730 (2019). doi: 10.1126/science.aay4182
[35] Gianfrate, A. et al. Measurement of the quantum geometric tensor and of the anomalous Hall drift. Nature 578, 381 (2020). doi: 10.1038/s41586-020-1989-2
[36] Fieramosca, A. et al. Chromodynamics of photons in an artificial non-Abelian magnetic Yang-Mills field. https://arxiv.org/abs/1912.09684 (2019).
[37] Fruchart, M., Zhou, Y. J. & Vitelli, V. Dualities and non-Abelian mechanics. Nature 577, 636–640 (2020). doi: 10.1038/s41586-020-1932-6
[38] Wu, Q., Soluyanov, A. A. & Bzdušek, T. Non-Abelian band topology in noninteracting metals. Science 365, 1273–1277 (2019). doi: 10.1126/science.aau8740
[39] Yang, E. et al. Observation of non-Abelian nodal links in photonics. Phys. Rev. Lett. 125, 033901 (2020). doi: 10.1103/PhysRevLett.125.033901
[40] Guo, Q., et. al. Experimental observation of non-Abelian topological chargesand bulk-edge correspondence. arXiv: 2008.06100 (2020).
[41] Zwanziger, J. W., Koenig, M. & Pines, A. Non-Abelian effects in a quadrupole system rotating around two axes. Phys. Rev. A 42, 3107–3110 (1990). doi: 10.1103/PhysRevA.42.3107
[42] Zee, A. Non-Abelian gauge structure in nuclear quadrupole resonance. Phys. Rev. A 38, 1–6 (1988). doi: 10.1103/PhysRevA.38.1
[43] Alden Mead, C. Molecular Kramers degeneracy and non-Abelian adiabatic phase factors. Phys. Rev. Lett. 59, 161–164 (1987). doi: 10.1103/PhysRevLett.59.161
[44] Alden Mead, C. The geometric phase in molecular systems. Rev. Mod. Phys. 64, 51–85 (1992). doi: 10.1103/RevModPhys.64.51
[45] Wilczek, F. & Zee, A. Appearance of gauge structure in simple dynamical systems. Phys. Rev. Lett. 52, 2111–2114 (1984). doi: 10.1103/PhysRevLett.52.2111
[46] Shapere, A. & Wilczek, F. Geometric Phases in Physics 5 (World Scientific, Singapore, 1989).
[47] Abdumalikov, A. A. Jr. et al. Experimental realization of non-Abelian non-adiabatic geometric gates. Nature 496, 482–485 (2013). doi: 10.1038/nature12010
[48] Sugawa, S. et al. Second Chern number of a quantum-simulated non-Abelian Yang monopole. Science 360, 1429–1434 (2018). doi: 10.1126/science.aam9031
[49] Sugawa, S. et al. Observation and characterization of a non-Abelian gauge field's Wilczek-Zee phase by the Wilson loop. Preprint at https://arxiv.org/abs/1910.13991 (2019).
[50] Wu, T. T. & Yang, C. N. Concept of nonintegrable phase factors and global formulation of gauge fields. Phys. Rev. D 12, 3845–3857 (1975).
[51] Osterloh, K. et al. Cold atoms in non-Abelian gauge potentials: from theHofstadter "moth" to lattice gauge theory. Phys. Rev. Lett. 95, 01043 (2005).
[52] Chen, Y. et al. Non-Abelian gauge field optics. Nat. Commun. 10, 1 (2019). doi: 10.1038/s41467-018-07882-8
[53] Yang, Y. et al. Synthesis and observation of non-Abelian gauge fields in real space. Science 365, 1021–1025 (2019). doi: 10.1126/science.aay3183
[54] Hofstadter, D. R. Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14, 2239–2249 (1976). doi: 10.1103/PhysRevB.14.2239
[55] Hafezi, M. et al. Imaging topological edge states in silicon photonics. Nat. Photonics 7, 1001–1005 (2013). doi: 10.1038/nphoton.2013.274
[56] Roushan, P. et al. Spectroscopic signatures of localization with interacting photons in superconducting qubits. Science 358, 1175–1179 (2017). doi: 10.1126/science.aao1401
[57] Dutt, A. et al. A single photonic cavity with two independent physical synthetic dimensions. Science 367, 59–64 (2020). doi: 10.1126/science.aaz3071
[58] Goldman, N. et al. Ultracold atomic gases in non-Abelian gauge potentials: the case of constant Wilson loop. Phys. Rev. A 79, 023624 (2009). doi: 10.1103/PhysRevA.79.023624
[59] Goldman, N. et al. Realistic time-reversal invariant topological insulators with neutral atoms. Phys. Rev. Lett. 105, 255302 (2010). doi: 10.1103/PhysRevLett.105.255302
[60] Cai, J. Q. et al. Interplay between non-Hermiticity and non-Abelian gauge potential in topological photonics. https://arxiv.org/abs/1812.02610 (2018).
