[1] Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333-337 (2011). doi: 10.1126/science.1210713
[2] Yu, N. F. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139-150 (2014). doi: 10.1038/nmat3839
[3] Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013). doi: 10.1126/science.1232009
[4] Sun, S. L. et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett. 12, 6223-6229 (2012). doi: 10.1021/nl3032668
[5] Arbabi, A. et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937-943 (2015). doi: 10.1038/nnano.2015.186
[6] Meinzer, N., Barnes, W. L. & Hooper, I. R. Plasmonic meta-atoms and metasurfaces. Nat. Photonics 8, 889-898 (2014). doi: 10.1038/nphoton.2014.247
[7] Wen, D. D. et al. Helicity multiplexed broadband metasurface holograms. Nat. Commun. 6, 8241 (2015). doi: 10.1038/ncomms9241
[8] Huang, Y. W. et al. Aluminum plasmonic multicolor meta-hologram. Nano Lett. 15, 3122-3127 (2015). doi: 10.1021/acs.nanolett.5b00184
[9] Yu, N. F. et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett. 12, 6328-6333 (2012). doi: 10.1021/nl303445u
[10] Ding, F. et al. Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach. ACS Nano 9, 4111-4119 (2015). doi: 10.1021/acsnano.5b00218
[11] Ni, X. J. et al. An ultrathin invisibility skin cloak for visible light. Science 349, 1310-1314 (2015). doi: 10.1126/science.aac9411
[12] Chen, P. Y., Argyropoulos, C. & Alù, A. Broadening the cloaking bandwidth with non-foster metasurfaces. Phys. Rev. Lett. 111, 233001 (2013). doi: 10.1103/PhysRevLett.111.233001
[13] Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190-1194 (2016). doi: 10.1126/science.aaf6644
[14] Lalanne, P. & Chavel, P. Metalenses at visible wavelengths: past, present. Perspect. Laser Photonics Rev. 11, 1600295 (2017). doi: 10.1002/lpor.201600295
[15] Ni, X. J. et al. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light.: Sci. Appl. 2, e72 (2013). doi: 10.1038/lsa.2013.28
[16] Huang, K. et al. Planar diffractive lenses: fundamentals, functionalities, and applications. Adv. Mater. 30, 1704556 (2018). doi: 10.1002/adma.201704556
[17] Chen, X. Z. et al. Dual-polarity plasmonic metalens for visible light. Nat. Commun. 3, 1198 (2012). doi: 10.1038/ncomms2207
[18] She, A. et al. Large area metalenses: design, characterization, and mass manufacturing. Opt. Express 26, 1573-1585 (2018). doi: 10.1364/OE.26.001573
[19] Paniagua-Domínguez, R. et al. A metalens with a near-unity numerical aperture. Nano Lett. 18, 2124-2132 (2018). doi: 10.1021/acs.nanolett.8b00368
[20] Zhang, S. Y. et al. High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays. Opt. Express 24, 18024-18034 (2016). doi: 10.1364/OE.24.018024
[21] Avayu, O. et al. Composite functional metasurfaces for multispectral achromatic optics. Nat. Commun. 8, 14992 (2017). doi: 10.1038/ncomms14992
[22] Khorasaninejad, M. et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett. 17, 1819-1824 (2017). doi: 10.1021/acs.nanolett.6b05137
[23] Arbabi, E. et al. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica 4, 625-632 (2017). doi: 10.1364/OPTICA.4.000625
[24] Wang, S. M. et al. Broadband achromatic optical metasurface devices. Nat. Commun. 8, 187 (2017). doi: 10.1038/s41467-017-00166-7
[25] Wang, S. M. et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227-232 (2018). doi: 10.1038/s41565-017-0052-4
[26] Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220-226 (2018). doi: 10.1038/s41565-017-0034-6
[27] Arbabi, A. et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun. 7, 13682 (2016). doi: 10.1038/ncomms13682
[28] Groever, B., Chen, W. T. & Capasso, F. Meta-lens doublet in the visible region. Nano Lett. 17, 4902-4907 (2017). doi: 10.1021/acs.nanolett.7b01888
[29] She, A. et al. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Sci. Adv. 4, eaap9957 (2018). doi: 10.1126/sciadv.aap9957
[30] Arbabi, E. et al. MEMS-tunable dielectric metasurface lens. Nat. Commun. 9, 812 (2018). doi: 10.1038/s41467-018-03155-6
[31] Pawley, J. B. Handbook of Biological Confocal Microscopy (Springer, Boston, MA, 1990).
