[1] Accanto, N. et al. A flexible two-photon fiberscope for fast activity imaging and precise optogenetic photostimulation of neurons in freely moving mice. Neuron 111, 176-189.e6 (2023). doi: 10.1016/j.neuron.2022.10.030
[2] Wang, T. J. et al. Resolution-enhanced multi-core fiber imaging learned on a digital twin for cancer diagnosis. Neurophotonics 11, S11505 (2024).
[3] Wu, J. C. et al. Learned end-to-end high-resolution lensless fiber imaging towards real-time cancer diagnosis. Scientific Reports 12, 18846 (2022). doi: 10.1038/s41598-022-23490-5
[4] Widmann, G. et al. Pre-and post-operative imaging of cochlear implants: a pictorial review. Insights into Imaging 11, 93 (2020). doi: 10.1186/s13244-020-00902-6
[5] Fröch, J. E. et al. Real time full-color imaging in a Meta-optical fiber endoscope. eLight 3, 13 (2023). doi: 10.1186/s43593-023-00044-4
[6] Gröger, A. et al. Two-wavelength holographic micro-endoscopy. Optics Express 32, 23687-23701 (2024 doi: 10.1364/OE.527958
[7] Sun, J. W. et al. Lensless fiber endomicroscopy in biomedicine. PhotoniX 5, 18 (2024). doi: 10.1186/s43074-024-00133-8
[8] Stibůrek, M. et al. 110 μm thin endo-microscope for deep-brain in vivo observations of neuronal connectivity, activity and blood flow dynamics. Nature Communications 14, 1897 (2023).
[9] Wen, Z. et al. Single multimode fibre for in vivo light-field-encoded endoscopic imaging. Nature Photonics 17, 679-687 (2023). doi: 10.1038/s41566-023-01240-x
[10] Choi, W. et al. Flexible-type ultrathin holographic endoscope for microscopic imaging of unstained biological tissues. Nature Communications 13, 4469 (2022). doi: 10.1038/s41467-022-32114-5
[11] Weinberg, G., Weiss, U. & Katz, O. Image scanning lensless fiber-bundle endomicroscopy. Optics Express 31, 37050-37057 (2023). doi: 10.1364/OE.496369
[12] Weinberg, G. et al. Ptychographic lensless coherent endomicroscopy through a flexible fiber bundle. Optics Express 32, 20421-20431 (2024). doi: 10.1364/OE.503963
[13] Yeminy, T. & Katz, O. Guidestar-free image-guided wavefront shaping. Science Advances 7, eabf5364 (2021). doi: 10.1126/sciadv.abf5364
[14] Lich, J. et al. Single-shot 3D incoherent imaging with diffuser endoscopy. Light: Advanced Manufacturing 5, 218-228 (2024). doi: 10.37188/lam.2024.015
[15] Skarsoulis, K. et al. Ptychographic imaging with a fiber endoscope via wavelength scanning. Optica 11, 782-790 (2024). doi: 10.1364/OPTICA.519965
[16] Zheng, Y. J. et al. Single-ended recovery of optical fiber transmission matrices using neural networks. Communications Physics 6, 306 (2023). doi: 10.1038/s42005-023-01410-x
[17] Eadie, M. et al. Fiber bundle image reconstruction using convolutional neural networks and bundle rotation in endomicroscopy. Sensors 23, 2469 (2023). doi: 10.3390/s23052469
[18] Sun, J. W. et al. Quantitative phase imaging through an ultra-thin lensless fiber endoscope. Light: Science & Applications 11, 204 (2022).
[19] Sun, J. W. et al. Calibration-free quantitative phase imaging in multi-core fiber endoscopes using end-to-end deep learning. Optics Letters 49, 342-345 (2024). doi: 10.1364/OL.509772
[20] Thompson, A. J. et al. Adaptive phase compensation for ultracompact laser scanning endomicroscopy. Optics Letters 36, 1707-1709 (2011). doi: 10.1364/OL.36.001707
[21] Andresen, E. R. et al. Toward endoscopes with no distal optics: video-rate scanning microscopy through a fiber bundle. Optics Letters 38, 609-611 (2013). doi: 10.1364/OL.38.000609
[22] Koukourakis, N. et al. Investigation of human organoid retina with digital holographic transmission matrix measurements. Light: Advanced Manufacturing 3, 211-225 (2022).