[61] Kosior, A. & Sacha, K. Simulation of non-Abelian lattice gauge fields with a single-component gas. EPL (Europhysics Letters) 107, 26006 (2014). doi: 10.1209/0295-5075/107/26006
[62] Guan, E. G., Yu, H. & Wang, G. Non-Abelian gauge potentials driven localization transition in quasiperiodic optical lattices. Phys. Lett. A 384, 126152 (2020). doi: 10.1016/j.physleta.2019.126152
[63] Dalibard, J. et al. Colloquium: artificial gauge potentials for neutral atoms. Rev. Mod. Phys. 83, 1523–1543 (2011). doi: 10.1103/RevModPhys.83.1523
[64] Goldman, N. et al. Light-induced gauge fields for ultracold atoms. Rep. Prog. Phys. 77, 126401 (2014). doi: 10.1088/0034-4885/77/12/126401
[65] Wen, X. G. & Zee, A. Winding number, family index theorem, and electron hopping in a magnetic field. Nuc. Phys. B 316, 641–662 (1989). doi: 10.1016/0550-3213(89)90062-X
[66] Chiu, C. K. et al. Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88, 035005 (2016). doi: 10.1103/RevModPhys.88.035005
[67] Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018). doi: 10.1103/RevModPhys.90.015001
[68] Gao, H. et al. Dirac-Weyl semimetal: coexistence of Dirac and Weyl fermions in polar hexagonal ABC crystals. Phys. Rev. Lett. 121, 106404 (2018). doi: 10.1103/PhysRevLett.121.106404
[69] Koshino, M., Morimoto, T. & Sato, M. Topological zero modes and Dirac points protected by spatial symmetry and chiral symmetry. Phys. Rev. B 90, 115207 (2014). doi: 10.1103/PhysRevB.90.115207
[70] Chiu, C. K. & Schnyder, A. P. Classification of reflection-symmetry-protected topological semimetals and nodal superconductors. Phys. Rev. B 90, 205136 (2014). doi: 10.1103/PhysRevB.90.205136
[71] Wieder, B. J. et al. Double Dirac semimetals in three dimensions. Phys. Rev. Lett. 116, 186402 (2016). doi: 10.1103/PhysRevLett.116.186402
[72] Bradlyn, B. et al. Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals. Science 353, aaf5037 (2016). doi: 10.1126/science.aaf5037
[73] Soluyanov, A. A. & Vanderbilt, D. Wannier representation of Z2 topological insulators. Phys. Rev. B 83, 035108 (2011). doi: 10.1103/PhysRevB.83.035108
[74] Li, Y. Time-reversal invariant SU(2) Hofstadter problem in three-dimensional lattices. Phys. Rev. B 91, 195133 (2015). doi: 10.1103/PhysRevB.91.195133
[75] Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized electric multipole insulators. Science 357, 61–66 (2017). doi: 10.1126/science.aah6442
[76] Yuan, L. Q. et al. Synthetic dimension in photonics. Optica 5, 1396–1405 (2018). doi: 10.1364/OPTICA.5.001396
[77] Kraus, Y. E. et al. Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett. 109, 106402 (2012). doi: 10.1103/PhysRevLett.109.106402
[78] Wermuth, E. M. E. A remark on commuting operator exponentials. Proc. Am. Math. Soc. 125, 1685–1688 (1997). doi: 10.1090/S0002-9939-97-03643-5