[32] Wilson, T. Confocal Microscopy (Academic Press, London, 1990).
[33] Cossairt, O. & Nayar, S. Spectral focal sweep: extended depth of field from chromatic aberrations. In Proc. 2010 IEEE International Conference on Computational Photography (IEEE, Cambridge, MA, USA, 2010).
[34] Shi, K. B. et al. Chromatic confocal microscopy using supercontinuum light. Opt. Express 12, 2096-2101 (2004). doi: 10.1364/OPEX.12.002096
[35] Browne, M. A., Akinyemi, O. & Boyde, A. Confocal surface profiling utilizing chromatic aberration. Scanning 14, 145-153 (1992). doi: 10.1002/sca.4950140304
[36] Tiziani, H. J. & Uhde, H. M. Three-dimensional image sensing by chromatic confocal microscopy. Appl. Opt. 33, 1838-1843 (1994). doi: 10.1364/AO.33.001838
[37] Dobson, S. L., Sun, P. C. & Fainman, Y. Diffractive lenses for chromatic confocal imaging. Appl. Opt. 36, 4744-4748 (1997). doi: 10.1364/AO.36.004744
[38] Wang, S. et al. T-ray imaging and tomography. J. Biol. Phys. 29, 247-256 (2003). doi: 10.1023/A:1024457212578
[39] Molesini, G. et al. Focus-wavelength encoded optical profilometer. Opt. Commun. 49, 229-233 (1984). doi: 10.1016/0030-4018(84)90179-2
[40] Chun, B. S., Kim, K. & Gweon, D. Three-dimensional surface profile measurement using a beam scanning chromatic confocal microscope. Rev. Sci. Instrum. 80, 073706 (2009). doi: 10.1063/1.3184023
[41] Rossi, M., Kunz, R. E. & Herzig, H. P. Refractive and diffractive properties of planar micro-optical elements. Appl. Opt. 34, 5996-6007 (1995). doi: 10.1364/AO.34.005996
[42] Beresna, M., Gecevičius, M. & Kazansky, P. G. Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass. Optical Mater. Express 1, 783-795 (2011). doi: 10.1364/OME.1.000783
[43] Lee, M. S. L. et al. Imaging with blazed-binary diffractive. J. Opt. A: Pure Appl. Opt. 4, S119-S124 (2002). doi: 10.1088/1464-4258/4/5/358
[44] Novotny, L. & Hecht, B. Principles of Nano-Optics (Cambridge University Press, Cambridge, UK, 2012).
[45] Poon, T. C. Digital Holography and Three-Dimensional Display: Principles and Applications (Springer, Boston, MA, 2006).
[46] Aieta, F. et al. Aberrations of flat lenses and aplanatic metasurfaces. Opt. Express 21, 31530-31539 (2013). doi: 10.1364/OE.21.031530
[47] Berry, M. V. The adiabatic phase and Pancharatnam's phase for polarized light. J. Mod. Opt. 34, 1401-1407 (1987). doi: 10.1080/09500348714551321
[48] Huang, L. L. et al. Dispersionless phase discontinuities for controlling light propagation. Nano Lett. 12, 5750-5755 (2012). doi: 10.1021/nl303031j
[49] Khodaee, M., Banakermani, M. & Baghban, H. GaN-based metamaterial terahertz bandpass filter design: tunability and ultra-broad passband attainment. Appl. Opt. 54, 8617-8624 (2015). doi: 10.1364/AO.54.008617