[1] |
Zhou, H. P. et al. Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014). doi: 10.1126/science.1254050 |
[2] |
Shan, Q. S. et al. Perovskite light-emitting/detecting bifunctional fibres for wearable LiFi communication. Light. : Sci. Appl. 9, 163 (2020). doi: 10.1038/s41377-020-00402-8 |
[3] |
Xing, J. et al. Modulating the optical and electrical properties of MAPbBr3 single crystals via voltage regulation engineering and application in memristors. Light. : Sci. Appl. 9, 111 (2020). doi: 10.1038/s41377-020-00349-w |
[4] |
Huang, W. et al. Multiferroic Bi2FeCrO6 based p-i-n heterojunction photovoltaic devices. J. Mater. Chem. A 5, 10355–10364 (2017). doi: 10.1039/C7TA01604B |
[5] |
Rastei, M. V. et al. Thickness dependence and strain effects in ferroelectric Bi2FeCrO6 thin films. ACS Appl. Energy Mater. 2, 8550–8559 (2019). doi: 10.1021/acsaem.9b01465 |
[6] |
Guo, K. X. et al. Regulation of photovoltaic response in ZSO-based multiferroic BFCO/BFCNT heterojunction photoelectrodes via magnetization and polarization. ACS Applied Materials &. Interfaces 13, 35657–35663 (2021). doi: 10.1021/acsami.1c07534 |
[7] |
Burger, A. M. et al. Shift photovoltaic current and magnetically induced bulk photocurrent in piezoelectric sillenite crystals. Phys. Rev. B 102, 081113(R) (2020). doi: 10.1103/PhysRevB.102.081113 |
[8] |
Quattropani, A. et al. Tuning photovoltaic response in Bi2FeCrO6 films by ferroelectric poling. Nanoscale 10, 13761–13766 (2018). doi: 10.1039/C8NR03137A |
[9] |
Tiwari, D. et al. Solution processed bismuth ferrite thin films for all-oxide solar photovoltaics. J. Phys. Chem. C. 119, 5872–5877 (2015). doi: 10.1021/jp512821a |
[10] |
Lopez-Varo, P. et al. Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion. Phys. Rep. 653, 1–40 (2016). doi: 10.1016/j.physrep.2016.07.006 |
[11] |
Zhang, L. et al. Continuously tuning epitaxial strains by thermal mismatch. ACS Nano 12, 1306–1312 (2018). doi: 10.1021/acsnano.7b07539 |
[12] |
Yang, S. et al. Improved ferroelectric properties and band-gap tuning in BiFeO3 films via substitution of Mn. RSC Adv. 9, 29238–29245 (2019). doi: 10.1039/C9RA05914H |
[13] |
Guo, K. X. et al. Mutual regulation of polarization and magnetization in BFCNT/BFCO heterostructure via stress analysis of dipoles. Ceram. Int. 47, 20422–20427 (2021). doi: 10.1016/j.ceramint.2021.04.051 |
[14] |
Nechache, R. et al. Bandgap tuning of multiferroic oxide solar cells. Nat. Photonics 9, 61–67 (2015). doi: 10.1038/nphoton.2014.255 |
[15] |
Plata, J. J. et al. Photo-sensitizing thin-film ferroelectric oxides using materials databases and high-throughput calculations. J. Mater. Chem. A 7, 27323–27333 (2019). doi: 10.1039/C9TA11820A |
[16] |
Gajdoš, M. et al. Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B 73, 045112 (2006). doi: 10.1103/PhysRevB.73.045112 |
[17] |
Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003). doi: 10.1063/1.1564060 |
[18] |
Medeiros, P. V. C., Stafström, S. & Björk, J. Effects of extrinsic and intrinsic perturbations on the electronic structure of graphene: retaining an effective primitive cell band structure by band unfolding. Phys. Rev. B 89, 041407(R) (2014). doi: 10.1103/PhysRevB.89.041407 |
[19] |
Habgood, M., Grau-Crespo, R. & Price, S. L. Substitutional and orientational disorder in organic crystals: A symmetry-adapted ensemble model. Phys. Chem. Chem. Phys. 13, 9590–9600 (2011). doi: 10.1039/c1cp20249a |
