[1] Pan, C. F. et al. Progress in piezo-phototronic-effect-enhanced light-emitting diodes and pressure imaging. Adv. Mater. 28, 1535–1552 (2016). doi: 10.1002/adma.201503500
[2] Feng, A. & Smet, P. F. A review of mechanoluminescence in inorganic solids: compounds, mechanisms, models and applications. Materials 11, 484 (2018). doi: 10.3390/ma11040484
[3] Wang, X. D. et al. Piezophotonic effect based on mechanoluminescent materials for advanced flexible optoelectronic applications. Nano Energy 55, 389–400 (2019). doi: 10.1016/j.nanoen.2018.11.014
[4] Zhang, J. C. et al. Trap-controlled mechanoluminescent materials. Prog. Mater. Sci. 103, 678–742 (2019). doi: 10.1016/j.pmatsci.2019.02.001
[5] Peng, D. F., Chen, B. & Wang, F. Recent advances in doped mechanoluminescent phosphors. ChemPlusChem 80, 1209–1215 (2015). doi: 10.1002/cplu.201500185
[6] Xie, Y. J. & Li, Z. Triboluminescence: recalling interest and new aspects. Chem 4, 943–971 (2018). doi: 10.1016/j.chempr.2018.01.001
[7] Xu, C. N. et al. Artificial skin to sense mechanical stress by visible light emission. Appl. Phys. Lett. 74, 1236–1238 (1999). doi: 10.1063/1.123510
[8] Chen, Y. et al. Addressable and color-tunable piezophotonic light-emitting stripes. Adv. Mater. 29, 1605165 (2017). doi: 10.1002/adma.201605165
[9] Qian, X. et al. Printable skin-driven mechanoluminescence devices via nanodoped matrix modification. Adv. Mater. 30, 1800291 (2018). doi: 10.1002/adma.201800291
[10] Wu, C. et al. Efficient mechanoluminescent elastomers for dual-responsive anticounterfeiting device and stretching/strain sensor with multimode sensibility. Adv. Funct. Mater. 28, 1803168 (2018). doi: 10.1002/adfm.201803168
[11] Wu, X. et al. Sono-optogenetics facilitated by a circulation-delivered rechargeable light source for minimally invasive optogenetics. Proc. Natl Acad. Sci. USA 116, 26332–26342 (2019). doi: 10.1073/pnas.1914387116
[12] Ma, Z. D. et al. Mechanics-induced triple-mode anticounterfeiting and moving tactile sensing by simultaneously utilizing instantaneous and persistent mechanoluminescence. Mater. Horiz. 6, 2003–2008 (2019). doi: 10.1039/C9MH01028A
[13] Wang, X. D. et al. Full dynamic-range pressure sensor matrix based on optical and electrical dual-mode sensing. Adv. Mater. 29, 1605817 (2017). doi: 10.1002/adma.201605817
[14] Wang, C. et al. Heartbeat-sensing mechanoluminescent device based on a quantitative relationship between pressure and emissive intensity. Matter 2, 181–193 (2020). doi: 10.1016/j.matt.2019.10.002
[15] Xu, C. N. et al. Direct view of stress distribution in solid by mechanoluminescence. Appl. Phys. Lett. 74, 2414–2416 (1999). doi: 10.1063/1.123865
[16] Xu, C. N. et al. Dynamic visualization of stress distribution by mechanoluminescence image. Appl. Phys. Lett. 76, 179–181 (2000). doi: 10.1063/1.125695
[17] Wong, M. C. et al. Temporal and remote tuning of piezophotonic-effect-induced luminescence and color gamut via modulating magnetic field. Adv. Mater. 29, 1701945 (2017). doi: 10.1002/adma.201701945
[18] Jeong, S. M. et al. Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer. Energy Environ. Sci. 7, 3338–3346 (2014). doi: 10.1039/C4EE01776E
[19] Bünzli, J. C. G. & Wong, K. L. Lanthanide mechanoluminescence. J. Rare Earths 36, 1–41 (2018). doi: 10.1016/j.jre.2017.09.005
[20] Zhang, J. C. et al. Sacrificing trap density to achieve short-delay and high-contrast mechanoluminescence for stress imaging. Acta Materialia 152, 148–154 (2018). doi: 10.1016/j.actamat.2018.04.011
[21] Zhang, H. et al. Recent development of elastico-mechanoluminescent phosphors. J. Lumin. 207, 137–148 (2019). doi: 10.1016/j.jlumin.2018.10.117
[22] Matsui, H., Xu, C. N. & Tateyama, H. Stress-stimulated luminescence from ZnAl2O4:Mn. Appl. Phys. Lett. 78, 1068–1070 (2001). doi: 10.1063/1.1350429
[23] Wang, X. et al. Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics. Adv. Mater. 17, 1254–1258 (2005). doi: 10.1002/adma.200401406
[24] Tu, D. et al. LiNbO3:Pr3+: a multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence. Adv. Mater. 29, 1606914 (2017). doi: 10.1002/adma.201606914
[25] Zhang, J. C. et al. Achieving thermo-mechano-opto-responsive bitemporal colorful luminescence via multiplexing of dual lanthanides in piezoelectric particles and its multidimensional anticounterfeiting. Adv. Mater. 30, 1804644 (2018). doi: 10.1002/adma.201804644
