[1] |
Wu, Q. Y. et al. Subaperture moving strategy and related systematic errors in stitching interferometry of X-ray mirrors. Optics Express 32, 45691-45706 (2024). doi: 10.1364/OE.541002 |
[2] |
Bajt, S. et al. X-ray focusing with efficient high-NA multilayer Laue lenses. Light: Science & Applications 7, 17162 (2018). |
[3] |
Hu, J. et al. Multi-dimensional error figuring model for ion beams in X-ray mirrors. Optics Express 32, 29458-29473 (2024). doi: 10.1364/OE.528996 |
[4] |
Voronov, D. L. et al. Nanometer flat blazed x-ray gratings using ion beam figure correction. Optics Express 31, 34789-34799 (2023). doi: 10.1364/OE.501418 |
[5] |
Shurvinton, R. et al. Ion beam figuring for X-ray mirrors: history, state-of-the-art and future prospects. Journal of Synchrotron Radiation 31, 655-669 (2024). doi: 10.1107/S1600577524002935 |
[6] |
Wang, T. Y. et al. RISE: robust iterative surface extension for sub-nanometer X-ray mirror fabrication. Optics Express 29, 15114-15132 (2021). doi: 10.1364/OE.419490 |
[7] |
Deng, Y. H. et al. Review on mid-spatial frequency error suppression in optical components manufacturing. The International Journal of Advanced Manufacturing Technology 126, 4827-4847 (2023). doi: 10.1007/s00170-023-11408-y |
[8] |
Kim, D. W. et al. Parametric smoothing model for visco-elastic polishing tools. Optics Express 18, 22515-22526 (2010). doi: 10.1364/OE.18.022515 |
[9] |
Del Hoyo, J. , Kim, D. W. & Burge, J. Super-smooth optical fabrication controlling high-spatial frequency surface irregularity. Proceedings of SPIE 8838, Optical Manufacturing and Testing X. San Diego, CA, USA, 2013, 88380T. |
[10] |
Zhang, X. J. et al. Challenges and strategies in high-accuracy manufacturing of the world’s largest SiC aspheric mirror. Light: Science & Applications 11, 310 (2022). |
[11] |
Xu, M. J. et al. Fabrication of continuous phase plates with small structures based on recursive frequency filtered ion beam figuring. Optics Express 25, 10765-10778 (2017). doi: 10.1364/OE.25.010765 |
[12] |
Liu, J. M., He, J. K. & Peng, Y. F. Development analysis of magnetorheological precession finishing (MRPF) technology. Optics Express 31, 43535-43549 (2023). doi: 10.1364/OE.502933 |
[13] |
Chen, C. H. et al. Study on the influence of a magnetorheological finishing path on the mid-frequency errors of optical element surfaces. Optics Express 32, 19133-19145 (2024). doi: 10.1364/OE.523072 |
[14] |
Yan, K. X. et al. Mapping model of ribbon contour and tool influence function based on distributed parallel neural networks in magneto-rheological finishing. Optics Express 32, 27099-27111 (2024). doi: 10.1364/OE.527211 |
[15] |
Yang, B. et al. Material removal model of magnetorheological finishing based on dense granular flow theory. Light: Advanced Manufacturing 3, 630-639 (2022). |
[16] |
Wang, T. Y. et al. Universal dwell time optimization for deterministic optics fabrication. Optics Express 29, 38737-38757 (2021). doi: 10.1364/OE.443346 |
[17] |
Qiang, M. et al. An ion beam processing technology for complex component glass. Infrared Physics & Technology 139, 105340 (2024). |
[18] |
Wang, Y. B. et al. Study on rapid convergence strategy of nano-precision optical surface by ion beam figuring. Optics Communications 507, 127614 (2022). doi: 10.1016/j.optcom.2021.127614 |
[19] |
Xu, M. J. et al. Structure optimization and fabricating capability analysis of an ion-beam machine for a subnanometer optical surface. Applied Optics 54, 8055-8061 (2015). doi: 10.1364/AO.54.008055 |
[20] |
Franz, T. & Hänsel, T. Ion Beam Figuring (IBF) solutions for the correction of surface errors of small high Performance Optics. Proceedings of the Optical Fabrication and Testing 2008. New York, USA: Optica Publishing Group, 2008, OThC7. |
[21] |
