[1] Owen, R. B. & Zozulya, A. A. In-line digital holographic sensor for monitoring and characterizing marine particulates. Optical Engineering 39, 2187-2197 (2000). doi: 10.1117/1.1305542
[2] Malkiel, E., Abras, J. N. & Katz, J. Automated scanning and measurements of particle distributions within a holographic reconstructed volume. Measurement Science and Technology 15, 601-612 (2004). doi: 10.1088/0957-0233/15/4/001
[3] Gopalan, B., Malkiel, E. & Katz, J. Experimental investigation of turbulent diffusion of slightly buoyant droplets in locally isotropic turbulence. Physics of Fluids 20, 095102 (2008). doi: 10.1063/1.2969470
[4] Merola, F. et al. Tomographic flow cytometry by digital holography. Light: Science & Applications 6, e16241 (2017).
[5] Dyomin, V. et al. Holography of particles for diagnostics tasks [Invited]. Applied Optics 58, G300-G310 (2019). doi: 10.1364/AO.58.00G300
[6] Murray, G. P. D. et al. Barrier bednets target malaria vectors and expand the range of usable insecticides. Nature Microbiology 5, 40-47 (2020). doi: 10.1038/s41564-019-0607-2
[7] Bhatt, S. et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526, 207-211 (2015). doi: 10.1038/nature15535
[8] World Health Organization. World Malaria Report 2020: 20 Years of Global Progress and Challenges. (Geneva: World Health Organization, 2020).
[9] Sheng, J. et al. Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates. Proceedings of the National Academy of Sciences of the United States of America 104, 17512-17517 (2007). doi: 10.1073/pnas.0704658104
[10] Lu, J. et al. Lagrangian particle tracking in three dimensions via single-camera in-line digital holography. New Journal of Physics 10, 125013 (2008). doi: 10.1088/1367-2630/10/12/125013
[11] Mundt, J. & Kreis, T. M. Digital holographic recording and reconstruction of large scale objects for metrology and display. Optical Engineering 49, 125801 (2010). doi: 10.1117/1.3524238
[12] Memmolo, P. et al. Refocusing criterion via sparsity measurements in digital holography. Optics Letters 39, 4719-4722 (2014). doi: 10.1364/OL.39.004719
[13] Singh, A. K. et al. Looking through a diffuser and around an opaque surface: a holographic approach. Optics Express 22, 7694-7701 (2014). doi: 10.1364/OE.22.007694
[14] Singh, A. K. et al. Exploiting scattering media for exploring 3D objects. Light: Science & Applications 6, e16219 (2017).
[15] Mazumdar, Y. C. et al. Megahertz-rate shock-wave distortion cancellation via phase conjugate digital in-line holography. Nature Communications 11, 1129 (2020). doi: 10.1038/s41467-020-14868-y
[16] Trolinger, J. D. et al. Spatially and temporally resolved diagnostics of dense sprays using gated, femtosecond, digital holography. Proceedings of SPIE 10373, Applied Optical Metrology II. San Diego: SPIE, 2017, 25.
[17] Edrei, E. & Scarcelli, G. Optical imaging through dynamic turbid media using the Fourier-domain shower-curtain effect. Optica 3, 71-74 (2016). doi: 10.1364/OPTICA.3.000071
[18] Valzania, L., Zolliker, P. & Hack, E. Coherent reconstruction of a textile and a hidden object with terahertz radiation. Optica 6, 518-523 (2019). doi: 10.1364/OPTICA.6.000518
[19] Butail, S. et al. Reconstructing the flight kinematics of swarming and mating in wild mosquitoes. Journal of the Royal Society Interface 9, 2624-2638 (2012). doi: 10.1098/rsif.2012.0150
[20] Voloshin, V. et al. Diffuse retro-reflective imaging for improved video tracking of mosquitoes at human baited bednets. Royal Society Open Science 7, 191951 (2020). doi: 10.1098/rsos.191951
[21] Kröner, C. et al. 3D tracking of mosquitoes: a field compatible technique to understand malaria vector behaviour. 3D Image Acquisition and Display: Technology, Perception and Applications 2016. Heidelberg Germany: OSA, 2016, TW5A. 4.