[26] Jeong, S. M. et al. Color manipulation of mechanoluminescence from stress-activated composite films. Adv. Mater. 25, 6194–6200 (2013). doi: 10.1002/adma.201301679
[27] Jeong, S. M. et al. Mechanoluminescence color conversion by spontaneous fluorescent-dye-diffusion in elastomeric zinc sulfide composite. Adv. Funct. Mater. 26, 4848–4858 (2016). doi: 10.1002/adfm.201601461
[28] Li, L. J. et al. CaZnOS:Nd3+ emits tissue-penetrating near-infrared light upon force loading. ACS Appl. Mater. Interfaces 10, 14509–14516 (2018). doi: 10.1021/acsami.8b02530
[29] Du, Y. Y. et al. Mechanically excited multicolor luminescence in lanthanide ions. Adv. Mater. 31, 1807062 (2019). doi: 10.1002/adma.201807062
[30] Li, L. J. et al. Force-induced 1540 nm luminescence: role of piezotronic effect in energy transfer process for mechanoluminescence. Nano Energy 69, 104413 (2020). doi: 10.1016/j.nanoen.2019.104413
[31] Huang, B. L. Energy harvesting and conversion mechanisms for intrinsic upconverted mechano-persistent luminescence in CaZnOS. Phys. Chem. Chem. Phys. 18, 25946–25974 (2016). doi: 10.1039/C6CP04706H
[32] Huang, B. L., Peng, D. F. & Pan, C. F. "Energy relay center" for doped mechanoluminescence materials: a case study on cu-doped and mn-doped CaZnOS. Phys. Chem. Chem. Phys. 19, 1190–1208 (2017). doi: 10.1039/C6CP07472C
[33] Huang, B. L., Sun, M. Z. & Peng, D. F. Intrinsic energy conversions for photon-generation in piezo-phototronic materials: a case study on alkaline niobates. Nano Energy 47, 150–171 (2018). doi: 10.1016/j.nanoen.2018.02.041
[34] Petit, R. R. et al. Adding memory to pressure-sensitive phosphors. Light.: Sci. Appl. 8, 124 (2019). doi: 10.1038/s41377-019-0235-x
[35] Zhuang, Y. X. et al. Optical data storage and multicolor emission readout on flexible films using deep-trap persistent luminescence materials. Adv. Funct. Mater. 28, 1705769 (2018). doi: 10.1002/adfm.201705769
[36] Zhuang, Y. X. et al. Trap depth engineering of SrSi2O2N2:Ln2+, Ln3+ (Ln2+ = Yb, Eu; Ln3+ = Dy, Ho, Er) persistent luminescence materials for information storage applications. ACS Appl. Mater. Interfaces 10, 1854–1864 (2018). doi: 10.1021/acsami.7b17271
[37] Botterman, J. et al. Mechanoluminescence in BaSi2O2N2:Eu. Acta Materialia 60, 5494–5500 (2012). doi: 10.1016/j.actamat.2012.06.055
[38] Oeckler, O. et al. Real structure of SrSi2O2N2. Solid State Sci. 9, 205–212 (2007). doi: 10.1016/j.solidstatesciences.2006.11.009
[39] Chen, C. J. et al. Creating visible-to-near-infrared mechanoluminescence in mixed-anion compounds SrZn2S2O and SrZnSO. Nano Energy 68, 104329 (2020). doi: 10.1016/j.nanoen.2019.104329
[40] Sharma, R., BiSen, D. P. & Chandra, B. P. Experimental and theoretical study of the mechanoluminescence of ZnS:Mn nanoparticles. J. Electron. Mater. 44, 3312–3321 (2015). doi: 10.1007/s11664-015-3911-5
[41] Li, G. G. et al. Photoluminescence tuning via cation substitution in oxonitridosilicate phosphors: DFT calculations, different site occupations, and luminescence mechanisms. Chem. Mater. 26, 2991–3001 (2014). doi: 10.1021/cm500844v
[42] Liu, F. et al. Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8. Sci. Rep. 3, 1554 (2013). doi: 10.1038/srep01554
[43] Liu, H. B. et al. Near infrared photostimulated persistent luminescence and information storage of SrAl2O4:Eu2+, Dy3+ phosphor. optical Mater. Express 6, 3375–3385 (2016). doi: 10.1364/OME.6.003375
[44] Wang, C. L. et al. Trap distribution tailoring guided design of super-long-persistent phosphor Ba2SiO4:Eu2+, Ho3+ and photostimulable luminescence for optical information storage. J. Mater. Chem. C. 6, 6058–6067 (2018). doi: 10.1039/C8TC01722K
[45] Kechele, J. A. et al. Structure elucidation of BaSi2O2N2—a host lattice for rare-earth doped luminescent materials in phosphor-converted (pc)-LEDs. Solid State Sci. 11, 537–543 (2009). doi: 10.1016/j.solidstatesciences.2008.06.014
[46] Catti, M., Noel, Y. & Dovesi, R. Full piezoelectric tensors of wurtzite and zinc blende ZnO and ZnS by first-principles calculations. J. Phys. Chem. Solids 64, 2183–2190 (2003). doi: 10.1016/S0022-3697(03)00219-1
[47] Sohn, K. S. et al. Mechanically driven luminescence in a ZnS:Cu-PDMS composite. APL Mater. 4, 106102 (2016). doi: 10.1063/1.4964139
[48] Zhang, J. C. et al. Strong elastico-mechanoluminescence in diphase (Ba, Ca) TiO3:Pr3+ with self-assembled sandwich architectures. J. Electrochem. Soc. 157, G269–G273 (2010). doi: 10.1149/1.3496667