Xie, X. H. et al. Ion beam machining error control and correction for small scale optics. Applied Optics 50, 5221-5227 (2011). doi: 10.1364/AO.50.005221 |
[22] |
Arnold, T. et al. Ultra-precision surface finishing by ion beam and plasma jet techniques—status and outlook. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 616, 147-156 (2010). |
[23] |
Wang, T. Y. et al. A comprehensive review of dwell time optimization methods in computer-controlled optical surfacing. Light: Advanced Manufacturing 5 422-451 (2024). |
[24] |
Hänsel, T. , Nickel, A. & Schindler, A. Ion beam figuring of strongly curved surfaces with a (x, y, z) linear three-axes system. Proceedings of the Optical Fabrication and Testing 2008. New York, USA: Optica Publishing Group, 2008, JWD6. |
[25] |
Ghim, Y. S. et al. Ultra-precision surface polishing using ion beam figuring. Proceedings of SPIE 8416, 6th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies. Xiamen, China: SPIE, 2012, 84161O. |
[26] |
Sigmund, P. A mechanism of surface micro-roughening by ion bombardment. Journal of Materials Science 8, 1545-1553 (1973). doi: 10.1007/BF00754888 |
[27] |
Zhang, L. et al. Study on Examination of Ion Beam Density of Ion Beam Figuring Machine Based on Faraday Cup. Aviation Precision Manufacturing Technology 49, 8-12 (2013). |
[28] |
Tang, W. et al. Calculation of removal function of ion beam figuring and polishing experiment. Optics and Precision Engineering 23, 31-39 (2015). doi: 10.3788/OPE.20152301.0031 |
[29] |
Seah, M. P. Resolution parameters for model functions used in surface analysis. Surface and Interface Analysis 33, 950-953 (2002). doi: 10.1002/sia.1452 |
[30] |
Sosolik, C. E. et al. A technique for accurate measurements of ion beam current density using a Faraday cup. Review of Scientific Instruments 71, 3326-3330 (2000). doi: 10.1063/1.1287635 |
[31] |
Xu, Z. et al. In-situ fast calculation of removal function for ion beam polishing and polishing experiment. Surface Technology 53, 158-165 (2024). |
[32] |
Raza, U. et al. Faraday Cup for high current and duty cycle electron LINACs. Vacuum 175, 109242 (2020). doi: 10.1016/j.vacuum.2020.109242 |
[33] |
Prokůpek, J. et al. Development and first experimental tests of Faraday cup array. Review of Scientific Instruments 85 (2014). |
[34] |
Johnston, R. et al. Realization of a large-acceptance Faraday Cup for 3MeV electrons. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 922, 157-160 (2019). doi: 10.1016/j.nima.2018.12.080 |
[35] |
Kellerman, P. L. et al. Ion depletion effects in sheath dynamics during plasma immersion ion implantation—models and data. Review of Scientific Instruments 73, 837-839 (2002). doi: 10.1063/1.1431706 |
[36] |
Brown, K. L. & Tautfest, G. W. Faraday‐Cup Monitors for High‐Energy Electron Beams. Review of Scientific Instruments 27, 696-702 (1956). doi: 10.1063/1.1715674 |
[37] |
Schindler, A. et al. Ion Beam Finishing Technology for High Precision Optics Production. Proceedings of the Optical Fabrication and Testing 2002. Tucson, AZ, USA: Optica Publishing Group, 2002, OTub5. |
[38] |
Gilmore, I. S. & Seah, M. P. Fluence, flux, current and current density measurement in faraday cups for surface analysis. Surface and Interface Analysis 23, 248-258 (1995). doi: 10.1002/sia.740230409 |
[39] |
Salehi, M. et al. Characterization of the Ion Beam Current Density of the RF Ion Source with Flat and Convex Extraction Systems. Silicon 10, 2743-2749 (2018). doi: 10.1007/s12633-018-9815-2 |
[40] |
Xu, K. et al. Accuracy verification methodology for computer-generated hologram used for testing a 3.5-meter mirror based on an equivalent element. Light: Advanced Manufacturing 5, 195-203 (2024). |
[41] |
Sidick, E. Power spectral density specification and analysis of large optical surfaces. Proceedings of SPIE 7390, Modeling Aspects in Optical Metrology II. Munich, Germany: SPIE, 2009, 73900L. |