[22] Brydegaard, M. & Svanberg, S. Photonic monitoring of atmospheric and aquatic fauna. Laser and Photonics Reviews 12, 1800135 (2018). doi: 10.1002/lpor.201800135
[23] Kirkeby, C., Wellenreuther, M. & Brydegaard, M. Observations of movement dynamics of flying insects using high resolution lidar. Scientific Reports 6, 29083 (2016). doi: 10.1038/srep29083
[24] Dubois, F. et al. Focus plane detection criteria in digital holography microscopy by amplitude analysis. Optics Express 14, 5895-5908 (2006). doi: 10.1364/OE.14.005895
[25] DeJong, J. & Meng, H. Digital holographic particle validation via complex wave. Applied Optics 46, 7652-7661 (2007). doi: 10.1364/AO.46.007652
[26] Gao, J. et al. Uncertainty characterization of particle depth measurement using digital in-line holography and the hybrid method. Optics Express 21, 26432-26449 (2013). doi: 10.1364/OE.21.026432
[27] Hall, M. L., Towers, C. E. & Towers, D. P. Correction of 3D localisation error of multiple objects in close-proximity in digital holography. Adaptive Optics: Analysis, Methods & Systems 2020. Washington, DC: OSA, 2020, JW2A. 14.
[28] Hall, M. L. et al. Improved three-dimensional localization of multiple small objects in close proximity in digital holography. Applied Optics 60, A285-A295 (2021). doi: 10.1364/AO.404432
[29] Tamamitsu, M. et al. A robust holographic autofocusing criterion based on edge sparsity: comparison of Gini index and Tamura coefficient for holographic autofocusing based on the edge sparsity of the complex optical wavefront. Proceedings of SPIE 10503, Quantitative Phase Imaging IV. San Francisco, California, United States: SPIE, 2017.
[30] Angarita-Jaimes, N. C. et al. A novel video-tracking system to quantify the behaviour of nocturnal mosquitoes attacking human hosts in the field. Journal of the Royal Society Interface 13, 20150974 (2016). doi: 10.1098/rsif.2015.0974
[31] Hughes, A. et al. Quantifying late-stage host-seeking behaviour of Anopheles gambiae at the insecticidal net interface using a baited-box bioassay. Malaria Journal 19, 140 (2020). doi: 10.1186/s12936-020-03213-9
[32] Ling, H. J. & Katz, J. Separating twin images and locating the center of a microparticle in dense suspensions using correlations among reconstructed fields of two parallel holograms. Applied Optics 53, G1-G11 (2014). doi: 10.1364/AO.53.0000G1
[33] Oe, K. & Nomura, T. Twin-image reduction method using a diffuser for phase imaging in-line digital holography. Applied Optics 57, 5652-5656 (2018). doi: 10.1364/AO.57.005652
[34] Dickerson, A. K., Olvera, A. & Luc, Y. Void entry by Aedes aegypti (Diptera: Culicidae) mosquitoes is lower than would be expected by a randomized search. Journal of Insect Science 18, 9 (2018).
[35] Vest, C. M. Holographic Interferometry. (Berkeley: Wiley, 1979).
[36] Hariharan, P. Basics of Holography. (Cambridge: Cambridge University Press, 2002).
[37] Parker, J. E. A. et al. Infrared video tracking of Anopheles gambiae at insecticide-treated bed nets reveals rapid decisive impact after brief localised net contact. Scientific Reports 5, 13392 (2015). doi: 10.1038/srep13392
[38] Wu, C. W., Kong, X. Q. & Wu, D. Micronanostructures of the scales on a mosquitoos legs and their role in weight support. Physical Review E 76, 017301 (2007). doi: 10.1103/PhysRevE.76.017301
[39] Poon, T. C. & Liu, J. P. Introduction to Modern Digital Holography with MATLAB. (Cambridge: Cambridge University Press, 2014).