[20] |
You, L. et al. Enhancing ferroelectric photovoltaic effect by polar order engineering. Sci. Adv. 4, eaat3438 (2018). doi: 10.1126/sciadv.aat3438 |
[21] |
Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with > 29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020). doi: 10.1126/science.abd4016 |
[22] |
Lee, D. et al. Polarity control of carrier injection at ferroelectric/metal interfaces for electrically switchable diode and photovoltaic effects. Phys. Rev. B 84, 125305 (2011). doi: 10.1103/PhysRevB.84.125305 |
[23] |
Ji, W., Yao, K. & Liang, Y. C. Bulk photovoltaic effect at visible wavelength in epitaxial ferroelectric BiFeO3 thin films. Adv. Mater. 22, 1763–1766 (2010). doi: 10.1002/adma.200902985 |
[24] |
Yang, S. Y. et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 5, 143–147 (2010). doi: 10.1038/nnano.2009.451 |
[25] |
Lamichhane, S. et al. Effect of laser fluence on multiferroic BiFeO3 ferroelectric photovoltaic cells. J. Phys. Chem. Solids 146, 109602 (2020). doi: 10.1016/j.jpcs.2020.109602 |
[26] |
Xu, X. L. et al. Molecular ferroelectrics-driven high-performance perovskite solar cells. Angew. Chem. Int. Ed. 59, 19974–19982 (2020). doi: 10.1002/anie.202008494 |
[27] |
Zhang, Y. et al. Switchable magnetic bulk photovoltaic effect in the two-dimensional magnet CrI3. Nat. Commun. 10, 3783 (2019). doi: 10.1038/s41467-019-11832-3 |
[28] |
Park, N. G. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett. 4, 2423–2429 (2013). doi: 10.1021/jz400892a |
[29] |
Vats, G. et al. Current modulation by optoelectric control of ferroelectric domains. ACS Appl. Electron. Mater. 2, 2829–2836 (2020). doi: 10.1021/acsaelm.0c00497 |
[30] |
Guo, K. X. et al. Multiferroic and in-plane magnetoelectric coupling properties of BiFeO3 Nano-films with substitution of rare earth ions La3+ and Nd3+. J. Rare Earths 34, 1228–1234 (2016). doi: 10.1016/S1002-0721(16)60158-8 |
[31] |
Gao, L. K. & Tang, Y. L. Theoretical study on the carrier mobility and optical properties of CsPbI3 by DFT. ACS Omega 6, 11545–11555 (2021). doi: 10.1021/acsomega.1c00734 |
[32] |
Chen, T. et al. Intrinsic multiferroics in an individual single-crystalline Bi5Fe0.9Co0.1Ti3O15 nanoplate. Nanoscale 9, 15291–15297 (2017). doi: 10.1039/C7NR04141A |
[33] |
Yang, C. H. et al. Influence of bias magnetic field on magnetoelectric effect of magnetostrictive/elastic/piezoelectric laminated composite. Acta Phys. Sin. 57, 7292–7297 (2008). doi: 10.1088/0957-4484/18/36/365305 |
[34] |
Herrick, D. R. Symmetry of the quadratic Zeeman effect for hydrogen. Phys. Rev. A 26, 323–329 (1982). doi: 10.1103/PhysRevA.26.323 |
[35] |
Doherty, T. A. S. et al. Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites. Nature 580, 360–366 (2020). doi: 10.1038/s41586-020-2184-1 |
[36] |
Si, H. N. et al. Emerging conductive atomic force microscopy for metal halide perovskite materials and solar cells. Adv. Energy Mater. 10, 1903922 (2020). doi: 10.1002/aenm.201903922 |
[37] |
Toor, F. et al. Multi-scale surface texture to improve blue response of nanoporous black silicon solar cells. Appl. Phys. Lett. 99, 103501 (2011). doi: 10.1063/1.3636105 |
[38] |
Kundys, D. et al. Optically rewritable memory in a graphene-ferroelectric-photovoltaic heterostructure. Phys. Rev. Appl. 13, 064034 (2020). doi: 10.1103/PhysRevApplied.13.064034 |