[23] Stasio, N. et al. Light control in a multicore fiber using the memory effect. Optics Express 23, 30532-30544 (2015). doi: 10.1364/OE.23.030532
[24] Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Optics Letters 32, 2309-2311 (2007). doi: 10.1364/OL.32.002309
[25] Scharf, E. et al. Video-rate lensless endoscope with self-calibration using wavefront shaping. Optics Letters 45, 3629-3632 (2020). doi: 10.1364/OL.394873
[26] Kuschmierz, R. et al. Self-calibration of lensless holographic endoscope using programmable guide stars. Optics Letters 43, 2997-3000 (2018). doi: 10.1364/OL.43.002997
[27] Badt, N. & Katz, O. Real-time holographic lensless micro-endoscopy through flexible fibers via fiber bundle distal holography. Nature Communications 13, 6055 (2022). doi: 10.1038/s41467-022-33462-y
[28] Sivankutty, S. et al. Nonlinear imaging through a Fermat’s golden spiral multicore fiber. Optics Letters 43, 3638-3641 (2018). doi: 10.1364/OL.43.003638
[29] El Moussawi, F. et al. Tapered multicore fiber for lensless endoscopes. ACS Photonics 9, 2547-2554 (2022). doi: 10.1021/acsphotonics.2c00661
[30] Tsvirkun, V. et al. Flexible lensless endoscope with a conformationally invariant multi-core fiber. Optica 6, 1185-1189 (2019). doi: 10.1364/OPTICA.6.001185
[31] Zolnacz, K. et al. Multicore fiber with thermally expanded cores for increased collection efficiency in endoscopic imaging. Light: Advanced Manufacturing 5, 580-587 (2024).
[32] Kuschmierz, R. et al. Ultra-thin 3D lensless fiber endoscopy using diffractive optical elements and deep neural networks. Light: Advanced Manufacturing 2, 415-424 (2021).
[33] Fontaine, N. K. et al. Laguerre-Gaussian mode sorter. Nature Communications 10, 1865 (2019). doi: 10.1038/s41467-019-09840-4
[34] Trägårdh J. et al. Label-free cars microscopy through a multimode fiber endoscope. Optics Express 27, 30055-30066 (2019). doi: 10.1364/OE.27.030055
[35] Morales-Delgado, E. E. et al. Three-dimensional microfabrication through a multimode optical fiber. Optics Express 25, 7031-7045 (2017). doi: 10.1364/OE.25.007031
[36] Weiss, U. & Katz, O. Two-photon lensless micro-endoscopy with in-situ wavefront correction. Optics Express 26, 28808-28817 (2018). doi: 10.1364/OE.26.028808
[37] Kakkava, E. et al. Selective femtosecond laser ablation via two-photon fluorescence imaging through a multimode fiber. Biomedical Optics Express 10, 423-433 (2019). doi: 10.1364/BOE.10.000423
[38] Zhao, T. R. et al. High-speed photoacoustic-guided wavefront shaping for focusing light in scattering media. Optics Letters 46, 1165-1168 (2021). doi: 10.1364/OL.412572
[39] Schmieder, F., Büttner, L. & Czarske, J. Adaptive laser-induced ultrasound generation using a micro-mirror array spatial light modulator. Optics Express 24, 22536-22543 (2016). doi: 10.1364/OE.24.022536
[40] Sun, J. W. et al. Ai-driven projection tomography with multicore fibre-optic cell rotation. Nature Communications 15, 147 (2024). doi: 10.1038/s41467-023-44280-1
[41] Tate, T. H. et al. Ultraminiature optical design for multispectral fluorescence imaging endoscopes. Journal of Biomedical Optics 22, 036013 (2017). doi: 10.1117/1.JBO.22.3.036013
[42] Small, E. et al. Spectral control of broadband light through random media by wavefront shaping. Optics Letters 37, 3429-3431 (2012). doi: 10.1364/OL.37.003429
[43] Liu, J. T. et al. Programmable multiwavelength achromatic focusing and imaging through scattering media. IEEE Photonics Journal 10, 6900811 (2018).
[44] Wu, D. X. et al. Delivering targeted color light through a multimode fiber by field synthesis. Optics Express 28, 19700-19710 (2020). doi: 10.1364/OE.396184
[45] Katz, O. et al. Focusing and compression of ultrashort pulses through scattering media. Nature Photonics 5, 372-377 (2011). doi: 10.1038/nphoton.2011.72
[46] Schmieder, F. et al. Two-wavelength computational holography for aberration-corrected simultaneous optogenetic stimulation and inhibition of in vitro biological samples. Applied Sciences 12, 2283 (2022). doi: 10.3390/app12052283
[47] Shaked, N. T. et al. Label-free biomedical optical imaging. Nature Photonics 17, 1031-1041 (2023). doi: 10.1038/s41566-023-01299-6
[48] Andresen, E. R. et al. Measurement and compensation of residual group delay in a multi-core fiber for lensless endoscopy. Journal of the Optical Society of America B 32, 1221-1228 (2015). doi: 10.1364/JOSAB.32.001221
[49] Vellekoop, I. M. & Mosk, A. P. Phase control algorithms for focusing light through turbid media. Optics Communications 281, 3071-3080 (2008). doi: 10.1016/j.optcom.2008.02.022
[50] Jesacher, A., Bernet, S. & Ritsch-Marte, M. Colour hologram projection with an SLM by exploiting its full phase modulation range. Optics Express 22, 20530-20541 (2014). doi: 10.1364/OE.22.020530
[51] Tsvirkun, V. et al. Widefield lensless endoscopy with a multicore fiber. Optics Letters 41, 4771-4774 (2016). doi: 10.1364/OL.41.004771
[52] Ding, K. Y. et al. Snapshot spectral imaging: from spatial-spectral mapping to metasurface-based imaging. Nanophotonics 13, 1303-1330 (2024). doi: 10.1515/nanoph-2023-0867